View : 607 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor김관묵-
dc.contributor.author김지영-
dc.creator김지영-
dc.date.accessioned2016-08-25T10:08:14Z-
dc.date.available2016-08-25T10:08:14Z-
dc.date.issued2010-
dc.identifier.otherOAK-000000056880-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/185424-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000056880-
dc.description.abstractPart 1 Amino acid와 Amino alcohol은 대표적인 chiral한 물질이다. 광학 활성을 가지고 있는 Amino alcohol은 다양한 생활성 분자를 만드는 중간체와 입체 선택적 촉매의 리간드로서 중요한 역할을 한다. 또한 광학적으로 순수한 Amino acid는 의약품, 식품 생리활성 물질의 중간체 및 원제로 사용되는 중요한 물질이다. 기존에 Amino alcohol을 입체선택적으로 인식할 수 있고 amino acid를 L-form에서 자연계에 존재하지 않는 D-form으로 전환시킬 수 있는 유도체 ARCA(alanine racemase chiral analogue, 1 ) 가 본 연구실에서 개발된 바가 있다. 본 연구에서는 1 이 가지고 있는 uryl기 대신에 guanidinium기를 도입하여 (S)-[1,1’-Binaphthalene]-2-Hydroxy-2’-(1,3-diphenylguanidine)-3-carbo xaldehyde (2)와 (S)-[1,1’-Binaphthalene]-2-Hydroxy-2’-(1-(naphthalen-1-yl)-3-phen ylguanidine)-3-carboxaldehyde (3)을 합성하였다. 이들 Receptor의 guanidinium기는 (+) charge로 인해 amino acid 또는 amino alcohol의 carboxyl기 및 hydroxyl기와 강한 수소결합을 하게 될 것이라고 기대되었다. 또한, 본 연구에서는 1의 uryl기에 붙은 phenyl기 대신, naphthyl기와 pyrene기를 도입한 (S)-[1,1’-Binaphthalene]-2-Hydroxy-2’-(1-(naphthalen-1-yl)-3-phenylurea)-3-carboxaldehyde (4)와 (S)-[1,1’-Binaphthalene]-2-Hydroxy-2’-(1-phenyl-3-(pyren-1-yl)urea)-3-carboxaldehyde (5)를 합성하여 ring의 개수의 증가가 선택성과 변환율에 가져오는 변화를 확인하였다. 이들 2-5를 (R,S)-amino alcohol과 CDCl3에서 반응시켜 입체선택성을 1H-NMR로 확인하였으며, L-amino acid와 DMSO-d6에서 반응시킨 후 TEA를 첨가하여 시간의 변화에 따른 L-form에서 D-form으로의 변환을 1H-NMR을 통해 확인하였다. 실험 데이터를 분석한 결과, amino alcohol에 대해서는 receptor의 구조내에 guanidinium기를 갖는 경우에 더 높은 선택성을 보인다는 것과, 구조내 ring의 개수의 증가로 인한 steric effect와 electronic effect가 amino alcohol에 대한 선택성을 낮추는데 큰 영향을 미친다는 것을 확인하였다. 반면, amino acid에 대해서는 receptor의 구조내에 uryl기를 갖는 경우에 더 높은 선택성을 보인다는 것과, 구조내 ring의 개수의 증가가 amino acid의 변환률에 미치는 영향이 amino alcohol에 대한 것만큼 크지 않다는 것을 확인하였다. 이러한 결과는 electronic effect와 steric effect에 의한 영향을 받은 것으로 생각된다. Part 2 Axial chirality를 갖는 호스트 분자는, chiral한 게스트 물질을 인식했을 때, chirality의 중심축 전환을 일으켜 circular dichroism에 변화를 보이게 된다. 따라서 axial chirality를 갖는 물질 biphenyl을 chiral recognition의 호스트로 사용될 수 있다. 본 연구자는 biphenyl을 기반으로 하는 호스트 [1,1’-Biphenyl]-2,2’-(1-methyl-3-(naphthalen-1-yl)urea)를 이용하여 Circular dichroism을 통한 chiral recognition system 연구를 진행하고자 하였다. 하지만, 실험결과 호스트가 게스트를 효과적으로 인식하지 못한다는 결과를 얻게 되었다. 따라서, 본 논문에서는 새로운 호스트 [1,1’-Biphenyl]-2,2’-(1-methyl-3-(naphthalen-1-yl)urea) 의 합성방법을 소개하고자 한다.;Part 1 Amino acid and amino alcohol are one of the typified chiral compounds. Amino alcohols which have optical activity are used for ligand of eantioselectivy catalyst andintermediate of bio-active molecules. And optically pure amino acids are used as basic raw-materials and intermediate for bio-active molecules and drugs. Recently, It is proved that a chiral 1 recognizeds the chirality of 1,2-amino alcohols based on reversible imine formation and multiple hydrogen bonding including resonance assisted hydrogen bond(RAHB). Also 1 can convert L-amino acids to D-amino acid based on difference of energy stability between L-form and D-form. In this context, we developed new receptor 2 and 3 which have guanidinium group instead of uryl group of 1. Guanidinium group of these receptors have strong hydrogen bond with hydroxyl group and carboxylic acid group of amino alcohols and amino acids, because of (+)charge. Also, in this context we developed other new 4 and 5 which have naphthyl group and pyrene group instead of phenyl group. With these receptors we were to prove of effect of ring increasing in the receptor. We cheaked enantioselective ratio for (R,S)-amino alcohol in CDCl3 by 1H-NMR. Also we confirmed change over time of L-form to D-form conversion for amino acids in DMSO with TEA by 1H-NMR. From the result, we confirmed guanidinium-based receptors have good selectivity to amino alcohol. And the selectivity for amino alcohols is influenced by steric effect and electronic effect depending on ring increasing. Also for amino acids, uryl-based receptors showed good enantiomeric ratio. In these cases, steric effect and electronic effect didn’t affect to enantiomeric ratio as much as result for amino alcohols. Part2 Axially chiral host show the change of circular dichroism by recognize chiral guest. Therefore, axially chral biphenyl can used host for chiral recognition. Originally, we were to study chiral recognition system for biphenyl-based host, [1,1’-biphenyl]-2,2’-(1-methyl-3-(naphthalene-1-yl)urea) by CD (circular dichroism). But we got the result that host can’t recognize gueset efficiently. Accordingly, in this context we introduce synthetic method for new host [1,1’-biphenyl]-2,2’-(1-methyl-3-(naphthalene-1-yl)urea).-
dc.description.tableofcontentsPart 1 Enantioselective Recognition of Amino Acids and Amino Alcohols by ARCA Derivatives Dangled with Conjugated Ring System = 1 I. 서론 = 2 II. 실험방법 = 9 II-1. 시약 = 9 II-2. 기기 = 9 II-3-1. (S)-[1,1-Binaphthalene]-2-Hydroxy-2-(1,3-diphenylguanidine)-3-carboxaldehyde 의 준비 = 10 II-3-1-1. (S)-[1,1-Binaphthalene]-2,2-dimethyl methyl ether 의 합성 = 10 II-3-1-2. (S)-[1,1-Binaphthalene]-3-carboxaldehyde-2,2-dimethyl methyl ether의 합성 = 11 II-3-1-3. (S)-[1,1-Binaphthalene]-3-carboxaldehyde-2,2-dihydroxy의 합성 = 12 II-3-1-4. (S)-[1,1-Binaphthalene]-2-methyl methyl ether-3-carboxaldehyde 의 합성 = 13 II-3-1-5. (S)-[1,1-Binaphthalene]-2-methyl methyl ether-2-Nitrobenzyl-3-carboxaldehyde의 합성 = 14 II-3-1-6. (S)-[1,1-Binaphthalene]-2-methyl methyl ether-2-Nitrobenzyl-3-methylalcohol 의 합성 = 15 II-3-1-7. (S)-[1,1-Binaphthalene]-2-methyl methyl ether-2Aminobenzyl-3-methylalcohol 의 합성 = 16 II-3-1-8. (S)-3-Hydroxymethyl-2-methyl methyl ether-2-(1,3-diphenylthiourea)-1,1binaphthalene 의 합성 = 17 II-3-1-9. (S)-3-Hydroxymethyl-2-methyl methyl ether-2-(1,3-diphenylguanidine)-1,1binaphthalene 의 합성 = 18 II-3-1-10. (S)-[1,1-Binaphthalene]-2-Hydroxy-2-(1,3-diphenylguanidin e)-3-carboxaldehyde 의 합성 = 19 II-3-2. (S)-[1,1-Binaphthalene]-2-Hydroxy-2-((naphthalen-1-yl)-3-phenyl guanidine)-3-carboxaldehyde 의 준비 = 20 II-3-2-1. (S)-3-Hydroxymethyl-2-methyl methyl ether-2-(1-(naphthalen-1-yl)-3-phenylthiourea)-1,1binaphthalene 의 합성 = 20 II-3-2-2. (S)-3-Hydroxymethyl-2-methyl methyl ether-2-(1-(naphthalen-1-yl)-3-phenylguanidine)-1,1binaphthalene 의 합성 = 21 II-3-2-3. (S)-[1,1-Binaphthalene]-2-Hydroxy-2-(1-(naphthalen-1-yl)-3-phenylguanidine)-3-carboxaldehyde 의 합성 = 22 II-3-3. (S)-[1,1-Binaphthalene]-2-Hydroxy-2-(1-(naphthalen-1-yl)-3-phenyl urea)-3-carboxaldehyde 의 준비 = 23 II-3-3-1. 3-Naphthylurylbenzyl alcohol 의 합성 = 23 II-3-3-2. 3-Naphthylurylbenzyl bromide 의 합성 = 23 II-3-3-3. (S)-[1,1-Binaphthalene]-2-methyl methyl ether-2-(1-(naphthalen-1-yl)-3-phenylurea)-3-carboxaldehyde의 합성 = 24 II-3-3-4. (S)-[1,1-Binaphthalene]-2-Hydroxy-2-(1-(naphthalen-1-yl)-3-phenylurea)-3-carboxaldehyde 의 합성 = 25 II-3-4. (S)-[1,1-Binaphthalene]-2-Hydroxy-2-(1-phenyl-3-(pyren-1-yl)urea)-3-carboxaldehyde 의 준비 = 26 II-3-4-1. 1-Pyrene isocyanate 의 합성 = 26 II-3-4-2. 3-Pyreneurylbenzyl alcohol 의 합성 = 27 II-3-4-3. 3-Pyreneurylbenzyl bromide 의 합성 = 27 II-3-4-4. (S)-[1,1-Binaphthalene]-2-methyl methyl ether-2-(1-phenyl-3-(pyren-1-yl)urea)-3-carboxaldehyde 의 합성 = 28 II-3-4-5. (S)-[1,1-Binaphthalene]-2-Hydroxy-2-(1-phenyl-3-(pyren-1-yl)urea)-3-carboxaldehyde 의 합성 = 29 II-3-5. Amino alcohol과 Amino acid의 준비 = 30 (1) Amino alcohol = 30 (2) Amino acid = 30 II-4. 반응 조건 = 31 II-4-1. Amino alcohol = 31 II-4-1-1.(S)-[1,1-Binaphthalene]-2-Hydroxy-2-(1,3-diphenylguanid ine)-3-carboxaldehyde와 amino alcohol의 입체선택성에 대한 반응 = 31 II-4-1-2.(S)-[1,1-Binaphthalene]-2-Hydroxy-2-(1-(naphthalen-1-yl)-3-phenylguanidine)-3-carboxaldehyde 와 amino alcohol의 입체선택성에 대한 반응 = 31 II-4-1-3. (S)-[1,1-Binaphthalene]-2-Hydroxy-2-(1-(naphthalen-1-yl)-3-phenylurea)-3-carboxaldehyde 와 amino alcohol의 입체선택성에 대한 반응 = 31 II-4-1-4. (S)-[1,1-Binaphthalene]-2-Hydroxy-2-(1-phenyl-3-(pyren-1-yl)urea)-3-carboxaldehyde 와 amino alcohol의 입체선택성에 대한 반응 = 32 II-4-2. Amino acid = 32 II-4-2-1. (S)-[1,1-Binaphthalene]-2-Hydroxy-2-(1,3-diphenyl guanidine)-3-carboxaldehyde에 의한 L-Amino acid 의 D-Amino acid로의 변환반응 = 32 II-4-2-2. (S)-[1,1-Binaphthalene]-2-Hydroxy-2-(1-(naphthalen-1-yl)-3-phenylguanidine)-3-carboxaldehyde 에 의한 L-Amino acid 의 D-Amino acid로의 변환반응 = 33 II-4-2-3. (S)-[1,1-Binaphthalene]-2-Hydroxy-2-(1-(naphthalen-1-yl)-3-phenylurea)-3-carboxaldehyde 에 의한 L-Amino acid 의 D-Amino acid로의 변환반응 = 33 II-4-2-4. (S)-[1,1-Binaphthalene]-2-Hydroxy-2-(1-phenyl-3-(pyren-1-yl)urea)-3-carboxaldehyde 와 에 의한 L-Amino acid 의 D-Amino acid로의 변환반응 = 33 III. 실험 결과 및 토의 = 35 III-1. 전체적인 합성 = 35 III-2. Amino alcohols, Amino acids 와의 반응 = 40 <Section 1 > Amino alcohol에 대한 입체선택성 반응 = 40 <Section 2 > L-amino acids D-amino acids로의 직접변환 반응 = 50 IV. 결론 = 60 V. 참고문헌 = 62 Appendix = 68 ABSTRACT = 82 Part 2 Synthesis of [1,1-Biphenyl]-2,2-( 1-methyl-3-(naphthalen-1-yl)urea) for CD Discrimination of Chiral Carboxylic Acids = 84 I. 서론 = 85 II. 실험 방법 = 89 II-1. 시약 = 89 II-2. 기기 = 89 II-3-1. [1,1-Biphenyl]-2,2-(1-methyl-3-(naphthalen-1-yl)urea) 의 준비 = 90 II-3-1-1. 2,2-Biphenyldibromomethyl 의 합성 = 90 II-3-1-2. [1,1-Biphenyl]-2,2-(2-methylisoindoline-1,3-dione)의 합성 = 90 II-3-1-3. [1,1-Biphenyl]-2,2-(methanamine) 의 합성 = 91 II-3-1-4. [1,1-Biphenyl]-2,2-(1-methyl-3-(naphthalen-1-yl)urea) 의 합성 = 92 II-4. 반응 조건 = 93 III. 실험 결과 및 토의 = 94 III-1. [1,1-Biphenyl]-2,2-(1-methyl-3-(naphthalen-1-yl)urea) 의 전체적인 합성 = 94 III-2. [1,1-Biphenyl]-2,2-(1-methyl-3-(naphthalen-1-yl)urea)의 cyclohexane-1,2-dicarboxylic acid에 대한 인식 = 95 Ⅳ. 결론 = 96 Ⅴ. 참고문헌 = 97 Appendix = 102 ABSTRACT = 106-
dc.formatapplication/pdf-
dc.format.extent4000862 bytes-
dc.languagekor-
dc.publisher이화여자대학교 대학원-
dc.titleEnantioselective Recognition of Amino Acids and Amino Alcohols by ARCA Derivatives Dangled with Conjugated Ring System-
dc.typeMaster's Thesis-
dc.creator.othernameKim, Ji young-
dc.format.pagexx, 106 p.-
dc.identifier.thesisdegreeMaster-
dc.identifier.major대학원 화학·나노과학과-
dc.date.awarded2010. 2-
Appears in Collections:
일반대학원 > 화학·나노과학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE