View : 494 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor姜園-
dc.contributor.author曺涓楨-
dc.creator曺涓楨-
dc.date.accessioned2016-08-25T04:08:00Z-
dc.date.available2016-08-25T04:08:00Z-
dc.date.issued2004-
dc.identifier.otherOAK-000000009997-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/178327-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000009997-
dc.description.abstract이 논문에서는 여러가지 유기전도체 중 전기 쌍극자 모멘트를 표함한 (TMTSF)₂FSO₃와 자기모멘트를 갖고 있는 λ-(BETS)₂FeCl₄와 κ-(BETS)₂FeBr₄의 외부환경의 변화에 따른 물리적 성질 변화를 밝혀내고자 한다. 대표적인 준 일차원계로 알려진 TMTSF 화합물 중 (TMTSF)₂FSO₃는 압력과 온도에 따라 매우 복잡한 상 전이가 나타난다. 낮은 압력에서의 측정 결과에 따르면, (TMTSF)₂FSO₃는 전형적인 이차원 페르미면을 가지고 있는 물질의 특성을 보여주고 있다. 이러한 현상은 FSO₃의 전기 쌍극자 모멘트들이 결정 내에서 어떤 형태로든 새로운 정렬을 일으켜 전자계에 추가적인 주기 페텐셜을 제공하기 있기 때문이라 예측하고 있다. 한편 λ-(BETS)₂FeCl₄와 κ-(BETS)₂FeBr₄는 Fe^(3+)의 d전자와 BETS 분자의 π 전자간의 강한 상호작용에 의해 흥미로운 상전이 현상들이 관측된다. 특히 전도평면과 평행하게 자기장을 가하면, 자기장에 의해 초전도 현상이 재현되는 것을 볼 수 있다. 자기유도 초전도 전이가 일어나는 내부자기장 값은 Shubnikov-de Haas 진동현상으로부터 직접적으로 구할 수 있다. 압력을 가한 상태에서 자기장의 세기나 방향을 변화시키면서 λ-(BETS)₂FeCl₄과 κ-(BETS)₂FeBr₄의 자기저항을 측정하였다. 그 결과에 따르면 내부자기장은 압력에 따라 증가함을 알 수 있고, 압력에 의한 전자상태나 페르미면 모양의 변화를 연구할 수 있다.;We have tried to reveal the change of physical properties in (TMTSF)₂FSO₃ having electric dipole moments and BETS compounds having Fe^(3+) magneticions when the external environments vary. Among representative quasi-one-dimensional TMTSF systems, (TMTSF)₂FSO₃has very rich phase transitions depending on the pressure and the temperature. According to the experimental results at low pressure region, (TMTSF)₂FSO₃shows the typical characteristics of two-dimensional Fermi surface. We suggest that these phenomena are related to the new order of the electric dipole mo-ments which provides an additional periodic potential to the electronic system. λ-(BETS)₂FeCl₄ and κ-(BETS)₂FeBr₄ have peculiar phase transitions due to the strong interaction between π and Fe^(3+) d electrons. Especially, when the field is applied along the conducting plane, superconducting state is reproduced in terms of the magnetic field. Measurements of magnetoresistances under pressure of λ-(BETS)₂FeCl₄ and κ-(BETS)₂FeBr₄ reveal that the resistance changes depending on the strength and the direction of the magnetic field. The value of the internal field, where the field induced superconducting transition takes place, is expected from the Shubnikov-de Haas oscillation measurements and it increases under pressure. The pressure affects the electronic state, effective mass, and the π-d interactions.-
dc.description.tableofcontentsContents List of Figures = iv List of Tables = ix Abstract = xii 1 Introduction = 1 2 Background physics in low-dimensional organic conductors = 8 2.1 Fermi Surface (FS) = 8 2.1.1 Quasi-one-dimensional (Q1D) FS = 8 2.1.2 Quasi-two-dimensional (Q2D) FS = 10 2.2 Quasiparticles in a magnetic field = 11 2.2.1 Magnetic quantum oscillation = 11 2.2.2 Effective mass and scattering time = 13 2.2.3 Magnetic breakdown = 16 2.2.4 Stark quantum interference = 16 2.3 Angular dependent Magnetoresistance (AMR) = 18 2.3.1 Lebed Resonances = 19 2.3.2 Yamaji resonances = 21 2.3.3 Peak effect = 24 3 Experiments = 28 3.1 Synthesis of (TMTSF)₂FSO₃ single crystals = 28 3.2 Ultra low temperature refrigerator = 32 3.2.1 Sorption pumped ³He refrigerator = 32 3.2.2 ³He/⁴He dilution refrigerator = 34 3.3 Superconducting and resistive Bitter magnet = 35 3.4 Hydrostatic pressure cell = 38 3.5 Measurement = 39 3.5.1 Resistance = 39 3.5.2 Thermoelectric power = 40 4 Electronic transport of (TMTSF)₂FSO₃ containing electric dipole moments = 43 4.1 Crystal and electronic structure of (TMTSF)₂FSO₃ = 44 4.2 Pressure-Temperature (P -T) phase diagram of (TMTSF)₂FSO₃ = 46 4.2.1 Previous P - T phase diagram = 46 4.2.2 P - T phase diagram of (TMTSF)₂FSO₃= 48 4.3 Angular dependent magnetoresistance (AMR) = 61 4.3.1 AMR of (TMTSF)₂FSO₃ under various pressures = 62 4.3.2 AMR under 6.2 kbar for different azimuthal angles = 67 4.4 Magnetoresistance of (TMTSF)₂FSO₃ under pressure = 77 4.4.1 Magnetoresistance (H//c^(¤)) = 79 4.5 Summary = 88 5 Electronic transport of (BETS)₂X containing magnetic mo-ments = 90 5.1 Physical properties of (BETS)₂X = 91 5.1.1 λ-(BETS)₂FeCl₄ = 92 5.1.2 κ-(BETS)₂FeBr₄ = 95 5.2 Mechanism of the Field Induced Superconducting state = 97 5.2.1 Jaccarino-Peter compensation effect = 97 5.2.2 Indirect measurement of the internal field = 100 5.3 λ-(BETS)₂FeCl₄ at 6 kbar = 102 5.3.1 Magnetic field-temperature (H - T) phase diagram = 103 5.3.2 Magnetoresistance = 108 5.3.3 Angular dependent magnetoresistance (AMR) = 117 5.4 κ-(BETS)₂FeBr₄ at 3 kbar = 123 5.4.1 Magnetoresistance = 123 5.5 Summary = 134 6 Conclusion = 136 References = 138 국문초록 = 148-
dc.formatapplication/pdf-
dc.format.extent6173165 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.titleStudy on the effect of electric and magnetic dipole moment on the electronic transport properties in organic conductors-
dc.typeDoctoral Thesis-
dc.format.pagexv, 148 p.-
dc.identifier.thesisdegreeDoctor-
dc.identifier.major대학원 물리학과-
dc.date.awarded2005. 2-
Appears in Collections:
일반대학원 > 물리학과 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE