View : 88 Download: 0

Monomial orderings in polynomial rings

Monomial orderings in polynomial rings
Issue Date
대학원 수학과
이화여자대학교 대학원
Let k[x_(1),...,x_(n)] be a polynomial ring over a field k. We denote a monomial in k[x_(1),...,x_(n)] by x^(a)=x^(a_1)_(1)···x^(a_n)_(n) for the n-tuple of exponents a=(a_(1),...,a_(n)) in Z^(n)≥0. In this thesis, we study properties of various orderings given on the monomials to get information about Groebner bases of monomial ideals in the polynomial ring k[x_(1),...,x_(n)]. In particular, we show that lexicographic order, graded lexicographic order, and graded reverse lexicographic ordering are monomial orderings and we find relations among those monomial orderings. We also use two monomial orderings to give a mixed ordering on monomials in k[x_(1),...,x_(n),y_(1),...,y_(m)] and then reorder the terms of polynomials in decreasing order with respect to the mixed ordering. And we show that a weight ordering is a monomial ordering and find two examples of weight orderings. Using [C, Theorem 2.6.6] we determine whether a finite set G are Groebner basis for the ideal they generate with different monomial orderings.;k[x_(1),...,x_(n)]을 체 k상의 polynomial ring이라 할 때, 그 안의 monomial을 지수 a=(a_(1),...,a_(n))에 대해 x^(a)=x^(a_1)_(1)···x^(a_n)_(n)으로 표기하자. 이 논문에서는 polynomial ring k[x_(1),...,x_(n)] 상에서 monomial ideal의 Groebner bases를 알아보기 위해 monomial 위에 주어진 다양한 ordering들의 정의와 성질들을 알아본다. 특히, 여러 개의 ordering들이 monomial ordering이 되는 것을 보이고, 그들의 관계를 살펴본다. 또한, k[x_(1),...,x_(n),y_(1),...,y_(m)]에서의 monomial 위에 두 개의 order를 결합해서 만들어진 mixed order가 monomial ordering임을 보이고, 주어진 polynomial들을 mixed order에 대해 내림차순으로 다시 정렬해 본다. 또한, weight order가 되는 두 가지 예를 살펴보고, 그들이 monomial ordering이 됨을 증명한다. 마지막으로, 주어진 basis가 서로 다른 monomial ordering들에 대해 Groeber basis가 되는지 [C, Theorem 2.6.6] 을 사용하여 판별해 본다.
Show the fulltext
Appears in Collections:
일반대학원 > 수학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
RIS (EndNote)
XLS (Excel)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.