View : 1231 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor이인숙-
dc.contributor.author김성현-
dc.creator김성현-
dc.date.accessioned2016-08-25T10:08:34Z-
dc.date.available2016-08-25T10:08:34Z-
dc.date.issued2010-
dc.identifier.otherOAK-000000058731-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/185641-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000058731-
dc.description.abstractPhytoextraction is a low-cost, plant based technique that shows promise as a technique for remediation of agricultural soils that has been contaminated with heavy metals. However, the effectiveness of this method is lower than that of physico-chemical methods and it requires a long time. The application of chelating agents has been found to increase the solubility of heavy metals in soils and therefore enhance phytoextraction. This study describes new alternative chelating agents that enhance phytoextraction by barnyard grass (Echinochloa crus-galli). In addition, phytoremediation of military shooting sites by E. crus-galli was evaluated in this study and the cellular detoxification mechanism of E. crus-galli was identified. The results of this study suggested that citric acid and root exudates are good agents for phytoremediation by E. crus-galli. The results also revealed that EDTA increased the ability of barnyard grass to take up metals, but that it resulted in increased soil leaching. However, citric acid and root exudates enhance the growth of E. crus-galli and the metal removal rate without the risk of leaching. The accumulation of metal and the growth of E. crus-galli that was cultivated with Belamcanda chinensis root exudates was two to four fold higher than of plants that were cultivated without the root exudates. In addition, the BCF and TF values of Cd, Cu and Pb were greater when the root exudates were added (p<0.05). Therefore, citric acid and root exudates are good agents that could possibly be used as a novel alternative to enhanced phytoextraction. E. crus-galli was appropriate for the removal of heavy metals via phytoremediation at the metal contaminated shooting site because the plants led to increased microbial activity and diversity. Specifically, the soil dehydrogenase activities of barnyard grass in field soils were 3 fold higher than those of potted soils. Based on the DGGE fingerprints, the Shannon-Weaver diversity index (H) and Simpson dominance index (D) was higher in the rhizosphere of barnyard grass in the field soils than in the potted soils. These findings indicate that although it is difficult to use the results of potted experiments directly, the results provided here can be used as basic data for determination of the suitability of field sites for phytoremediation. The mechanism by which E. crus-galli removed metals was through a binding ligand of 2.5 kD, which is similar to typical PCs. The profile for Cd distribution revealed the presence of two Cd-binding ligand peaks, a high molecular weight (HMW, 60 kD) and a Cd binding ligand (Cd-BL, 2.5 kD). Furthermore, Cd-BL increased with exposure time and was found to have a typical phytochelatins (PCs) amino acid composition dominated by cysteine, glutamate and glycine (16.5, 16.6 and 11.9%, respectively). Taken together, these results suggest that citric acid and root exudates are good agents for phytoremediation by E. crus-galli. Therefore, the method developed here could be a new alternative to enhanced phytoextraction. Additionally, the results presented here provide a greater understanding of the absorption, translocation and detoxification mechanisms used by E. crus-galli and indicate that they are suitable for sustainable land use management and improve safety. Chelating agents and detoxification has been widely applied in field experiments, and the results of these studies indicate that further development of phytoremediation requires an integrated multi-disciplinary research effort that combines plant biology, genetic engineering, soil chemistry, soil microbiology, ecology and agricultural and environmental engineering.;식물상 복원공법 (phytoremediation)은 중금속으로 오염된 토양을 정화하는데 경제적이고 친환경적인 공법으로 자주 이용되고 있다. 그러나 물리화학적 방법에 비해 효율이 낮고 시간이 많이 걸리는 단점이 있다. 따라서 토양 내중금속 용해도를 증가시켜 phytoextraction 을 증진시키는 chelate 적용방법들이 연구되었다. 본 연구는 중금속 내성종인 피의 phytoextraction 증진을 위한 가장 효과적인 chelate 선별과 기존 chelate 를 대체할 새로운 chelating agent 를 제안했다. 또한 중금속으로 오염된 사격장에 피를 적용하여 중금속 제거능과 근권 토양의 미생물 군집을 조사하였으며 피의 중금속 내성 mechanism 도 밝혔다. 본 연구 결과, 피를 이용한 phytoextraction 적용 시 citric acid 와 범부채 뿌리 삼출물이 효율적인 chelate 로 나타났다. EDTA 와 organic acid 의 phytoextraction 효율을 비교한 결과, EDTA 는 피의 중금속 축적을 높였으나 토양으로부터 metal leaching 을 증가시키는 것으로 나타났다. 반면 citric acid 는 leaching 의 위험 없이 중금속을 제거해 가장 적합한 chelate 로 나타났다. 범부채 뿌리 삼출물 주입 시 피의 뿌리 및 줄기 성장과 피 뿌리의 중금속 축적량은 control 보다 2-4 배 증가하였으며 Cd, Cu, Pb 의 BCF 와 TF 값도 증가하였다 (p<0.05). 그러므로, citric acid 와 뿌리 삼출물이 친환경적인 chelate 로 사용할 수 있을 것으로 보인다. 피는 현장 적용 시 미생물 활성과 군집에 영향을 미쳐 중금속으로 오염된 군 사격장의 토양 복원에 적합할 것으로 사료된다. 실험 결과, 식물의 중금속 축적과 토양 중금속 제거는 pot 실험 보다 field 실험에서 더 낮게 나타났으나 토양 미생물 활성과 다양성은 field 환경에서 더 증가하였다. 특히 field 실험에서 자란 피의 근권 토양 미생물 활성은 pot 실험 보다 3배 더 높게 나타났다. DGGE 패턴을 기초로 한 Shannon Wiener index (H’)와 Simpson dominance index (D)도 pot 실험 보다 field 실험의 피 근권토양에서 높게 나타났다. 이러한 연구 결과, pot 실험 결과를 phytoremediation 의 현장 적용을 위한 기초 데이터로 사용할 수 있을 것으로 사료된다. 피의 중금속 내성 기작은 약 2.5kDa 의 ligand 인 phytochelation(PCs)이 관여하는 것으로 나타났다. 피의 뿌리 표면에 흡수 mechanisms 이 작용하며 Cd 분포는 2 개의 Cd-binding ligand peak 이 나타났다. 특히 고분자량 (60kD)과 Cd binding ligand (CD-BL, 2.5kD)으로 아미노성 조성은 cysteine, glutamate, glycine predominantly 이 각각 16.5, 16.6, 11.9%로 Cysteine, Glutamate, glycine 의 비율이 1.4:1.4: 1 로 나타나 phytochelatins (PCs)로 확인되었다. 이상의 연구 결과, 피의 phytoremediation 강화의 효과적인 chelate 로 citric acid 와 범부채 뿌리 삼출물로 나타났다. 이는 phytoextraction 증진에 새로운 chelate 로 제안될 수 있을 것이다. 또한 지속 가능한 토양복원을 위해 피의 중금속 흡수 및 축적과 translocation, detoxification 기작에 대한 정보를 제공했다. 그러나 현재, 현장에서 chelating agents 연구와 detoxification 기작에 관한 연구는 매우 부족한 실정이다. 그러므로 pot 실험과 field 실험의 gap 을 줄이는 연구가 시급한 실정이다. 향후 phytoremediation 은 식물 생리학, 토양 생태학, 유전공학, 환경공학 등의 총체적인 연구가 요구된다.-
dc.description.tableofcontentsChapterⅠ. Introduction = 1 1.1 Research backgrounds = 2 1.1.1 Phytoremediation technologies = 2 1.1.2 Plant selection = 5 1.1.3 Chelating agents = 9 1.1.4 Phytochelatins = 14 1.2 Research objectives = 19 ChapterⅡ. Enhancement of the phytoextraction of metals in a multi-metal contaminated soil : comparison of the addition effects of organic acids and EDTA = 21 2.1 Introduction = 22 2.2 Material and Methods = 23 2.2.1 Soil and plant preparation = 23 2.2.2 Experimental set up = 25 2.2.3 Heavy metal analysis = 26 2.2.4 Statistical analysis = 26 2.3 Results and Discussion = 27 2.3.1 Phytotoxicity of phytoremediated soils = 27 2.3.2 Metal uptake by plant = 29 2.3.3 Changes of soluble heavy metal in soil by chelate = 31 ChapterⅢ. Enhanced Heavy Metal Phytoextraction by Echinochloa crus-galli using root = exudates = 35 3.1 Introduction = 36 3.2 Materials and Methods = 38 3.2.1 Soil preparation and experimental set up = 38 3.2.2 Collection from root exudates and analysis of organic acids = 38 3.2.3 Growth and metal uptake = 39 3.2.4 Analysis of soil heavy metal fraction = 39 3.2.5 Statistical analysis = 40 3.3 Results and Discussion = 40 3.3.1 Organic acids of root exudate = 40 3.3.2 Growth rate of E.crus-galli = 42 3.3.3 Accumulation and translocation of heavy metals = 42 3.3.4 Changes of soil heavy metal fraction = 45 Chapter Ⅳ. Phytoremediation and Microbial Community Structure in Soil of a Metal-contaminated Military Shooting Range = 48 4.1 Introduction = 49 4.2 Materials and Methods = 50 4.2.1 Site description and field experimental design = 50 4.2.2 Soil and plant analysis = 51 4.2.3 Dehydrogenase activity and microbial community structure = 52 4.2.4 Statistical analysis = 53 4.3 Results and Discussion = 54 4.3.1 Changes of heavy metals = 54 4.3.2 Dehydrogenase activity and microbial community structure = 58 Chapter Ⅴ. Characterization of Cadmium-Binding Ligands from Roots of Echinochloa crus-galli = 64 5.1 Introduction = 65 5.2 Materials and Methods = 66 5.2.1 Plant materials and cadmium treatment = 66 5.2.2 Metal analysis = 66 5.2.3 Purification of cadmium binding ligands = 67 5.2.4 Amino acid analysis = 68 5.3 Results and Discussion = 68 5.3.1 Accumulation and translocation of heavy metals = 68 5.3.2 Purification of cadmium binding ligands = 72 Chapter Ⅵ. Conclusions and Recommendation = 78 REFERENCES = 81 국문논문초록 = 99-
dc.formatapplication/pdf-
dc.format.extent2084628 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.titleChelate-enhanced phytoremediation of metal contaminated soils-
dc.typeDoctoral Thesis-
dc.format.pagexii, 100 p.-
dc.identifier.thesisdegreeDoctor-
dc.identifier.major대학원 에코과학부-
dc.date.awarded2010. 2-
Appears in Collections:
일반대학원 > 에코과학부 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE