View : 674 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author엄민영-
dc.creator엄민영-
dc.date.accessioned2016-08-25T06:08:29Z-
dc.date.available2016-08-25T06:08:29Z-
dc.date.issued2008-
dc.identifier.otherOAK-000000037953-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/183955-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000037953-
dc.description.abstractAlzheimer’s disease (AD), which is an age-related neurodegerative disorder characterized by the impairment of cognitive functions and changes in behavior and personality, is increasing in the Korea and worldwide with increasing of the elderly population. Accumulated evidences suggested that oxidative stress is involved in the mechanism of β-amyloid peptide (Aβ) induced neurotoxicity and neuronal apoptosis, and the pathogenesis of AD. Therefore, antioxidant is a reasonable strategy with which to develop a cure of AD. Sesaminol glucosides (SG), one of the most abundant lignan glucosdies found in the sesame, indicated to have antioxidant activity in vivo and in vitro experimental system. However, studies related to antioxidant properties of SG were controversial. Additionally, the effect of SG on the cognitive function has not been reported, and the precise mechanism underlying protective effects of SG on neuronal death has not been prostulated. The aim of this study, therefore, was to examine (a) antioxidant ability of SG; (b) the effects of SG on cognitive function using Aβ administrated animal model and senescence accelerated prone mice (SAMP8) model; (c) the neuroprotective effects of SG and its anti-apoptoic mechanism in human neuronal cell. Experiment Ⅰwas designed to examine the antioxidant effect of the SG in vitro. Sesaminol glucosides isolated in defatted sesame extract and its structure identified by 1H NMR and LC-MS. Sesaminol glucosides exhibited a dose-dependent free radical-scavenging activity as determined by both 2, 2'-Azino-di-[3-ethylbenzhiazoline sulphonate] (ABTS) and 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging assays. Sesaminol glucosides also inhibited effectively the formation of TBARS. Sesaminol glucosides restored H2O2-induced gap junctional intracellular communication (GJIC) inhibition in SL/DT assay and blocked phophorylation of connexin (CX) 43 by mitogen-activated protein kinases (MAPK) activation. Experiment Ⅱ was designed to investigate the effect of SG on cognitive deficits and oxidative stress induced by intracerebroventricular injection of Ab25-35 in mice. Mice were fed diets containing 0, 0.25, or 0.5% SG for 6 weeks, and changes in behavior induced by Ab25-35 injection were evaluated using the passive avoidance and Morris water maze test. The results showed that dietary SG protected against Ab25-35-induced deficits in learning and memory in dose-dependant manner. This protective effect was accompanied by a decrease in brain acetylcholinesterase (AChE) activity as well as a decrease in oxidative stress as measured by malondialdehyde (MDA) contents and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels. Sesaminol glucosides also reversed Ab-induced decreases in glutathione peroxidase (GPx) activity. These findings suggest that SG protects against cognitive deficits induced by Ab, in part, through its antioxidant activity. In Experiment Ⅲ, the effect of SG on aging-related cognitive deficits and oxidative stress in senescence-accelerated mice P8 (SAMP8) was investigated. Male SAMP8 (9 month-old) were randomly divided into three groups and received an AIN-76 diet containing either 0.25% SG (w/w) or 0.5% SG (w/w) for 12 weeks. Behavioral changes of the mice were evaluated using the passive avoidance and Morris water-maze tests. Step-through latency of the SAMP8 control group was significantly higher than that of the senescence-accelerated resistant mice (SAMR1) group, whereas it was significantly lowered in the SG-supplemented group compared with the SAMP8 control group on the passive-avoidance. In the Morris water maze, the escape latency of the control group was significantly increased and recovered in the 0.5% SG-supplemented group. There were no significant differences in brain AChE activities among experimental groups. Lipid peroxide levels in both brains and livers of the SAMP8 control group were significantly increased compared with the SAMR1 group and reduced by SG supplementation. On the other hand, catalase, superoxide dismutase (SOD), and GPx activities in brains of the SG supplemented group decreased compared with the SAMP8 control group. These results suggest that SG could attenuate cognitive deficits by aging through its antioxidant capacity. In Experiment Ⅳ, the protective effect of SG on Aβ-induced oxidative cell death in SK-N-SH cells was investigated. Exposure of the SK-N-SH cells to 25μM Aβ resulted in neuronal cell death, whereas treatment with SG protected against Aβ-induced cell death. Aβ-treated cells showed characteristic features of apoptosis, but this effect was suppressed by SG. In addition, SG attenuated Aβ-induced elevation of intracellular ROS, lipid peroxidation, and 8-OHdG formation, as well as the imbalance of antioxidant enzyme activities stimulated by Aβ. β-amyloid protein induced up-regulation pro-apoptotic Bax, cleaved caspase-3 and -9 protein, but induced down-regulation anti-apoptotic Bcl-2 and PARP proteins. In addition, SK-N-SH cells treated with Aβ displayed increased cyclooxygenase-2 (COX-2) protein expression and enhanced production of prostaglandin E2 (PGE2). However, SG inhibited not only Aβ-induced expression of apoptotic proteins and COX-2 expression, but also phosphorylation of the JNK, ERK and p38 MAP kinases in SK-N-SH cells treated with Aβ. These results suggest that SG has a protective effect against Aβ-induced neuronal apoptosis, possibly through scavenging oxidative stress and regulating MAPK signaling pathways. In conclusion, these results demonstrated that SG prevents on cognitive deficits induced by Aβ and aging in animal models via antioxidant capacity. Additionally, the present study showed that Aβ caused apoptosis signaling in SK-N-SH cells through the induction of oxidative stress that could be protected by treatment of SG. Taken together, it is likely that SG might be useful in the development of functional food for the prevention and/or treatment of AD.;본 연구에서는 sesaminol glucosides (SG)의 식이보충이 치매의 대표적 증상인 인지기능 저하에 미치는 효과를 동물모델을 통하여 확인하였다. 또한 인체 유래 신경세포를 이용하여 β-Amyloid protein (Aβ)에 의한 세포사멸(apoptosis)에서 SG의 신경보호효과와 그 작용기전을 밝히고자 하였다. 실험 1은 SG의 항산화능에 대하여 in vitro 실험방법을 통해 확인하고자 하였다. SG는 ABTS와 DPPH assay에서 free radical 소거능을 보여주었으며, H2O2로 인한 gap junctional intercellular communication (GJIC) 저해에서 SG의 처리는 GJIC를 회복시키는 효과를 나타내었다. 따라서, SG는 항산화능을 나타낸 것으로 생각된다. 실험2는 SG를 식이에 첨가하여 ICR mice에게 6주간 공급한 후, Aβ 투여에 따른 인지기능손상에 대한 보호효과를 살펴보았다. Passive avoidance 결과, Aβ 투여 전에 SG의 급여는 Aβ투여로 인하여 증가되는 step through latency를 거의 정상수준으로 감소시켰으며, Morris water maze에서도 유사한 결과를 나타내었다. 뇌조직의 acetylcholinesterase (AChE) 활성을 분석한 결과, Aβ를 투여한 대조군 (Aβ-대조군)이 가장 높은 활성을 나타내었으나 0.5% SG 첨가군에서는 유의적으로 감소하였다. 또한, Aβ투여로 인하여 증가된 지질과산화물 함량과 8-hydroxyl-2'-deoxyguanosine (8-OHdG) 함량은 SG 공급으로 인하여 유의적으로 감소하였다. 뇌조직 중의 superoxide dismutase (SOD) 활성은 Aβ-대조군이 정상군에 비하여 높았으며, SG 공급군들에서 낮아져 유의적인 차이를 보였다. 하지만 glutathione peroxidase (GPx) 활성은 Aβ투여로 감소된 효소 활성이 SG공급으로 인하여 유의하게 증가하여 SOD와는 반대의 결과를 나타내었다. 따라서, SG의 섭취는 Aβ에 의해 유도된 인지기능의 손상으로부터 예방할 수 있는 효과가 있는 것으로 보이며, 이러한 효과는 cholinergic 신경전달체계의 변화와 항산화능을 통하여 나타난 것으로 사료된다. 실험 3은 노화촉진 마우스 중 학습, 기억력의 현저한 저하를 나타내는 SAMP8을 이용하여 SG가 노화로 인한 인지기능저하에 미치는 효과를 연구하였다. Passive avoidance와 Morris water maze를 실시한 결과, SAMP8 (대조군)이 SAMR1군에 비하여 기억력이 현저하게 감소되었음을 관찰하였다. 하지만 식이에 SG를 첨가하여 3개월간 보충하였을 때, step through latency (passive avoidance)는 대조군에 비하여 약 2배 정도 증가하였고, escape latency (Morris water maze)는 약 2배 감소하여 SAMR1과 비슷한 수준을 보였다. 뇌와 간의 지질과산화물 함량을 살펴보면, 대조군이 SAMR1군에 비하여 유의적으로 높은 지질과산화물 수준을 보여, 체내에 과산화지질이 축적됨을 알 수 있었다. 한편, SG의 식이보충에 따른 지질 과산화물 함량의 감소가 각각의 장기에서 보여졌는데, 특히 뇌조직의 0.5% SG군에서 가장 낮은 수준을 보였다. 뇌와 간조직의 항산화 효소의 활성은 SAMR1군에 비하여 대조군에서 유의하게 증가하였고, SG 공급군에서 낮아졌다. 반면, 뇌조직 중의 AChE의 활성에서는 SG 식이공급에 따른 변화가 관찰되지 않았다. 실험 4에서는 in vivo에서 밝혀진 SG의 인기기능 개선 효과에 관한 결과들을 토대로, SK-N-SH 세포를 이용한 in vitro 시스템에서 SG의 신경보호효과 및 그 작용기전에 대하여 알아보았다. SK-N-SH세포에서 SG가 apoptosis에 미치는 영향을 검토한 결과, SG는 Aβ에 의해 유도된 신경세포 사멸을 억제하였다. 또한 SG는 Aβ에 유도된 세포 내 자유유리기 (reactive oxygen species) 축적, 지질과산화물과 8-OHdG의 형성 및 항산화 효소 활성의 불균형으로부터 세포를 보호하였다. Beta-amyloid protein에 노출된 신경세포에서는 apoptosis 관련 단백질인 cleaved PARP, cleaved caspase-3, cleaved caspase-9, Bax 및 p53 mRNA의 발현이 증가되었고, SG의 처리에 의하여 억제되었다. β-amyloid protein이 처리된 SK-N-SH 세포에서 염증관련 효소인 cyclooxygenase-2 (COX-2) 발현과 prostaglandin E2(PGE2)의 형성이 관찰되었으며, 이는 SG처리에 의하여 유의적으로 감소하였다. Mitogen activated protein kinases (MAPKs)는 세포사멸을 포함하여 세포 내 여러 신호경로를 조절하는 것으로 알려져 있다. 본 연구에서 Aβ에 의해 ERK, JNK 및 p38 MAPK의 활성이 증가되었으며, SG 처리에 의해 억제되었다. 따라서 Aβ는 세포 내 산화 스트레스 증가와 세포사멸 및 염증 매개 유전자들의 발현을 증가시키고, 이에 대해 SG는 항산화 활성 및 MAPK 활성 조절을 통하여 신경세포의 사멸을 억제시키는 것으로 사료된다. 이상의 실험결과에서, SG는 Aβ 투여와 노화로 인한 인지기능 손상을 개선시키며, 이는 SG의 cholinergic 신경전달체계의 변화와 항산화 효과에 의한 것으로 사료된다. 또한 SG는 세포 내 항산화능의 강화를 통하여 Aβ에 의해 유도된 세포사멸 및 MAPK 신호경로를 불활성화 시킴으로써 뇌신경보호작용을 갖는 것으로 보인다. 따라서 SG는 치매 예방 및 치료를 위한 식품 개발에 이용될 가능성이 높은 것으로 사료된다. 그러나 여러 치매 동물 모델을 이용하여 SG의 인지기능손상 억제에 대한 정확한 메커니즘이 규명되어야 하며, 더 나아가 사람을 대상으로 한 인체시험도 수행 되어져야 할 것이다.-
dc.description.tableofcontentsI. INTRODUCTION = 1 II. MATERIALS and METHODS = 5 A. In vitro studies (Experiment 1 and 4) = 5 1. Materials = 5 2. Preparation of SG = 8 3. Isolation and identification of SG = 9 4. Measurement of free radical scavenging activity = 10 1) ABTS assay = 10 2) DPPH assay = 10 5. Measurement of lipid peroxidation = 11 6. Cell Culture = 11 7. Determination of cell viability = 12 8. Determination of gap junctional intercellular communication = 12 9. Determination of apoptosis = 13 10. Measurement of caspase-3 activity = 13 11. Measurement of intracellular reactive oxygen species = 14 12. Measurement of cellular DNA damage = 14 13. Measurement of GSH contents = 15 14. Measurement of lipid peroxides levels and antioxidant enzymes activities = 15 15. Measurement of PGE2 levels = 16 16. Western blot analysis = 17 17. Measurement of p53 mRNA expression = 18 18. Statistical analysis = 18 B. In vivo studies (Experiment 2 and 3) = 19 1. Animals and diets = 19 1) Experiment 2: ICR mice and intracerebroventricular injection of Aβ = 19 2) Experiment 3: Senescence-accelerated mice P8 = 23 2. Behavior tests = 25 1) Passive avoidance test = 25 2) Morris water-maze = 25 3. Measurement of AChE activity in the brain = 26 4. Measurement of DNA damage in the brain = 26 5. Measurement of TBARS concentrations in the brain in liver = 27 6. Measurement of antioxidant enzymea activities in the brain and liver = 27 7. Measurement of p53 expression = 28 8. Statistical Analysis = 29 III. RESULTS = 30 Experiment 1: Identification of sesaminol glucosides antioxidant activities in vitro = 30 A. Identification of SG in defatted sesame extract = 30 B. Evaluation of SG antioxidant activities in vitro = 32 1. Effect of SG on ABTS and DPPH radicals = 32 2. Effect of SG on lipid peroxidation = 34 3. Effect of SG on gap junctional intercellular communication = 35 4. Effect of SG on H2O2-induced Cx43 phosphorylation and MAPKs activation = 35 Experiment 2: Effect of sesaminol glucosides on β-amyloid peptide 25-35 induced cognitive deficits in mice = 39 A. Body weight, food intake, and organ weight = 39 B. Effect of SG on Aβ25-35 induced cognitive deficits in mice = 40 C. Effect of SG on Aβ25-35-induced increases in AChE activity in the brain = 43 D. Effect of SG on Aβ25-35-induced oxidative DNA damage and lipid peroxidation in the brain = 44 E. Effect of SG on antioxidant defenses following Aβ25-35 administration = 46 F. Effect of SG on expression of p53 mRNA = 47 Experiment 3: Effect of sesaminol glucosides on age-related cognitive deficits and oxidative stress in SAMP8 mice = 48 A. Body weight, food intake, and organ weight = 48 B. Effect of SG on aging-related cognitive deficits in SAMP8 = 49 C. Effects of SG on AChE activity in the brain = 51 D. Effect of SG on lipid peroxide levels in the brain and liver = 52 E. Effect of SG on antioxidant enzymes activities in the brain and liver = 52 Experiment 4: Effect of sesaminol glucosides against β-amyloid-induced oxidative cell death through antioxidant activities = 56 A. Effect of SG on Aβ25-35-induced cytotoxicity and apoptotic cell death = 56 B. Effect of SG on Aβ25-35-induced caspase-3 activity = 58 C. Effect of SG on Aβ25-35-induced intracellular ROS generation, oxidative DNA damage, and lipid peroxdiation = 59 D. Effect of SG on Aβ25-35-induced imbalance of antioxidant status = 62 E. Effect of SG on Aβ25-35-induced apoptotic pathway activation = 65 F. Effect of SG on Aβ25-35-induced COX-2 expression and PGE2 formation = 69 G. Effect of SG on Aβ25-35-induced MAPKs activation = 69 IV. DISCUSSION = 73 A. Identification of sesaminol glucosides antioxidant activities in vitro = 73 B. Effect of sesaminol glucosides on cognitive deficits by β-amyloid peptide25-35 and aging = 76 C. Effect of sesaminol glucosides against β-amyloid peptide25-35-induced oxidative cell death through an antioxidant activities = 84 V. CONCLUSION = 90 REFERENCES = 92 국문초록 = 104-
dc.formatapplication/pdf-
dc.format.extent2086031 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.titleProtective effect of sesaminol glucosides concentrate on cognitive deficit and neuronal cell death-
dc.typeDoctoral Thesis-
dc.title.translated탈지참깨추출물에 함유된 sesaminol glucosides의 인지기능손상과 신경세포사멸 보호효과-
dc.format.pagexiv, 107 p.-
dc.identifier.thesisdegreeDoctor-
dc.identifier.major대학원 식품영양학과-
dc.date.awarded2008. 2-
Appears in Collections:
일반대학원 > 식품영양학과 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE