View : 105 Download: 0

ON ALMOST CONTINUOUS FUNCTIONS AND WEAKLY CONTINUOUS FUNCTIONS

Title
ON ALMOST CONTINUOUS FUNCTIONS AND WEAKLY CONTINUOUS FUNCTIONS
Authors
이형주
Issue Date
1986
Department/Major
대학원 수학과
Keywords
CONTINUOUS FUNCTIONWEAKLY CONTINUOUS수학
Publisher
이화여자대학교 대학원
Degree
Master
Abstract
이 논문에서는 거의 연속인 함수와 약연속함수들의 성질을 연구하고 그들의 관계들을 설명하는 많은 예들을 준다. 그리고 P.E. Long & E.E. McGehee 가 제시한 문제를 부분적으로 푼다. 주도니 결과들은 다음과 같다. (ⅰ) X에서 Y로의 함수 f가 연결함수라 하자. 만일 f가 k -조건을 만족하면, 그러면 f는 후세인에 의한 거의 연속인 함수이다. (ⅱ) X에서 Y로의 함수 f가 전사함수, 후세인에 의한 거의 연속인 함수이고, 그리고 Y에 속하는 각 개집합 V에 대하여 ◁그림 삽입▷ (원문을 참조하세요)가 만족한다고 하자. 만일 X가 연결공간이면, 그러면 f(X) = Y는 연결공간이다. (ⅲ) 만일 T_(1) 공간인 X에서 Y로의 함수 f가 단사함수, 약연속함수이고 그리고 f^(-1)가 연결함수이면 그러면 Y에 속하는 각 연결개집합 V에 대하여 그림 삽입▷ (원문을 참조하세요) 이다. (ⅳ) X는 이상공간이 아닌 제일가산 T_(1) 공간이며 그리고 Y는 극소연결공간이며 제일가산공간인 X에서 Y로의 함수 f가 단사함수, X에 속하는 x^(0)에서 약연속함수이고 그리고 f^(-1)가 연결함수라 하자. 만일 x^(0)가 X의 극한점이면, {f(x_(n)}가 {f(x_(0))} 로 수렴하는 그러한 x^(0)에 수렴하는 {x_(n)}이 X내에 존재한다. (ⅴ) 만일 X에서 Y로의 함수 f가 약연속이고 개함수이면, 그러면 f는 후세인에 의한 거의 연속인 함수이다.;We study properties of almost continuous functions and weakly continuous functions. We also five examples which illustrate their relations, and partially solve a problem given by P.E. Long and E.E. McGehee. The main results are as follows: (ⅰ) Let f : X→Y be a connected function. If f satisfies the K-condition, then f is a.c.H. function. (ⅱ) Let f : X→Y be an onto, a.c.H. function. and be satisfies that ◁그림 삽입▷ (원문을 참조하세요) for each open set V⊂Y. If X is connected, then f(X) = Y is connected. (ⅲ) If f : X→Y is 1-to-1, w.c. function where X is T_(1), space and f^(-1) be a connected function, the ◁그림 삽입▷ (원문을 참조하세요) for each connected open subset V of Y. (ⅳ) Let f : X→Y be 1-to-1, w.c. function at x^(0)∈X where X is not discrete, first countable T_(1) space and Y is locally connected, first countable space and f^(-1) be a connected function. If x_(0) is a limit point of X, there exists a sequence {x_(n)} of distinct points in X conversing to x_(0) such that{f(x_(n)}converges to {f(x_(0))}. (ⅴ) If f : X→Y is w.c. and open function, then f is a.c.H. function.
Fulltext
Show the fulltext
Appears in Collections:
일반대학원 > 수학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE