View : 79 Download: 0

A NOTE ON SOME EQUIDIMENSIONAL HILBERT RINGS

Title
A NOTE ON SOME EQUIDIMENSIONAL HILBERT RINGS
Authors
남윤순
Issue Date
1986
Department/Major
대학원 수학과
Keywords
EQUIDIMENSIONALHILBERTRINGS수학
Publisher
이화여자대학교 대학원
Degree
Master
Abstract
Let D be a commutative ring with a unit element. We prove that if there exists a subdomain B of D such that D is a finitely generated B-algebra and S is a multiplicatively closed set containing (B\0), S^(-1)D is a Noetherian and Hilbert ring. Furthermore, we show by giving an example that S^(-1)D is not equi-dimensional in general, we then obtain the necessary and sufficient condition under which S^(-1)D is equidimensional.;D를 단위원을 가진 임의의 환이라 하자 만약 D의 subdomain B가 존재하는데, 이 B위에서 D가 B-algebra로서 유한 생성되고 S가 (B\0)를 포함하는 D의 적폐부분집합이라고 할 때, S^(-1)D를 Noetherian Hilbert 환이라는 사실을 증명한다. 그리고 S^(-1)D가 반드시 equidimensional 환이 아니라는 사실을 에로서 보이고, S^(-1)D가 equidimensional 환이 될 수 있는 조건을 구한다.
Fulltext
Show the fulltext
Appears in Collections:
일반대학원 > 수학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE