View : 553 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author한규원-
dc.creator한규원-
dc.date.accessioned2016-08-25T04:08:00Z-
dc.date.available2016-08-25T04:08:00Z-
dc.date.issued2005-
dc.identifier.otherOAK-000000012145-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/178876-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000012145-
dc.description.abstract암세포는 천연 지방산들을 생화학적 전구체나 에너지원으로 사용한다. 그래서 γ-Linolenic acid (GLA), linoleic acid (LA) 및 arachidonic acid (AA)과 같은 ω-6 지방산을 paclitaxel의 2'-hydroxy기에 공유 결합하여 GLA-paclitaxel, LA-paclitaxel 및 AA-paclitaxel를 지속 방출과 표적지향성을 갖는 prodrug을 목적으로 합성하였다. Paclitaxel은 유방암, 폐암, 자궁암들의 고형암에 단독으로나 혼합투여로 가장 널리 사용하는 항암제이다. 여기에 천연 지방산을 붙임으로써 지속 방출의 효과와 더불어 표적지향성을 갖고 정상세포에의 독성을 줄이는 지를 실험하였다. Flow cytometry 실험에서 GLA-paclitaxel, LA-paclitaxel 및 AA-paclitaxel은 paclitaxel과 같이 세포주기에서 G2-M과정을 억제하였으며, western blot 실험에서도 확인되었다. GLA-paclitaxel, LA-paclitaxel 및 AA-paclitaxel의 IC50는 paclitaxel의 223배, 1618배 및 32배 컸으므로 paclitaxel에 비하여 약물독성은 약하였다. HCT116 세포 이식으로 암을 유발시킨 마우스에서 paclitaxel 은 그 최적농도 (20 mg/kg)에서 부분적인 억제효과가 있었으나 비슷한 독성을 보인 농도 (120 mg/kg)에서 5마리 중 3~5마리의 암이 완전히 없어지는 효과가 있었다. 정상 마우스에서 GLA-paclitaxel, LA-paclitaxel 및 AA-paclitaxel의 34~48 배 적은 겉보기 분포용적을 보였고, 17배 적은 클리어런스를 보였다. 이것은 소실이 빠른 paclitaxel과 달리 이 약물들은 혈장 내에서 안정하여 마우스 혈장 내에 오랫동안 존재하면서 조직 내로는 천천히 분포함을 보여준다. HCT116 세포 이식으로 암을 유발시킨 마우스에서 GLA-paclitaxel, LA-paclitaxel 및 AA-paclitaxel의 같은 몰농도에서는 AUC는 12~16배, 120 mg/kg에서는 24~33배 컸다. 약물 투여 120 시간 후에 이 약물들로부터 유래하는 paclitaxel의 농도가 암세포에서 1.7 μg/mL이상으로 유지되었다. 이 약물들이 암세포에 지속적으로 존재하지 때문에 항암효과를 갖는 paclitaxel로 천천히 변화되면서 지속적인 항암효과를 기대할 수 있다. 또한 이 약물들은 Cremorphor EL과 ethanol (1:1)의 제형에서 훨씬 안정적인 미셀을 형성하기 때문에 paclitaxel보다 6배의 농도에서도 안정적이고 안전하게 마우스에 투여할 수 있었다.;Certain natural fatty acids are taken up avidly by tumors for use as biochemical precursors and energy source. γ-Linolenic acid (GLA)-paclitaxel, linoleic acid (LA)-paclitaxel and arachidonic acid (AA)-paclitaxel; novel conjugates formed by covalently linking the natural fatty acid GLA, LA and AA to paclitaxel, were designed as prodrugs targeting intratumoral activation and sustained release. Paclitaxel is an effective and widely used anticancer drug, either alone or in combination, against a range of solid tumours including breast, lung, urothelial and ovarian malignancies. It was hypothesized that new chemical entities would target tumors and reduce toxicity to normal tissues. The drugs seem to be inactive as a cytotoxic agent until metabolized by cells to an active form. The flow cytometry studies show that GLA-paclitaxel, LA-paclitaxel and AA-paclitaxel, like paclitaxel arrests cell cycle after progression at the G2-M phase of the cell cycle after 48 h. The IC50 of GLA-paclitaxel, LA-paclitaxel and AA-paclitaxel are a 223-fold, 1618-fold and 32-fold highter than paclitaxel. The data show that the conjugate possesses increased antitumor activity in mice when compared with paclitaxel. For example, paclitaxel at its optimum dose (20 mg/kg) caused neither complete nor partial regressions in any of 5 mice in a HCT116 s.c. colon tumor model, whereas GLA-paclitaxel, LA-paclitaxel and AA-paclitaxel caused complete regressions that were sustained for 56 days in 3~4 of 5 mice at 120 mg/kg. The conjugates are less toxic than paclitaxel, so that 4.4-fold higher molar doses can be delivered to mice. GLA-paclitaxel, LA-paclitaxel and AA-paclitaxel in normal mice has a 34~48-fold lower volume of distribution and a 17-fold lower clearance rate than paclitaxel, suggesting that the drug is primarily confined to the plasma compartment. Fatty acids conjugates are stable in plasma and high concentrations are maintained in mouse plasma for long times. Tumor targeting of the conjugate was demonstrated by pharmacokinetic studies in HCT116 tumor bearing mice, indicating an AUCinf of GLA-paclitaxel, LA-paclitaxel and AA-paclitaxel in tumors that is 12~18-fold higher than paclitaxel at equimolar doses and 24~33-fold higher at high doses. Even at 120 h after treatment, about 1.7 μg/mL paclitaxel remains in the tumors after GLA-paclitaxel, LA-paclitaxel and AA-paclitaxel treatment. Because GLA-paclitaxel, LA-paclitaxel and AA-paclitaxel remain in tumors for long times at high concentrations and is slowly converted to cytotoxic paclitaxel. GLA-paclitaxel, LA-paclitaxel and AA-paclitaxel may kill those slowly cycling or residual tumor cells that eventually come into cycle. GLA-paclitaxel, LA-paclitaxel and AA-paclitaxel are more stable in micelle formulation in 10% Cremorpher EL/10% ethanol/80% normal saline than paclitaxel and is safe in administration in mice with 6-fold higher MTD of paclitaxel.-
dc.description.tableofcontentsAbstract = xiii Ⅰ. Introduction = 1 Ⅱ. Materials and Method = 11 1. Materials = 11 1.1 Chemicals = 11 1.2 Experimental section = 11 2. Synthesis of GLA-Paclitaxel, LA-Paclitaxel and AA-Paclitaxel = 12 2.1 Synthesis of GLA-paclitaxel = 12 2.2 Synthesis of LA-paclitaxel = 13 2.3 Synthesis of AA-paclitaxel = 13 2.4 Formulation for injection = 13 3. In vitro Cytotoxicity Assay = 14 3.1 HCT116 cells proliferation assay = 14 3.2 Cell cycle analysis = 15 3.3 Cell morphology = 15 3.4 Western blot analysis = 16 4. Growth Inhibition of HCT116 Xenograft Tumor in Mice = 17 4.1 Cell line = 17 4.2 Animals = 17 4.3 In vivo tumor growth experiments = 18 5. Pharmacokinetic Studies in Normal Mice = 19 5.1 Animals = 19 5.2 Calibration standards = 19 5.3 Pharmacokinetic and tissue distribution study = 21 6. Pharmacokinetics and Tissue Distribution in HCT116 Xenograft Models = 23 6.1 Animals = 23 6.2 Measurements of GLA-paclitaxel, LA-paclitaxel, AA-paclitaxel and paclitaxel concentration in HCT116 tumors, plasma and other tissues = 23 Ⅲ. Results = 25 1. Characterization = 25 1.1 GLA-paclitaxel = 25 1.2 LA-paclitaxel = 25 1.3 AA-paclitaxel = 26 1.4 Formulation for injection = 26 2. In vitro Cytotoxicity Assay = 29 2.1 HCT116 cells proliferation assay = 29 2.2 Cell cycle analysis = 29 2.3 Cell morphology = 30 2.4 Western blot analysis = 30 3. Growth Inhibition of HCT116 Xenograft Tumor in Mice = 35 4. Pharmacokinetics Studies in Normal Mice = 44 4.1 Standard curves = 44 4.2 Pharmacokinetics profile and tissue distribution = 49 5. Pharmacokinetics and Tissue Distribution in HCT116 tumor bearing mice = 58 5.1 GLA-paclitaxel = 58 5.2 LA-paclitaxel = 70 5.3 AA-paclitaxel = 81 Ⅳ. Discussion = 93 Ⅴ. Conclusion = 97 Ⅵ. References = 99 Abstract in Korean = 107-
dc.formatapplication/pdf-
dc.format.extent1414435 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.titleSustained release and tumor targeting by covalent conjugation of ω-6 natural fatty acids to paclitaxel-
dc.typeDoctoral Thesis-
dc.title.translatedω-6 천연 지방산을 공유 결합한 미셀형 paclitaxel의 지속 방출 및 표적지향성-
dc.creator.othernameHan, kyu-won-
dc.format.pagexiv, 108 p.-
dc.identifier.thesisdegreeDoctor-
dc.identifier.major대학원 약학과-
dc.date.awarded2006. 2-
Appears in Collections:
일반대학원 > 생명·약학부 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE