View : 22 Download: 0

Interpolation using Cubic and Fourth-order Spline

Title
Interpolation using Cubic and Fourth-order Spline
Authors
김영순
Issue Date
2000
Department/Major
대학원 수학과
Keywords
InterpolationCubicFourth-orderSpline
Publisher
이화여자대학교 대학원
Degree
Master
Abstract
When dispersive points composed of data in the natural science experiment are expressed graph of functional relation, there are many cases of determing the measured value or unmeasured value by using this diagram. Also, for some cases the value of superior function is determined by function table. In this case, we use the interpolation, which is a basic tool for the approximation of given functions. Spline is one of the interpolation method. Spline functions yield smooth interpolating curves which are less likely to exhibit the large oscillations characteristic of high-degree polynomials. We study the cubic and fourth order spline and we compare values of the two splines with of real function.;자연과학실험에서 측정된 자료들로 구성된 이산적인 점들이 함수 관계를 가진 도표로 나타났을 때, 측정된지 않았거나 또는 측정할 수 없는 값을 이 도표를 이용하여 구하는 경우가 많다. 또, 초월함수의 값은 함수표를 이용하여 구하는 경우가 있다. 이런 경우에 우리는 보간법(Interpolation)을 구하는 기본적인 도구이다. Spline은 Interpolation의 한 종류이다. Spline은 high-degree polynomlals curve 들을 생기게 한다. 여기에서는 Cubic Spline과 Fourth-order Spline을 공부하고, real function과 two Spline의 값을 비교한다.
Fulltext
Show the fulltext
Appears in Collections:
일반대학원 > 수학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE