View : 19 Download: 0

TORSION THEORY AND LOCAL COHOMOLOGY

Title
TORSION THEORY AND LOCAL COHOMOLOGY
Authors
한정심
Issue Date
1984
Department/Major
대학원 수학과
Keywords
TORSIONTHEORYLOCAL COHOMOLOGY수학
Publisher
이화여자대학교 대학원
Degree
Master
Abstract
Let X be an affine scheme and let the torsion theory over X be well-centered. We show the following. If the torsion theory corresponds to a partition(T,F) of X such that T is closed, then the n^th derived functor T∼n of the torsion radical T∼ in Qco(X) is iso-morphic to the n^th local cohomology group functor H∼□ with support in T. Furthermore, if F is quasi-compact, then the canonical morphism j:M→M∼(F) can be identified with the canonical morphism f:M→Q(M) and we get the exact sequence. 0→T∼(M∼)→M∼→Q∼(M∼)→T∼_1(M∼)→0.;X 가 affine 개형이고 X위에서의 torsion theory가 well-centered 라 하자. 그러면, 다음과 같은 정리들을 보인다: 만일 이 torsion theory 가 X의 분할 (T,F)에 대응하고 T가 폐집합이라면, Qco(X) 에서의 torsion radical T~ 의 제n차 유도 functor T~n는 T안에서 support 를 갖는 제n차국소 cohomology 군 functor H~ □와 동형이다. 덧붙여서 F가 quasi-compact이면, 표준준동형 j:M → M~(F)는 표준준동형 f:M → Q(M)과 같은 것으로 볼 수 있으며, 또 다음과 같은 완전계열을 얻게 된다 : O → T~(M~) → M~→ Q~(M~) → T~1(M~) → O.
Fulltext
Show the fulltext
Appears in Collections:
일반대학원 > 수학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE