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Abstract: Dysbiotic vaginal microbiota (DVM) disturb the vaginal environment, including pH,
metabolite, protein, and cytokine profiles. This study investigated the impact of DVM on the
vaginal environment in 40 Korean pregnant women and identified predictable biomarkers of birth
outcomes. Cervicovaginal fluid (CVF) samples were collected in the third trimester using vaginal
swabs, examined for pH, and stored at −80 ◦C for further analysis. The samples were grouped as full-
term (FTB, n = 20) and preterm (PTB, n = 20) births. The microbiota was profiled in the V1–V9 regions.
The levels of targeted metabolites, TLR-4, and cytokines were determined. The pH of CVF from PTB
(>4.5) was significantly higher than that of the CVF from FTB (>3.5) (p < 0.05). Neonatal gestational
age at delivery, birth weight, and Apgar score differed significantly between groups. The relative
abundances of beneficial Lactobacillus spp., such as Lactobacillus gasseri, Lactobacillus jensenii, and
Bifidobacterium, were higher in FTB, whereas those of pathogenic Enterococcus faecalis, Staphylococcus,
Prevotella, Ureaplasma parvum, and Corynebacterium spp. were higher in PTB. Acetate, methanol,
TLR-4, and TNF-α levels were negatively correlated with gestational age at delivery and birth weight.
Moreover, ethanol, methanol, TLR-4, IL-6, IL-1β, and TNF-α levels were positively correlated with
succinate, acetate, acetoacetate, formate, and ammonia. Overall, DVM induces preterm birth via
pathogenic molecules in the vagina.

Keywords: cervicovaginal fluid; microbiota; metabolite; cytokine; preterm birth

1. Introduction

Recent studies have revealed that over 13.4 million neonates are born preterm (birth
before 37 weeks of gestation), and the incidence of preterm birth continues to increase
globally, including in South Korea [1]. Up to 40% of preterm births (PTBs) are associated
with inflammation caused by intrauterine infections [2], which generally originate from the
urogenital tract (vaginal route) or the hematogenous route through placental translocation
from the digestive tract (gut route) [3,4]. Dysbiotic vaginal microbiota (DVM) cause uro-
genital infections, which are often followed by an abundance of gram-negative bacteria [5].
Basically, DVM is a shift with a decrease in beneficial Lactobacillus spp. and an increase
in other microbiota in the vagina, which also leads to inflammation during pregnancy
and may induce PTB [6]. Inflammation is the most common molecular mechanism of PTB
through the TLR signaling pathway [7].

Many factors in PTB indicate a disturbed vaginal environment, such as a high pH
(>4.5), which is the first predictive marker of a disturbed vaginal environment [8]. Sex-
ual transmission and pathogenic microbial invasion are also important indications of a
disturbed vaginal environment and indicate bacterial vaginosis (BV) [9]. BV is often as-
sociated with a decrease in Lactobacillus spp. and an increase in pathogenic microbiota,
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such as Gardnerella vaginalis, Prevotella, Enterococcus, Staphylococcus, Ureaplasma spp., and
other anaerobes [9]. Disturbed vaginal environments are relatively rich in anaerobic bacte-
ria, such as Prevotella, Dialister, Atopovium, Gardnerella, Megasphaera, Peptoniphilus, Sneatia,
Eggertella, Aerococcus, Finegoldia, and Mobiluncus, and have a higher pH (>4.5) than an
environment with Lactobacillus spp., which maintain a lower pH (4.0 to <4.5) [10]. A high
diversity of anaerobic microbial pathogens, as observed in BV, is associated with an in-
creased risk of vaginal infection and inflammation, which result in PTB [11]. Lactobacillus
spp. are considered beneficial vaginal microbes that protect against infection and invasion
by pathogenic microbes [12,13]. The dominance of Lactobacillus crispatus, Lactobacillus iners,
Lactobacillus jensenii, and Lactobacillus gasseri is considered a hallmark of a healthy vaginal
environment and is associated with full-term birth (FTB) [14].

DVM may have a direct effect on the availability of microbiota-generated metabolites
and birth outcomes. Lactic acid, a metabolite produced by dominant Lactobacillus spp.,
inhibits pathogen invasion and inhibition [15]. L-lactic acid has anti-inflammatory proper-
ties that inhibit the production of proinflammatory cytokines and chemokines induced by
Toll-like receptors (TLRs) in vaginal epithelial cells at low pH (4.0 to <4.5) [15]. Furthermore,
high levels of formate, succinate, and acetate affect proinflammatory cytokine production
and birth outcomes [16,17].

DVM affects the vaginal health of millions of women; therefore, understanding the
association between vaginal microbiota, metabolites, and cytokines in PTB is critical. Our
previous studies on the relationship between a dysbiotic vaginal environment and PTB
produced conflicting findings regarding whether the vaginal microbiome, metabolites,
and cytokines can influence the risk of PTB [4,18]. In the present study, we investigated
the pathophysiological aspect of DVM that induce the PTB via pathogenic molecules like
metabolites and inflammatory factors in the vaginal environment.

2. Materials and Methods
2.1. Study Subjects and Cervicovaginal Fluid Sampling

Pregnant women were enrolled based on their clinical profiles with consent. Forty
pregnant women were selected for this case-control study based on cervicovaginal fluid
(CVF) collection in the third trimester of gestation. CVF samples were collected from
pregnant women using vaginal swabs and stored at −80 ◦C for further analysis. After
delivery, the CVF samples were grouped as FTB (n = 20) and PTB (n = 20). The collected
CVF samples were centrifuged at 5000 rpm for 20 min at 4 ◦C. After centrifugation, bacterial
DNA was isolated from the pellet for microbiota profiling, and the supernatant was used for
metabolite and cytokine profiling. The study participants were enrolled from January 2021
to April 2023 at Ewha Womans University, Mokdong Hospital, Republic of Korea (Ethical
Research Committee approval number: EUMC 2020-07-032). This study was conducted
in accordance with the ethical principles of the Declaration of Helsinki. All participants
provided written informed consent.

2.2. pH Determination in Cervicovaginal Fluid Samples

At the time of CVF sample collection, pH was measured immediately using a pH
strip (Merck Millipore, Darmstadt, Germany). Twenty microliters of the CVF samples were
placed on the pH strip to determine the pH level at room temperature, and the color was
matched with the pH strip indicator.

2.3. Microbiota Analysis in Cervicovaginal Fluid Samples

We conducted a strain-level analysis of the microbiome using the region from V1
to V9. Next-generation sequencing was outsourced to Molecular Diagnostics Korea Inc.
(Seoul, Republic of Korea). Briefly, DNA was isolated from CVF pellets using a microbial
DNA extraction kit (Qiagen, Germantown, MD, USA). The quality and quantity of the
extracted DNA were determined using a NanoDrop Microvolume Spectrophotometer
(Thermo Fisher, Waltham, MA, USA). Subsequently, the DNA was amplified for library
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construction using the SHORELINE BIOME Kit on a polymerase chain reaction (PCR)
machine (Bio-Rad, Hercules, CA, USA). A mixture of 10 µL of 2X PCR premix and 10 µL of
Shoreline Biome Lysis Mix was added to each barcoded primer tube and capped; the 20 µL
reaction was mixed thoroughly by gentle vortexing and spun down. The tube was then
transferred to the PCR machine. The PCR conditions were as follows: denaturation at 95 ◦C
for 3 min, amplification at 95 ◦C for 30 s, 59 ◦C for 45 s, 72 ◦C for 2 min, and final extension
at 72 ◦C for 3 min. The amplified product of 1.5 µL diluted with 5 µL gel loading dye was
electrophoresed on 1% agarose gel in TBE at 15V for approximately 45 min with a DNA
ladder. A band of ~2500 bp was observed using a gel documentation system (Bio-Rad).
After band confirmation, the remaining samples were sent to Molecular Diagnostics Korea
Inc. for microbiota profiling.

2.4. Measurement of Metabolites in Cervicovaginal Fluid Samples

Target metabolites were selected based on our previous study [19]. We targeted
beneficial (L-lactate) and pathogenic (trimethylamine N-oxide (TMAO), formate, succinate,
formaldehyde, acetoacetate, ammonia, acetate, ethanol, methanol) metabolites. Levels
of lactate, TMAO, formate, succinate, formaldehyde, acetoacetate, and ammonia were
measured in the supernatant of the CVF sample using the BM-LAV-100 (Biomax Co., Ltd.,
Guri-si, Republic of Korea), MBS7269386 (MyBioSource, San Diego, CA, USA), ab111748
(abcam, Shanghai, China), ab204718 (abcam, Shanghai, China), MAK131 (Merck, Rahway,
NJ, USA), ab180875 (Shanghai, China), AA0100 (Merck, Rahway, NJ, USA), BM-ETH-100
(Biomax Co., Ltd., Guri-si, Republic of Korea), and ab241033 (abcam, Shanghai, China)
assay kits, respectively, according to the manufacturer’s instructions.

2.5. Measurement of Protein Receptors in Cervicovaginal Fluid Samples

TLR-4, the most inflammatory transmembrane protein, is a pattern recognition re-
ceptor (PRR) that induces the PTB cascade [20]. TLR-4 was measured in the supernatant
of CVF samples using an enzyme-linked immunosorbent assay (ELISA) kit (KTE60314;
Abbkine, Inc., Atlanta, GA, USA) according to the manufacturer’s instructions.

2.6. Measurement of Cytokines in Cervicovaginal Fluid Samples

Based on our previous findings, we targeted proinflammatory cytokines; chemokine
CCL3 (also known as macrophage inflammatory protein 1 alpha), interleukins (IL; IL-6, IL-7,
and IL-1β), and tumor necrosis factor alpha (TNF-α) [21]. The cytokines CCL3 (KET6002;
Abbkine Inc.), IL-6 (KET6017; Abbkine, Inc.), IL-7 (MBS453414; MyBioSource), IL-1β (KET6013;
Abbkine, Inc.), and TNF-α (ab181421; Abcam, Shanghai, China) were measured in the su-
pernatants of CVF samples via ELISA according to the manufacturer’s instructions. The
intra-assay coefficient of variation (CV) was <10% and the inter-assay CV was <12%.

2.7. Statistical Analysis

Statistical analyses were performed using Student’s t-test, and p < 0.05 was considered
statistically significant. We performed Spearman correlation analysis for the biophysical
and biochemical variables of pregnant women and neonates, and the positive and negative
correlations were determined based on the coefficient of correlation (r value); p < 0.05 was
considered statistically significant.

3. Results
3.1. Study Participant Demographics

After delivery, the 40 women included in the study were grouped into two groups:
FTB (n = 20) and PTB (n = 20). The pH levels of CVF samples were measured at the time of
sample collection. The measured pH of the PTB (>4.5) group was significantly higher than
that of the FTB (>3.5) group (p < 0.002). No significant differences were observed between
the FTB and PTB groups in terms of age, body mass index, gestational age, or cervical
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length. However, significant differences were observed in gestational age at delivery, body
weight, and 1 min and 5 min Apgar scores (p < 0.05) (Table 1).

Table 1. Demographic profile of the subjects and variables analysis.

Variables FTB (n = 20) PTB (n = 20) p-Value

Maternal variables at CVF sampling
Age (yrs) 32.60 ± 0.62 34.42 ± 1.19 NS

Body mass index (kg/m2) 21.24 ± 0.58 22.65 ± 1.24 NS
Gestational age at sampling (wks) 34.37 ± 1.8 33.34 ± 0.57 NS

Cervical length (mm) 23.92 ± 1.9 25.04 ± 2.70 NS
Cervicovaginal fluid pH 3.57 ± 0.60 4.57 ± 0.50 0.002

Neonate variables at birth
Gestational age at delivery (wks) 38.97 ± 0.18 33.96 ± 0.58 <0.0001

Birth weight (gm) 3172 ± 75.68 2240 ± 128.90 <0.0001
1 min Apgar score 9.50 ± 0.17 7.79 ± 0.59 0.0076
5 min Apgar score 9.95 ± 0.05 8.68 ± 0.41 0.0039

FTB, full-term birth; PTB, preterm birth, Apgar score, appearance, pulse, grimace, activity, and respiration.
Statistical significance was set at p < 0.05. NS: Not significant.

3.2. Microbiota Analysis of Cervicovaginal Fluid Samples

Microbiota profiling of the CVF samples of FTB (n = 7) and PTB (n = 7) groups was
performed via next-generation sequencing of the V1–V9 region. The complete microbiota
profile is shown in Supplementary Figure S1. The relative abundances of beneficial Lacto-
bacillus jensenii_A (p < 0.0001) and Bifidobacterium (p < 0.0001) were significantly higher in
FTB, whereas that of pathogenic Enterococcus faecalis (p < 0.0001) was significantly higher
in the PTB group. In addition, we observed a high relative abundance of Corynebacterium
spp. in PTB compared to FTB. Diversity analysis of the microbiota showed a significantly
higher Pielou evenness and Shannon entropy in PTB than in FTB, even though the observed
features were significant (Figure 1, p < 0.05).
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Figure 1. Microbiota analysis in cervicovaginal fluid (CVF) samples. Microbiota profiled in CVF
samples of full-term birth (FTB, n = 7) and preterm birth (PTB, n = 7) groups via next-generation
sequencing of the V1–V9 region. Relative abundance between FTB and PTB groups, and alpha
diversity were calculated. Data are presented as the mean ± standard deviation, and p < 0.05 was
considered sta-tistically significant; * p < 0.05.
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3.3. Metabolite Analysis of Cervicovaginal Fluid Samples

Eight metabolites (L-lactate, TMAO, ammonia, formaldehyde, acetate, acetoacetate,
formate, succinate, and acetate) were measured in the CVF samples. L-lactate levels were
higher in the FTB group than in the PTB group, but the difference was not significant.
The levels of four metabolites (ammonia, acetate, acetoacetate, and succinate) were sig-
nificantly higher in PTB (p < 0.05) than in FTB. The levels of the other two metabolites
(TMAO and formate) were higher in the PTB group than in the FTB group, but the dif-
ference was not significant (Figure 2). In addition, we determined the level of ethanol
and methanol in CVF samples, and the levels were higher in PTB (p < 0.05) than in FTB
(Supplementary Figure S2).
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Figure 2. Metabolite analysis in cervicovaginal fluid (CVF) samples. Metabolites measured in CVF
samples of full-term birth (FTB, n = 20) and preterm birth (PTB, n = 20) groups using the assay
kits. Data are presented as the mean ± standard deviation, and p < 0.05 was considered statistically
significant; * p < 0.05, ** p < 0.01.

3.4. Analysis of Inflammatory Markers in Cervicovaginal Fluid Samples

In total, six targeted inflammatory markers were analyzed using appropriate ELISA
kits. TLR-4 expression was significantly higher in the PTB (p > 0.05) group than in the
FTB group. Of the five proinflammatory cytokines, IL-6, IL-7, IL-1β, and TNF-α were
significantly higher in the PTB (p < 0.05) group, whereas the other cytokine, CCL3, was
also higher, but the difference was not significant compared with that in the FTB group
(Figure 3).
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Figure 3. Analysis of inflammatory markers in cervicovaginal fluid (CVF) samples. Inflammatory
markers measured in CVF samples of full-term birth (FTB, n = 20) and preterm birth (PTB, n = 20)
using enzyme-linked immunosorbent assay (ELISA). Levels of TLR4, IL6, IL7, IL1β, TNFα, and
CCL3. Data are presented as the mean ± standard deviation, and p < 0.05 was considered statistically
significant. * p < 0.05, ** p < 0.01, *** p < 0.001.
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3.5. Correlation Analysis

In our correlation analysis, we found significant correlations between clinical and
biochemical data. Gestational age at delivery showed a significant negative correlation with
TLR4, TNF-α, and acetoacetate (r = −0.4837, r = −0.3863, and r = −0.3665, respectively)
(p < 0.05). Furthermore, neonatal body weight showed a significant negative correlation
with TLR4, IL-1β, and TNF-α (r = -0.3826, r = −0.3700, and r = −0.3423, respectively)
(p < 0.05). Metabolites like acetate and methanol showed a significant negative correlation
with gestational age at delivery and infant body weight (r = −0.4515, 0.0477, and 0.5021,
respectively) (p < 0.05). Additionally, a positive correlation was observed between cytokine
and metabolite levels. IL-6 was positively correlated with acetoacetate, succinate, and
ammonia (r = 0.5475, r = 0.4721, and r = 0.4000, respectively) (p < 0.05); IL-1β was positively
correlated with acetoacetate, succinate, and formate (r = 0.4226, r = 0.5490, and r = 0.3578,
respectively); and TNF-α was positively correlated with acetoacetate, succinate, and ammo-
nia (r = 0.5331, r = 0.3529, and r = 0.4031, respectively) (p < 0.05). Furthermore, TLR4 was
positively correlated with succinate (r = 0.3277) (p < 0.05). Additionally, ethanol significantly
positively correlated with succinate and acetate (r = 0.4612 and r = 0.4039, respectively),
and methanol positively correlated with acetate (r = 0.3886) (p <0.05) (Figure 4).

Metabolites 2024, 14, x FOR PEER REVIEW 7 of 12 
 

0.05). Furthermore, neonatal body weight showed a significant negative correlation with 
TLR4, IL-1β, and TNF-α (r = -0.3826, r = −0.3700, and r = −0.3423, respectively) (p < 0.05). 
Metabolites like acetate and methanol showed a significant negative correlation with ges-
tational age at delivery and infant body weight (r = −0.4515, 0.0477, and 0.5021, respec-
tively) (p < 0.05). Additionally, a positive correlation was observed between cytokine and 
metabolite levels. IL-6 was positively correlated with acetoacetate, succinate, and ammo-
nia (r = 0.5475, r = 0.4721, and r = 0.4000, respectively) (p < 0.05); IL-1β was positively cor-
related with acetoacetate, succinate, and formate (r = 0.4226, r = 0.5490, and r = 0.3578, 
respectively); and TNF-α was positively correlated with acetoacetate, succinate, and am-
monia (r = 0.5331, r = 0.3529, and r = 0.4031, respectively) (p < 0.05). Furthermore, TLR4 
was positively correlated with succinate (r = 0.3277) (p < 0.05). Additionally, ethanol sig-
nificantly positively correlated with succinate and acetate (r = 0.4612 and r = 0.4039, re-
spectively), and methanol positively correlated with acetate (r = 0.3886) (p <0.05) (Figure 
4). 
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4. Discussion

In this study, we found that DVM induced the PTB cascade via microbiota-generated
metabolites and inflammatory markers. DVM disturbs the vaginal environment during
pregnancy and may facilitate PTB outcomes [22]. Moreover, DVM is associated with
pathogenic metabolites and inflammation of the intrauterine space [2,23]. DVM affects the
availability of microbiota metabolites (such as lactic acid and TMAO) and inflammatory
markers (such as TLR-4 and IL-6) [5,6]. In our previous studies, we found an association of
vaginal and blood microbiota, cytokines, and metabolites with PTB [3,4,19,21]. Therefore,
we investigated the association of the microbiota, metabolites, and cytokines with birth
outcomes. We found that TLR-4 and TNF-α were negatively correlated with neonatal
gestational age at delivery and birth weight and that TLR-4, IL-6, IL-1β, and TNF-α were
positively correlated with acetoacetate, succinate, and ammonia.

The dominance of Lactobacillus spp. is a biomarker of a healthy vaginal environment
and an indicator of FTB [14]. Approximately 20 species of Lactobacillus are found in the
human vagina, and a high abundance of L. crispatus, L. iners, L. jensenii, and L. gasseri is
indicative of a healthy vaginal environment [24]. In this study, CVF microbiota profiling
revealed that the total relative abundance of Lactobacillus spp. (such as L. gasseri, and
L. jensenii) was higher in the FTB group than in the PTB group, suggesting that it is a good
indicator of FTB [10]. Additionally, the total relative abundance of L. crispatus was higher
than that of other Lactobacillus spp. in PTB, which has also been previously observed in
Korean women (non-pregnant, pregnant, term, and PTB) [25]. The CVF samples belong
to the 3rd trimester, which might be because the total relative abundance of Lactobacillus
spp. in FTB and PTB were not significantly different. Additionally, Bifidobacterium may
shape healthy full-term pregnancy and neonate development through protection against
inflammation, as we also observed a high relative abundance of Bifidobacterium in the FTB
group [26,27]. The high relative abundances of Lactobacillus spp. and Bifidobacterium suggest
that they are associated with protection against inflammation and PTB.

Several physiological changes, mainly hormonal (estrogen and progesterone levels)
and metabolic changes, influence the relative abundance of dysbiotic vaginal microbiota.
Lactobacillus spp. protect against infections and the invasion of pathogenic microbes and
maintain a low pH (4.0 to <4.5), whereas Lactobacillus spp. dysbiosis is considered a
hallmark of an abnormal vaginal environment [12,13]. However, the low abundance of
Lactobacillus spp. and the high abundance of anaerobic bacteria, such as Prevotella, Dialister,
Atopovium, Gardnerella, Megasphaera, Peptoniphilus, Sneatia, Eggertella, Aerococcus, Finegoldia,
and Mobiluncus, disturb the vaginal environment and pH (>4.5) [10]. A disturbed vaginal
environment with an abundance of anaerobic bacteria is associated with an Increased
risk of vaginal infection and inflammation, resulting in PTB [11]. High abundances of
Corynebacterium amycolatum, Enterococcus faecalis, Staphylococcus, Prevotella, and Ureaplasma
parvum also induce PTB [28]. Furthermore, Prevotella, Gardnerella, Ureaplasma parvum,
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Finegoldia, and Aerococcus increase the pH of the vaginal environment compared to an
environment with Lactobacillus spp. [9,10,29,30]. A high pH (>4.5) is considered the first
indication of PTB, as we observed a high pH (>4.5) in the CVF samples of the PTB group,
which might be due to the high relative abundance of anaerobic microbiota [8]. In this
study, we observed a high relative abundance of Corynebacterium spp., which produces
ethylene glycol, a pathogenic microbial metabolite that influences PTB [19]. A high diversity
of anaerobic pathogenic microbes indicates BV and is associated with an increased risk
of vaginal infection, inflammation, and PTB [11,14]. Here, PTB women did not have a
vaginal infection like BV but a state of increased anaerobic microbiota without significantly
decreased Lactobacillus spp. Recently, we found asymptomatic BV improved with the
treatment of three Lactobacillus spp. combination probiotics [31].

During pregnancy, DVM directly affects the microbiota as well as metabolite pro-
duction and availability, which disturbs the vaginal environment and affects birth out-
comes [4,19]. Microbiota produce metabolites from dietary molecules, such as sugars
and proteins, which may be disturbed by microbiota dysbiosis, resulting in accelerated
metabolic pathways [32]. With a low abundance of Lactobacillus spp. during pregnancy,
DVM reflects low L-lactic acid production, which might affect birth outcomes, which is
supported by the low L-lactic acid levels observed in PTB in this study [33]. Altered concen-
trations of metabolites such as short-chain fatty acids (acetate and succinate) can also serve
as biomarkers. Previous studies have revealed that altered succinate levels can increase the
risk of PTB; consistent with these findings, we observed high succinate levels in the PTB
group [34]. The alcoholic metabolite formaldehyde is converted from methanol into formate
by bacterial alcohol dehydrogenase. We observed high formate levels in PTB, which are a
diagnostic measure of methanol toxicity during pregnancy [35]. Ethanol and methanol are
major alcohol toxicants, which are carbohydrate-fermented primary metabolites that can
regulate metabolic dysfunction [36]. We observed high ethanol and methanol levels in PTB,
which significantly correlated with clinical (gestational age at delivery) and biochemical
parameters (succinate and acetate). Furthermore, high levels of the protein metabolite
TMAO are found in PTB; this overproduction of TMAO is attributed to the dysmetabolism
of choline by the microbiota [19,37]. TMAO is converted into ammonia and formaldehyde
in the presence of TMA demethylase, as indicated by significantly high levels of ammonia
and formaldehyde in PTB [38]. These disturbed metabolites serve as pathogen-associated
molecular patterns (PAMPs) and may trigger inflammatory signaling through TLRs [39].

TLRs are PRRs that recognize PAMPs derived from microorganisms [40]. PAMPs
include carbohydrate derivatives, proteins (polypeptides), and nucleic acids that are gen-
erated and expressed by microorganisms [41] and induce TLRs as messengers to initiate
inflammatory cascades, which in turn result in PTB [42]. In humans, ten TLR family mem-
bers (TLR1–10) have been identified as crucial for inflammatory immune responses [43].
TLR4, in particular, is a key regulator of the inflammatory process and is abundantly
expressed in the placenta, fetal membrane, and uterus [44]. Although TLR4 is a transmem-
brane receptor, soluble forms of some TLRs have recently been detected in biofluids [45,46].
In the present study, we observed high levels of the soluble form of TLR4 in CVF samples
from the PTB group. Furthermore, correlation analysis of TLR4 showed a negative correla-
tion between gestational age at delivery and neonatal birth weight, indicating its potential
as an indicator of PTB [42].

TLR4 recognizes PAMPs and activates inflammatory pathways and proinflammatory
cytokine production [47]. Lactobacillus spp. in the vagina inhibit pathogen invasion via
their metabolite, L-lactic acid, and inhibit inflammatory pathways [15,48]. L-lactic acid
has anti-inflammatory properties that inhibit the production of proinflammatory cytokines
(IL6) and chemokines (CCL3) induced by TLRs in vaginal epithelial cells at low pH (4.0 to
<4.5) [15]. High levels of succinate and acetate affect proinflammatory cytokines, resulting
in PTB outcomes [16,17]. The chemokine CCL3 is produced by macrophages in response
to bacterial products and increases the production of IL6, TNF, and IL1β, as observed
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in the PTB group [49,50]. The high levels of cytokines were significantly correlated with
metabolites, indicating a favorable condition for PTB.

5. Conclusions

In conclusion, this multi-approach analysis revealed that DVM alters normal preg-
nancy through high vaginal pH (>4.5), low abundance of Lactobacillus spp., and high TLR4
expression, thus inducing PTB via pathogenic molecules such as microbial metabolites and
cytokines in the vagina. The number of cases is small, which is a limitation due to the fact
that the study was conducted during COVID-19. Further research with a greater number
of subjects is needed to give better outcomes of microbiota metabolites and cytokines
correlation and prediction of preterm birth.
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