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Abstract We considered the generation of gravitational
waves by the binary system associated with a wormhole. In
the Newtonian limit, the gravitational potential of a worm-
hole requires the effective mass of the wormhole taking into
account radial tension effects. This definition allows us to
derive gravitational wave production in homogeneous and
heterogeneous binary systems. Therefore, we studied gravi-
tational waves generation by orbiting wormhole–wormhole
and wormhole–black hole binary systems before coales-
cence. Cases involving negative mass require more careful
handling. We also calculated the energy loss to gravitational
radiation by a particle orbiting around the wormhole and
by a particle moving straight through the wormhole mouth,
respectively.

1 Introduction

LIGO/VIRGO’s success [1,2] in detecting gravitational
waves has ushered in a new era. There are many reports on
gravitational wave sources and templates. Typically, com-
pact objects such as black holes and/or neutron stars are the
primary sources, but exotic objects such as wormholes can
also be astrophysical compact objects that are candidates for
gravitational wave sources [3], even though their existence
is still not clear.

However, we believe that there is enough value to consider
gravitational waves caused by wormholes or wormhole–
black hole pairs. There are numerous attempts to trace worm-
holes, such as gravitational lensing [4,5], shadows [6], Ein-
stein rings [7] and particle creation [8]. If the detection of
gravitational waves generated by a wormhole or any system
associating with wormhole is successful, this detection may
also be added to the list of wormhole evidence.
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As a first step in gravitational waves generated by a worm-
hole, we recently studied a toy model of a rotating thin-shell
wormhole [9]. The amplitude of gravitational waves caused
by perturbed precession of a slowly rotating, thin-shell worm-
hole is very small. Moreover, the mass and energy of a thin-
shelled wormhole are negative. This means that negative
energy radiation reduces the size of the wormhole. However,
the lifetime of the wormhole is longer than cosmological
time.

Binary system is currently the most likely source of gravi-
tational waves. Like conventional gravitational wave sources,
wormholes constitute binary systems and are sufficient to
generate gravitational waves in the system. It also allows us
to deal with wormhole–black hole binaries before merging,
even without knowing in detail the final state of the het-
erogeneous binary system of similar mass as the merging
mechanism.

The final states in the extreme cases can be inferred rela-
tively easily. For example, if the black hole mass is extremely
small compared to the wormhole mass, which will be dis-
cussed later, the black hole is a particle that orbits the worm-
hole along a geodesic line and ultimately passes through the
wormhole while causing a small disturbance to the worm-
hole. When the black hole mass is extremely larger than the
wormhole mass, a wormhole is a particle that orbits a black
hole and is ultimately absorbed into the black hole like the
other particle.

There have been several studies on binary systems includ-
ing wormholes. Very early on, a simulation of two worm-
holes merging was attempted [10]. Their original problem
was two masses interacting in the framework of geometro-
dynamics. They identified the particles as multi-connected
regions of empty space. Cardoso et al. [11,12] considered
the final state of two wormholes merging and a wormhole
binary ringdown state through quasi normal modes (QNM)
analysis. Even without an event horizon, the QNM exists
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with light rings. There was a study on gravitational waves
by a black hole orbiting a wormhole [13]. They considered
a very small mass of black hole comparing to the thin-shell
wormhole mass. They found a characteristic waveform-an
antichirp and/or burst-as the black hole put spirals into our
region of the Universe. A recent study was the wormhole–
black hole collision by Dias et al. [14]. They used ray-tracing
techniques to analyze the event horizon of a large black hole
with a very small wormhole.

In this paper, we study the inspiral stage of a binary sys-
tem before the coalescence stage. We considered a homo-
geneous binary system (e.g. wormhole–wormhole) and a
heterogeneous binary system (e.g. wormhole–blackhole).
After proper mass analysis, we studied the waveforms and
energy loss due to gravitational wave generation in worm-
hole binary systems. Finally, as an extreme case of a binary
system, we got gravitational waves generated by small par-
ticles around the wormhole and energy loss from particles
traveling directly into the wormhole mouth.

In Sect. 2, we review the definition and physical implica-
tions of wormhole mass. Next, in Sect. 3, we treat the gravi-
tational potential of a wormhole, deriving the effective mass
of the wormhole from Newtonian approximation. In Sect. 4,
we study the generation of gravitational waves by binary sys-
tems containing wormholes, such as wormhole–wormhole,
wormhole–black hole, and a point particle-wormhole.

2 Mass of a wormhole

To check the gravitational interaction around a wormhole,
let’s trace the case of an ordinary star. If two massive objects
are far enough apart, they can both be considered point par-
ticles. When nearby, gravitational interactions depend on the
distribution of matter and the associated structures. There
may also be finite-size effects, such as tidal effects caused by
nearby gravitational fields.

The most convenient model of the wormhole is the
Morris–Thorne type as [15]

ds2 = −e2�(r)c2dt2 +
(

1 − b(r)

r

)−1

dr2

+r2(dθ2 + sin2 θdφ2), (1)

where �(r) is the red-shift function and b(r) is the wormhole
shape function. These two functions are determined by the
wormhole-consisting materials through the Einstein’s equa-
tion as

b′ = 8πGc−2r2ρ, (2)

�′ = b − 8πGc−4τr3

2r (r − b)
, (3)

τ ′ =
(
ρc2 − τ

)
�′ − 2 (P + τ)/r. (4)

Here ρ is the mass density, τ is the surface tension which is
the negative radial pressure, and P is the transverse pressure.
The main condition imposed on this wormhole matter is the
flare-out condition as

ζ ≡ τ − ρc2∣∣ρc2
∣∣ > 0 (5)

at or near throat, to main the shape of the wormhole. This
exotic matters violates the weak energy condition.

The most important problem with the wormhole is the
existence of the negative density [15]. This is due to the flare-
out condition (5). The Lorentz transformation of this relation
shows that the measurements by an observer passing through
the throat at a radial velocity close to c, i.e. γ � 1, indicate
a negative density.

T0̂′0̂′ = γ 2Tt̂ t̂ ∓ 2γ 2(v/c)2Tt̂r̂ + γ 2(v/c)2Tr̂r̂ ,

= γ 2(ρ0c
2 − τ0) + τ0. (6)

The static observer may see negative density. So if we have
no choice but to use the negative density, we are interested
in minimizing the use of these exotic material.

The next question is whether wormholes can have nega-
tive mass, which is related to negative density. However, the
density of a wormhole may be negative, but its mass may be
positive. From (2),

b(r) = b(r0) +
∫ r

r0

8πc−2ρ(r ′)r ′2dr ′ = 2
Gmw(r)

c2 , (7)

where mw(r) is defined by [16]

mw(r) ≡
(
c2b(r0)

2G

)
+

∫ r

r0

4πρr ′2dr ′ (8)

as the wormhole mass inside the radius r . Here the density
is distributed from r0 to arbitrary r . The shape function b(r)
has a meaning of the mass distribution inside the wormhole
[16]. Thus in the case of spatial infinity distribution, the mass

lim
r→∞mw(r) = Mw

is defined by a constant.
There are several examples where wormholes have nega-

tive density and negative mass. The Ellis–Bronnikov worm-
hole [17,18] shows negative density when the first derivative
of the shape function is negative due to asymptotic flatness
in the power-law distribution. We can also see the negative
density of the wormhole model in lower dimensional space-
times. The other example of the negative density is the case
of the thin-shell wormhole. For this thin-shell wormhole, we
cut out two copies of black holes outside the event horizon
and paste them together like surgical [19]. The surface stress-
energy tensor for the thin-shell is given by
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Si j =
⎛
⎝σ 0 0

0 pϑ 0
0 0 pϕ

⎞
⎠ , (9)

where σ is the surface energy density, and pϑ , pϕ are princi-
pal surface pressures. The Einstein equation of the thin-shell
wormhole is

σ = − 1

4πG

(
1

R1
+ 1

R2

)
, (10)

ϑ1 = − 1

4πG

1

R2
, (11)

ϑ2 = − 1

4πG

1

R1
. (12)

In general, since the junction region ∂� is convex, namely,
the principal curvatures R1, R2 are positive, it has the nega-
tive surface energy density and negative surface tension.

3 Gravitational potential and the effective mass of a
wormhole

To see the motion of particles around a wormhole, we first
need to know the potential form of the wormhole. The only
constraints on potential � are that there is no horizon and that
�(r) is everywhere finite [15]. If there is no cutoff in matter
distribution, it is asymptotically flat, b/r → 0 and � → 0
as r → ∞. To find the physical meaning of the potential, we
need to analyze it using the Newtonian approximation. Usu-
ally � is interpreted as the Newtonian gravitational potential
�N as

� � −�N

c2 (13)

in weak field approximation.
Let us now look at the Newtonian approximation to the

relativistic stellar potential. From the Einstein’s equation for
the relativistic star,

�′ = 4πGrpr/c4 + Gm/c2r2(
1 − 2Gm/rc2

) , (14)

we get the potential for Newtonian star as

�′
N = −Gm

r2 , (15)

by neglecting the pressure term in the numerator and the
second term in the denominator. The neglected terms are
smaller than the other terms by a factor of 1/c2.

Likewise, among the Einstein’s equation for the worm-
hole, the potential-related equation (3) is rewritten as

�′ = b/2r2 − 4πGτr/c4

1 − b/r
. (16)

Here we cannot neglect the pressure (tension) term in the
numerator, unlike the relativistic star. This is because the

pressure term cannot be neglected and larger than the density
term due to the flare-out condition (5). The second term in the
denominator is neglected due to (7). Therefore the Newtonian
approximation of the wormhole potential is

�′
N = −

(
bc2

2r2 − 4πGr
τ

c2

)
= −Gmeff

r2 . (17)

Here

meff ≡ bc2

2G
− 4π

c2 τr3 (18)

is the effective mass, which plays an important role in the
gravitational potential �. When considering gravitational
interaction with a wormhole, the effective mass should be
used as the wormhole mass in Newtonian limit. Therefore,
this effective mass definition is applicable to any binary sys-
tems containing wormhole(s).

In the definition of effective mass, tension effect must be
included in the mass of the normal materials. The sign of the
effective mass is determined by the magnitude of the tension.
The effective mass can be expressed in terms of wormhole
materials, ρ and τ , as

meff = 4π

c2

[∫
ρc2r2dr − τr3

]
. (19)

The huge tension is required to keep the wormhole shape,
by the flare-out condition, ρc2 < τ . Even if the tension is
very large, the first term’s range of integration can prevent the
effective mass from taking on negative values. When τ > 0,
the effective mass is smaller than the wormhole mass, mw =
bc2/2G. And the effective mass for negative τ is larger than
wormhole mass. If the effective mass is independent of r ,
the wormhole can be considered as a point mass. There are
finite-size effects when the effective mass depends on r , i.e.,
when it is not uniform.

4 Gravitational waves by binary system

4.1 General formulas of gravitational waves by two-body
system

Before studying the wormhole binary system, we begin with
the two-body motion of Kepler problem according to New-
tonian analysis. They orbit each other under the influence of
gravitation, but due to loss of gravitational wave energy, they
get closer and eventually merge. If a black hole or neutron
star is used as the body model, the final state will be the black
hole state due to the high gravitational interaction.

The three stages in which a binary system settles into a
stable state through orbital motion and coalescence are inspi-
ral, merger, and ringdown. Typically the first stage is treated
analytically by the post-Newtonian approximation, and the

123



128 Page 4 of 9 Eur. Phys. J. C (2024) 84 :128

merger stage is understand by the numerical analysis. The
final ringdown stage is analyzed by quasi-normal modes.

We now restrict our study to the orbital-inspiral phase,
dealing with the Newtonian approximation ignoring the
angular momentum term following the traditional derivations
from the book [20]. The total energy of the binary system is

E = 1

2
m1v

2
1 + 1

2
m2v

2
2 − Gm1m2

a
= −1

2
μv2 (20)

for circular orbit. Here μ is the reduced mass and a is the
distance between the two masses. The mass-related quantities
are

M = m1 + m2, μ = m1m2

M
, η = μ

M
= m1m2

M2 ,

where M is the total mass, and η is the symmetric mass ratio,
equal to zero if one of the two masses is the test mass and
1/4 if both masses are the same mass.

From the Kepler’s law

GM = a3ω2, (21)

the tangent velocity is

v = aω =
√
GM

a
= 3

√
2πGM

P
, (22)

where ω is the angular frequency and P is the period of the
orbital motion.

The gravitational wave luminosity is

LGW = 32

5

c5

G
η2

(v

c

)10 = 32

5

c5

G

(
2GMω

c3

)10/3

, (23)

where M = η3/5M is the chirped mass. Since LGW =
−dE/dt , we found that

dv

dt
= 32η

5

v9

GMc5
. (24)

The time until coalescence, starting from orbital velocity v0,
is calculated as

tc = 5

256η

GM

c3

(v0

c

)−8
. (25)

Here we assume that the two bodies merge at a distance
a → 0 including the wormhole case, and thus v → ∞
at the coalescence time. However, for a test particle with
a wormhole, the closest distance is the non-zero wormhole
throat size. Thus any time, in term of v, is

t (v) = tc − 5

256η

GM

c3

(v

c

)−8
. (26)

The corresponding phase is derived as

ϕ(t) = ϕc − c5

32η
v−5 = ϕc −

[
(tc − t)c3

5GM
] 5

8

. (27)

Fig. 1 Effective potentials (solid line) with the bounded motion. The
dashed lines are Vc or Vg . The left panel corresponds to case (1), and
bounded motion is possible if the energy is 0 > E > Vmin. The right
panel corresponds to the case (2), which allows bounded motion if the
energy is 0 < E < Vmax

Here ϕc is the phase at coalescence and the temporal change
of the frequency is

d f

dt
= 96

5
π8/3

(
c3

GM
)5/3

f 11/3, (28)

where f = v3/πGM is the gravitational frequency. The
frequency change rate for the wormhole can be compared
to that for other objects, since the rate depends on mass.
Therefore the wave forms are

h+ (t) = −GM
c2r

1 + cos2ι

2

(
c3(tc − t)

5GM
)−1/4

×cos

[
2ϕc − 2

(
c3(tc − t)

5GM
)5/8

]
, (29)

h× (t) = −GM
c2r

cosι

(
c3(tc − t)

5GM
)−1/4

×cos

[
2ϕc − 2

(
c3(tc − t)

5GM
)5/8

]
, (30)

where ι is the observation angle. So we see that most of
the quantities associated with gravitational waves, such as
luminosity, wave forms, frequency change, and phase, can
be represented by the chirped mass M.

When applying angular momentum to Kepler problem,
the effective potential must be defined as

Veff = Vc + Vg = L2

2μr2 − GμM

r
. (31)

Here Vc is centrifugal potential with angular momentum L
and Vg is the gravitational potential. Unlike the traditional
Kepler problem, the motion of a binary system containing a
wormhole is determined by the sign of its masses.

Because the mass can be taken as a negative or positive
quantity, these issues can be analyzed in the four cases:
m1 ≶ 0,m2 ≶ 0. Of these, only two cases allow the
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bounded motion of the particle. (1) If m1 > 0, m2 > 0,
then μ > 0 and the kinetic energy is positive. The cen-
trifugal potential and the gravitational potential are Vc > 0,
and Vg < 0, respectively. Therefore, for negative energy
larger than minimum value of the effective potential (Vmin =
−G2M2μ3/2L2), the particle has the bounded motion, while
the particle with positive energy has unbounded motion.

(2) If m1 > 0, m2 < 0, and μ < 0, then Vc < 0, Vg > 0,
and the effective potential has the inverted shape of case (1).
Since the kinetic energy is negative, the particle motion is
possible only in the region where the energy less than the
effective potential energy. The motion is bounded when the
total energy is between zero and the maximum value of the
effective potential (Vmax = −G2 M2μ3/2 L2). As you can
see, bounded motion is possible only for positive M cases.
For these, the effective potentials for cases (1) and (2) are
shown in Fig. 1.

4.2 Application to wormhole involved system

From now on, we limit the mass of the wormhole to a constant
effective mass independent of r to keep the problem simple.
If τ ∝ r−3, the effective mass is a constant independent of
r and therefore can be considered as a point mass. Let the
density ρ(r) be also proportional to r−3 as

ρ = ρ0

(r0

r

)3
, (32)

where ρ0 is the density at throat and r0 is the lower limit of
the matter distribution. The equation of state is assumed as

τ = kρc2 = kρ0c
2
(r0

r

)3
, (33)

where k is the dimensionless equation-of-state parameter and
k > 1 due to the flare-out condition (5). Then the shape
function is given as

b = 8πG

c2

∫ r

r0

ρ(r ′)r ′2dr = 8πG

c2 r3
0ρ0 ln

(
r

r0

)
. (34)

When the matter is infinitely distributed, b diverges. To treat
a wormhole as a point particle of constant mass, we must
restrict the distribution of matter to a special location r1. The
resulting effective mass is

meff = bc2

2G
− 4πr3 τ

c2 = 4πρ0r
3
0

[
ln

(
r1

r0

)
− k

]
,

= 4πρ0r
3
0 (� − k). (35)

Here � = ln(r1/r0) is a parameter of the mass density dis-
tribution range, and for the effective mass to be positive, �

must be larger than k. Set m ≡ 4πρ0r3
0� and α ≡ k/�, where

α is the ratio of tension to wormhole size and also decides
the characteristics of the wormhole.

Let’s use the model with constant effective mass and
apply it to the practical problems of binary system including
wormhole(s). Examples here are wormhole–wormhole sys-
tem, wormhole–black hole system, and particle-wormhole
system.

4.2.1 Wormhole–wormhole binary

Consider the wormhole binary with effective masses and a
circular orbit using the Newtonian approximation. Substitut-
ing meff for m gives mass-related quantities Meff , μeff , ηeff ,
and Meff , are defined respectively. For example, the pos-
itive effective mass whose � is sufficiently large gives the
Hamiltonian and energy loss rate as

H = −1

2
μeffv

2, LGW = 32c2

5G

(
2GMeffω

c3

)10/3

. (36)

The contribution of effective mass to the generation of
gravitational waves depends on the mass included in the
physical quantities related to gravitational waves. There-
fore, it is necessary to check how dependent each physical
quantity is on mass and to know how much it changes if
they are replaced by effective mass. For gravitational wave
energy loss rate has the factor of M10/3

eff = [
(m1m2)

3/5/(m1

+m2)
1/5

]10/3 = (m1m2)
2/(m1 + m2)

2/3.
As can be seen from the cases mentioned above, the effec-

tive mass can be either positive or negative. Therefore, the
bounded orbital motion is possible only if the total effec-
tive mass is positive. In other words, it is possible when both
effective masses are positive, or when one of them is negative
but the total effective mass is positive.

Assume that a binary system consists of two identical
wormholes with effective mass (35). The mass-related quan-
tities are

meff = m(1 − α), Meff = 2m(1 − α) = 2meff ,

μeff = m(1 − α)

2
= meff

2
, ηeff = 1

4
.

The chirped mass

Meff = (meff)
6/5(Meff)

−1/5 = 2−1/5m(1 − α)

= 2−1/5meff .

Here we want to deal with a positive effective mass wormhole
binary, so we set α < 1. We can now determine the effective
mass effect of gravitational waves using the mass dependence
formula. When α = 1/2, the effective mass is the half the
mass. Let us assume that the initial conditions are the same
as in the ineffective case. The coalescence time is half that.
In the formula (26), v ∝ M1/2, so tc − t ∝ M−3 and ϕc −
ϕ ∝ M−5/2. Due to these mass dependencies, the waveform
for effective mass is as shown in Fig. 2, and the case of
ineffective mass such as twin black hole binary is also drawn.
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Fig. 2 Gravitational wave forms for twin wormhole binary system
(solid) when α = 0.5 and twin black hole binary system (dotted) when
α = 0. The masses, distance, and coalescence time are from the event
GW150914: m = 30M
, r = 410 Mpc, tc = 0.1 s

Fig. 3 Ratios of wave amplitude (solid line) and luminosity (dotted
line) of twin wormhole-binary (left panel) and wormhole–black hole
binary (right panel) with respect to α. All are normalized to the cases
of twin black hole-binaries. Here, α = 0 means a black hole and α > 1
means a wormhole with negative effective mass

The ratio of the luminosity of twin wormhole binary with
positive effective masses to the luminosity of normal star
binary is

L(α)
GW

LGW
= (1 − α)10/3. (37)

As the time approaches the coalescence time, the veloc-
ity and phase grow faster than the ineffective mass. Because
the coalescence time is halved, and the mass and time depen-
dence is v ∝ (Meff/(tc−t))1/8, the rate of increase in velocity
is larger. As shown in (27), ϕc − ϕ ∝ [(tc − t)/meff ]5/8 and
the rate of increase in the phase is also larger.

The left panel of Fig. 3 shows the ratio of wave amplitude
and luminosity of a twin wormhole binary to those of twin
black hole binary as a function of α. As α increases, the
amplitude and luminosity decrease. α = 1 means that the
effective mass of the wormhole is zero, there are no waves,
and there is no energy loss.

4.2.2 Wormhole–black hole binary

Among the problems about wormhole-related binary systems
with an effective mass definition, heterogeneous binary sys-

tem such as wormhole–black hole binary is also interesting
to us. Since the detailed precess and future of the coalescence
of heterogeneous binary system are unknown, here we will
only deal with the generation of gravitational waves due to
orbital motion and the inspiral state before coalescence.

If only the wormhole and the black hole are considered
pointlike particles and are sufficiently far away from each
other, the whole processes is similar to the case of ordinary
matter binary system. As long as the effective mass of the
wormhole is constant, the problem is similar to twin worm-
hole system when two wormholes approach each other. In
this case the mass and the gravitational potential are suffi-
cient as the physical quantities for gravitational wave gen-
eration. Effective mass is needed for wormholes and not for
black holes.

Let the mass of a black hole be m1 = m, the wormhole
mass be m, and its effective mass be m2 = m(1 − α). When
α < 1, the effective mass of the wormhole is also positive, so
the binary system has the bounded orbital motion. If 1 < α <

2, then the effective mass of wormhole is negative, but the
total mass of this heterogeneous binary system is positive.
The reduced mass is negative. As mentioned above, if the
total energy is between zero and the maximum value of the
effective potential, the motion is bounded. If 2 < α, the total
mass is negative and the reduced mass is positive, then the
motion of the binary system is not bounded. The mass-related
quantities are

Mwb = m(2 − α), μwb = m(1 − α)

(2 − α)
, ηwb = (1 − α)

(2 − α)2 .

When m2 is negative, μ and η are also negative. Because
the gravitational energy loss is given as positive-definite
through η2 and the total energy is positive, the relation
LGW = −dE/dt stands for the negative energy radiation
from this system. The velocity change rate (24) is positive
definite due to the attractive interaction, and so the η in this
relation should be replaced by |η| for this system.

Thus the chirped mass is given by

Mwb =
[ |1 − α|3

(2 − α)

]1/5

m.

Figure 4 shows the normalized waveforms for wormhole–
black hole binary system with waveform for black hole binary
system assuming that the black hole mass is equal to the
wormhole mass. For α = 1.5, i.e., a negative effective mass
wormhole, the coalescence time is shorter but the amplitude
is larger. For α = 0.5, i.e., a positive effective mass worm-
hole, the waveforms are similar to the wormhole binary sys-
tem except that the coalescence time is longer. For nega-
tive effective mass, the amplitude and luminosity increase as
α increases. The ratio of the luminosity of this black hole-
wormhole binary to the luminosity of the twin black hole
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Fig. 4 Gravitational waveforms for wormhole–black hole binary.
Solid line is for α = 0.5, dashed line is for α = 1.5, and dotted line is for
black hole binary (α = 0). The masses, distance, and coalescence time
are from the event GW150914: m = 30M
, r = 410 Mpc, tc = 0.1 s

binary is

L(α)
GW

LGW
= (1 − α)2

(1 − α/2)2/3 . (38)

If the binary masses are different, there is a mass difference
effect on this ratio. The right panel of Fig. 3 shows the ratio
of wave amplitude and luminosity of a wormhole–black hole
binary to those of twin black hole binary as a function of
α. As α1 increases, the amplitude and luminosity decrease.
However, for 1 < α < 2, the amplitude and luminosity
increase as α increases. This is also shown in the waveform
in Fig. 4.

There is a study on black hole-wormhole binary system
[13]. They dealt with smaller mass black holes and thin-shell
wormholes of the Schwarzschild type. The exotic matter is
located only in the throat, so a black hole passing through
the throat would only be a small perturbation. Using post-
Newtonian methods and numerical simulations, they found
that a small black hole undergoes damped oscillatory motion
between the two universes. During this movement, the black
hole generates gravitational waves in the form of an inspiral-
chirp-gap-antichirp(and/or burst), which is very distinctive
signal.

Here, we restricted the problem to Newtonian approxima-
tion. Therefore, when it is a bounded two-body system, the
energy of this system must have a value between 0 and the
minimum value of the effective potential. As orbital motion
continues, gravitational waves radiate energy into smaller
and smaller orbits until the two body merge, if two body
have similar masses. In the wormhole–black hole system, if
the black hole has a smaller mass, the black hole will come
to settle at the throat of the wormhole.

Extending this problem to a post-Newtonian approxima-
tion, general relativity effects involving geodesic motion
applies, showing the continues motion of a smaller mass
black hole through the wormhole’s throat into another uni-

verse and return to our universe. Then our results will be sim-
ilar to those results. Thus smaller mass black hole will have
orbital motions in ours and other universes, using damped
oscillatory motions to show the chirp-gap-antichirp (and/or
burst) radiation.

4.2.3 Particles moving near a wormhole

We will consider two cases: gravitational waves emitted by a
particle orbiting around a wormhole, and those by a particle
moving linearly toward the center of the wormhole. In both
cases, we limit the effective mass of the wormhole to a pos-
itive value and can set as m(1 − α) with α < 1. For the first
case, we see the gravitational radiation by a particle of mass
m0 orbiting a wormhole of effective mass meff . When the
particle orbits a wormhole, we can treat the binary system as
a limit case where the mass of a particle is very small. When
m1 = m0 � m2 = meff , the other mass-related quantities
are

η → 0, M → meff , μ → m0.

In this extreme case, the particle starts out with the velocity of
v0 and rotates around the wormhole, and the wormhole does
not move. The particle then generate the gravitational waves
and thereby loses energy. As the particle’s orbital radius grad-
ually decreases and approaches the wormhole throat, rc, the
velocity also gradually increases, increasing to vc. The time
from the initial position to the throat is

tc = 5

4096

c5

G3

1

m0m2
eff

(r4
0 − r4

c ).

The energy loss rate is
∫ tc

0

dE

dt
dt = 1

2
m0(v

2
c − v2

0) = Gm0meff

(
1

rc
− 1

r0

)
,

where v = √
2Gmeff/r is the tangent velocity of the small

particle. The remaining energy is not enough to go further,
so it cannot escape from the wormhole throat and eventually
stops, losing energy.

As the second example, consider a case where a particle
travels straight into a wormhole and passes through the throat.
We start from E = 0. The particle releases energy through
the generation of gravitational waves and has negative energy,
resulting in the bounded motion. Assume that the particle’s
first path is from ∞ to b and from b through the throat to R
on the other side.

Analogous to the black hole case [21], we consider a parti-
cle of mass m0 starting from infinity in the positive direction
of the z axis with zero velocity,

1

2
m0 ż

2 − Gm0meff

z
= 0

123



128 Page 8 of 9 Eur. Phys. J. C (2024) 84 :128

Fig. 5 The gravitational potential of a wormhole. The particle moves
from infinity in region I with energy zero straight into the center and to
R1 in region II, R2 in region I, R3 in region II, etc. The particle passes
through the throat (b) with each round trip

and the velocity is

ż = −c

(
Rs

z

)1/2

, (39)

where Rs = 2Gmeff/c2 is the Schwarzschild radius of the
wormhole. The rate of energy radiated through the gravita-
tional wave is [21]

LGW = 2

15

Gm2
0

c5

〈
(6ż z̈ + 2z

...
z )2

〉
(40)

Here the z is the vertical axis through the wormhole center
and the only non-vanishing component of the inertia tensor
is I33 = m0z2. The particle in region I moves with E = 0
from infinity to b and to R1 in region II of other side. It
returned to mouth and to R2 of the same side (region I) as
the starting position, and continues these damped oscillatory
motion until Rn < b while Rn−1 > b. If the n is odd (even)
number, Rn is opposite (same) side (Fig. 5).

The radiated energy falling into the wormhole from infin-
ity to b is

E0 = 4

105

Gm2
0

Rs

(
Rs

b

)7/2

and the energy radiated when moving from b to Rn is

En = 4

105

Gm2
0

Rs

[(
Rs

b

)7/2

−
(
Rs

Rn

)7/2
]

= E0

(
1 − γ

7/2
n

)
, (41)

where γn = b/Rn and 0 < γn < 1. Thus the energy radiated
by the particle travel from infinity to b and R1 in other side
through throat is E0 +E1. When it is repeated to Rn , the total
energy radiated is

E (n)
rad = E0 + 2

n−1∑
k=1

Ek + En . (42)

Therefore, the particle sequentially radiates energy En in
alternating regions, so that it release energy discontinuously
rather than continuously. As the oscillatory motion continues,
the duration until Rn on one side appears becomes shorter,
and the radiant energy 2En emitted at that time becomes
smaller than before. We also can derive the position of Rn by
equalizing the potential energy

Gm0meff

Rn
= E0 + 2

n−1∑
k=1

Ek + En . (43)

Using β ≡ Gm0meff/(bE0), which is the ratio of the poten-
tial energy at b to the energy loss moving from infinity to b,
Rn can be obtained by solving the equation:

βγn + γ
7/2
n = 2n − 2

n−1∑
k=1

γ
7/2
k (44)

on the premise that we already get all Rk, k < n. Comparing
the values of each term, γ ’s are very small compare to β,
which is nearly to the ratio of the wormhole mass and the
test mass. The approximate solution for Rn is

Rn � β

2n
b, (45)

by neglecting the γ 7/2 terms and the total energy loss is

E (n)
rad = Gm0meff

Rn
� 2nE0

� 4

105
nm0c

2
(

m0

meff

)
(46)

by (42) and (43) when n is not so large and b � Rs . This is
because for large n the (b/Rk)

7/2 terms cannot be neglected,
so they are added when estimating the energy loss.

The particle under the gravitation of a wormhole has
damped oscillatory motion, emitting the discrete form of
radiation until it is captured by the wormhole. When the par-
ticle passes through the throat of a wormhole to another uni-
verse, it radiates the energy with very high rate, and when it
comes back through the throat to our universe, it emits burst
again. It shows similar results except using burst instead of
antichirp wave, comparing to the previous results on the grav-
itational waves by the black hole orbiting a wormhole [13].

When the number n = β/2, the particle stops at throat
with the total energy loss is the half of test particle’s mass
energy as

Erad = Gm0meff

b
� 1

2
m0c

2. (47)

Half of the energy (47) is radiated to region I, and the remain-
ing energy is radiated to region II in discontinuous forms.
When n becomes large, it makes two contributions to the
equation: the property that γn approaches 1 and the sum of
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γk . If we define the sum as s(n) ≡ ∑n
k=1 k

7/2, the n-th dis-
tance becomes

γn � 2

β
(n − �n) (48)

and the energy loss is

E (n)
rad � 4

105
m0c

2
(

m0

meff

)
(n − �n), (49)

where

�n =
(

2

β

)7/2 (
s(n) − 1

2
n7/2

)
.

Let α = 200, n = 100. Here the contribution of s(n) is
2.27 × 108 and �n � 22. Therefore the number becomes 78
and the total energy loss is reduced by 22%. Stopping at the
throat requires more travel, but the total energy loss is equal
to (47), half the mass-energy of test particle.

For the case of black hole, the particle is absorbed into the
black hole with the radiation of [21]

E � 0.01m0c
2
(m0

M

)
,

where M is the black hole mass.

5 Conclusion

We considered a binary system containing wormhole(s) as a
gravitational wave source. Applying the Newtonian approx-
imation to this binary system, the wormhole effective mass
definition is needed from the Newtonian potential of a worm-
hole. Therefore when applying the interaction of any object
with a wormhole, the gravitational potential of the wormhole
should be used as the effective mass, including the tension
term in Newtonian approximation. Here we tried to find the
effective mass-related properties of gravitational wave gen-
erated by the binary system. The invariance of the effective
mass shows that the wormhole can be considered a point
mass. If not, size-effects can be considered using methods
such as the effective one-body theory.

We can also see that the motion of the system depends
on the sign of effective mass. Bounded motion is possible as
long as the total mass is positive, even if one of the masses
is negative. We found the waveforms and energy losses
for three cases: wormhole–wormhole, wormhole–black hole,
and particle-wormhole. The effective mass changes the coa-
lescence time and the waveforms of the binary system.

In the last two examples, the particles’ motions are also
different from that near a black hole where particles are
absorbed. In the case of a wormhole, particles with excess
energy can move to other region through the throat. Or the

particles moving straight into wormhole will go into damped
oscillatory motion between two regions, losing half of its
mass energy, until it stops. In this case, different from the
case of the particle absorbed by the black hole, the energy is
radiated in a discrete and increasingly smaller form.
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