View : 27 Download: 0

Differentiation of L(1+log+L)(R^(n)) for a homothecy invariation Busemann-Feller basis

Title
Differentiation of L(1+log+L)(R^(n)) for a homothecy invariation Busemann-Feller basis
Authors
황경임
Issue Date
1982
Department/Major
대학원 수학과
Keywords
닮음 변환Busemann-feller basis적분함수미분
Publisher
이화여자대학교 대학원
Degree
Master
Abstract
This paper will prove the following: THEOREM Let β be a Busemann-Feller basis that is homeotheoy invariant in Rn. These four statements are equivalent: ◁수식 삽입▷(원문을 참조하세요);이 논문은 다음 네 가지 동치 조건을 증명하고 있다. 정리 : 닮음 변환을 하여도 basis 속에 항상 존재하는 Busemann-Feller □ basisi가 존재할 때 a. β는 L(1+log^(+)L)에 속하는 적분가능한 함수를 미분한다. b. M을 □의 maximal 작용소라 하자. M은 L(1+log^(+)L)에서 weak L¹공간으로 가는 유계 작용소이다. c. Ø를 □의 halo 함수라 하면 Ø에 대해 다음 식을 만족하는 상수 c^(*), c>0가 존재한다. c^(*)u(1+log^(+)u)≤Ø(u)≤cu(1+log^(+)u) d. □는 θ(u)=e^(n) 형태의 convering strength θ를 갖는다.
Fulltext
Show the fulltext
Appears in Collections:
일반대학원 > 수학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE