View : 19 Download: 0

On the classes of close-to-convex functions and close-to-star functions

Title
On the classes of close-to-convex functions and close-to-star functions
Authors
성기옥
Issue Date
1987
Department/Major
대학원 수학과
Keywords
close-to-convexclose-to-star수학
Publisher
이화여자대학교 산업미술대학원
Degree
Master
Abstract
W.Kaplan〔1〕 introduced the class K of close-to-convex functions in the unit disk including its geometric characterization. Later, M.O. Reade〔7〕 introduced the class K* of close-to-star functions in the unit disk including its coefficient problem. In this paper, we obtain the following results by applying the method used by W.Kaplan〔1〕 and A.E. Livingston〔4〕; 1. f(z)∈K* if and only if for θ_(1)<θ_(2), 0≤r<1 ∫^(θ_(2))_(θ_(1))Re〔re^(iθ)ㆍf'(re^(iθ))/f(re^(iθ))〕dθ>-π. 2. If f(z) = z+□ a_(n)z^(n)∈K* then │a_(n)│≤n^(2) (n = 2, 3, ...) 3. If F is in K*then f(z) =〔1/2〕〔zF(z)〕' is close-to-star for │z│<1/2. The result is sharp. ;본 논문은 W. Kalan이 소개한 close-to-convex 함수족과 M.0.Reade가 소개한 close-to-star 함수족을 A.E. Living ston의 논문과 결부시켜 연구함으로써 아래와 같은 세가지 결과를 얻게 되었다. 1. f(z)가 close-to-star 함수족에 속하게 되는 필요하고도 충분한 조건은 ∫^(θ2)_(θ1)Re[ re^(iθ)ㆍf'(re^(iθ))/f(re^(iθ))] dθ > -π 이다. 2. 만일 f(z) = z + □ a_(n)z^(n) ∈ K^(*) 이면 |a-(n)| ≤ n^(2) (n=2.3‥‥‥)이다. 3. 만일 F(z) ∈ K^(*) 이면 f (z) = [1/2][zF(z)]'은 ½인 반경을 갖는 경우에 close-to-star함수가 된다.
Fulltext
Show the fulltext
Appears in Collections:
일반대학원 > 수학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE