View : 577 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author윤태숙-
dc.creator윤태숙-
dc.date.accessioned2016-08-25T06:08:22Z-
dc.date.available2016-08-25T06:08:22Z-
dc.date.issued1997-
dc.identifier.otherOAK-000000026089-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/181529-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000026089-
dc.description.abstractThe Na,K-ATPase, or sodium pump, is an integral membrane protein found in all higher eucaryotic cells and is responsible for translocating sodium and potassium ions across the plasma membrane. This active transport produces both a chemical and an electrical gradient across the cell membrane. The electrochemical gradient plays a central role in ionic homeostasis in animals. The active Na,K-ATPase is a heterodimer composed of a 110-kDa α-subunit that spans the plasma membrane 8 times, and a 40~60-kDa glycoprotein β-subunit that has a short cytoplasmic N-terminal domain, a single transmembrane domain, and a large extracellular domain. Both subunits are required for Na^(+) and K^(+) ion transport. All enzymatic functions of the enzyme have been assigned to the α-subunit The β-subunit is involved in the structural and functional maturation of the holoenzyme and the intracellular transport to the plasma membrane from the endoplasmic retidum(ER). It has been shown that the α- and β -subunits assemble in a noncovalent, glycosylation-independent manner. This assembly is required for exit from the endoplasmic reticulum. The sites for assembly between two subunits were recently discovered on the β-subunit ectodomain and the α-subunit extracellular H7-H8 loop (where H refers to the membrane span). Wile most of the structural studies of the Na,K-ATPase support a subunit stoichiometry of one α-subunit to one β-subunit, the exact quaternary structure of the Na,K-ATPase and its relevance to enzyme function is the subject of much debate. There is evidence that the Na,K-ATPase exists as an (α-β)_2 heterotetramer (or higher oligmer) in cell membranes, at least during some portion of the transport cycle. Thus, one would expect that, in addition to sites of α-β -subunit assembly, there must be sites at which α-β -subunit hetesodimers interact to form the native tetramers. To define the specific amino acids involved in Na,K-ATPase subunit interactions, we have employed the yeast two-hybrid assay system. Hybrid proteins containing 5 cytoplasmic domains of the α2-subunit and one cytoplasmic domains of the β1-subunit were designed for examining both intersubunit and intrasubunit protein-protein interactions. The cytosolic N-terminal of β1-subunit didn't show any binding activity with all 5 cytosolic domains of the α2-subunit in this study. As previously described before, two-hybrid assay failed to detect self α-α association activity between the large cytosolic loop 2 in our study, suggesting that self α-loop 2-α-loop 2 interaction might require native Na,K-ATPase. However, I found that the cytosolic N-terminal interacts with the cytosolic loop 1 of the α2-subunit. Their interaction expects to be the intra-subunit interaction within one α-subunit, not to be the intersubunit interaction between two α-subunits. It is suggested that further study is needed to define the functions and the importances of this interaction.;일명 Na pump라고 불리우는 Na,K-ATPase는 모든 고등 eucaryotic cells에서 발견되는 animal integral membrane protein으로서, 세포막(plasma membrane)을 통한 Na^(+)/k^(+) ions의 수송에 관여한다. 이러한 ion들의 능동수송(active transport)으로 형성된 electrochemical gradient는 생체내 ionic 항상성(homeostasis)를 유지시키는 중요한 역할을 한다. Active Na,K-ATPase는 8개의 transmembrane spans을 지닌 110-kDa α-subunit와 짧은 cyosolic N-terminal domain, 단일 transmembrane domain, 그리고 긴 extracellular domain을 지닌 40∼60-kDa glycoprotein β-subunit의 heterodimer로 구성되어 있으며, Na^(+)과 K^(+) ion 수송을 위해서 두 subunit가 모두 필요하다. α-Subunit은 enzyme의 모든 functional domain을 가지고 있고 β-subunit은 소포체(endoplasmic reticulum, ER)에서 세포막으로의 intracellular transport와 holoenzyme으로의 구조적, 기능적 성숙에 관련되어 있다. α-와 β-subunit assembly는 noncovalent glycosylation-independent 형태로 이루어지며 소포체로부터 빠져나오는데 반드시 요구된다. 두 subunit사이의 assembly는 현재 β-subunit의 ectodomain과 α-subunit extracellular H7-H8 loop (H는 membrane span을 의미한다.)사이에서 이루어지는 것으로 밝혀져 있다. Na,K-ATPase의 구조에 대한 대부분의 연구들이 α-subunit.:β-subunit가 1:1의 stoichiometry를 이루고 있다고 설명하지만, 정확한 quaternary structure와 그것의 enzyme 기능 관련성에 관한 논의는 끊이지 않고 있다. 더욱이 transport cycle 중 일정 기간 동안 (α-β)_(2) heterotetramer (또는 higher oligomer)상태로 세포막에 존재하며 이 higher oligomer형태가 stability면에서 더 우수한 것으로 보고되었다. 이로 인해 α-β-subunit assembly sites 이외에도 α-β-subunit heterodimers가 tetramers를 형성하기 위해 상호작용하는 sites가 추가로 더 있으리라 여겨지게 되었다. Na,K-ATPase subunit interaction에 관여하는 specific amino acids를 찾고자 yeast two-hybrid assay system을 사용하였다. Intersubunit와 intrasubunit protein-protein interactions을 알아보고자 α2-subunit의 다섯개의 cytoplasmic domain들과 β1-subunit의 단일 cytoplasmic domain이 각각 hybrid protein들로 제작되었다. 본 연구 결과, β1-subunit의 cytosolic N-terminal은 α2-subunit의 다섯 cytosolic domain들 모두와 상호작용하지 않았다. 본 two-hybrid assay는 α-subunit의 large cytosolic loop 2들사이에서 이루어지는 self α-α association을 확인하는데 실패했으며 따라서 이 self α-loop 2-α-loops interaction은 native Na,K-ATPase하에서만 이루어질 수 있는 것으로 보인다. 하지만 본 실험은 α-subunit의 cytosolic N-terminal과 loop 1이 상호작용 하는 것을 확인했다. 그들의 상호작용은 두 개의 α-subunit사이의 inter-subunit interaction이라기보다는 하나의 α-subunit내에서 이루어지는 intra-subunit interaction으로 추측된다. 이 interaction의 중요성과 기능에 대한 더 많은 연구가 요구된다.-
dc.description.tableofcontents목차 = ⅰ List of Tables = ⅳ List of Figures = ⅴ 논문개요 = ⅶ Ⅰ. 서론 = 1 Ⅱ. 실험재료 및 방법 = 7 A. 재료 및 시약 = 7 1. Strains, Vectors, Templates, and Primers = 7 2. 기타 재료 및 시약 = 7 B. 실험기구 = 13 C. 실험방법 = 14 1. Construction of Plasmids Encoding Hybrid Proteins = 14 가. Vector Preparation = 28 나. Insert Preparation = 29 다. Cloning Insert in Vector = 31 라. Colony Screening = 31 2. Yeast Transformation = 32 3. Western Analysis = 35 가. SDS-PAGE (SDS-Polyacrylamide Gel Electrophoresis) = 35 나. Immunoblotting = 36 4. Interaction Trap = 36 가. Check in Selective (Complete Minimal Drop-Out) Media Agar Plates = 36 나. β-Galactosidase Assay (Absorbancy Measurements using ONPG) = 37 Ⅲ. 결과 = 39 A. Construction of Plasmids Encoding Hybrid Proteins = 39 1. Construction of the Na,K-ATPase α 2-Subunit N-terminal fused into pJG4-5 = 39 2. Construction of the Na,K-ATPase α 2-Subunit Cytoplasmic Loop 1(H2H3) fused into pJG4-5 = 39 3. Construction of the Na,K-ATPase α 2-Subunit Cytoplasmic Loop 2(H4H5) fused into pJG4-5 = 40 4. Construction of the Na,K-ATPase α 2-Subunit Cytoplasmic Loop 3(H6H7) fused into pJG4-5 = 40 5. Construction of the Na,K-ATPase α 2-Subunit C-terminal fused into pJG4-5 = 41 6. Construction of the Na,K-ATPase β 1-Subunit N-terminal fused into pJG4-5 = 41 B. Yeast Transformation = 44 C. Western Analysis = 44 D. Interaction Trap = 45 1. Check in Selective (Complete Minimal Drop-Out) Media Agar Plates = 45 2. β-Galactosidase Assay (Absorbancy Measurements using ONPG) = 52 Ⅳ. 고찰 = 55 Ⅴ. 결론 = 62 참고문헌 = 65 Abstract = 73-
dc.formatapplication/pdf-
dc.format.extent2824325 bytes-
dc.languagekor-
dc.publisher이화여자대학교 대학원-
dc.subjectTwo-hybrid-system-
dc.subjectNa-
dc.subjectATPase-
dc.subjectcytoplasmic domain-
dc.titleTwo-hybrid system으로 관찰한 Na,K-ATPase의 cytoplasmic domain사이의 상호작용-
dc.typeMaster's Thesis-
dc.title.translatedCytoplasmic Domain Interactions in the Na,K-ATPase Revealed by the Yeast Two-Hybrid System-
dc.format.pageviii, 74p.-
dc.identifier.thesisdegreeMaster-
dc.identifier.major대학원 약학과-
dc.date.awarded1997. 8-
Appears in Collections:
일반대학원 > 생명·약학부 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE