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ABSTRACT

Background: An 8-year prediction of the Framingham Diabetes Risk Model (FDRM) was 
proposed, but the predictor has a gap with current clinical standards. Therefore, we evaluated 
the validity of the original FDRM in Korean population data, developed a modified FDRM 
by redefining the predictors based on current knowledge, and evaluated the internal and 
external validity.
Methods: Using data from a community-based cohort in Korea (n = 5,409), we calculated the 
probability of diabetes through FDRM, and developed a modified FDRM based on modified 
definitions of hypertension (HTN) and diabetes. We also added clinical features related to 
diabetes to the predictive model. Model performance was evaluated and compared by area 
under the curve (AUC).
Results: During the 8-year follow-up, the cumulative incidence of diabetes was 8.5%. The 
modified FDRM consisted of age, obesity, HTN, hypo-high-density lipoprotein cholesterol, 
elevated triglyceride, fasting glucose, and hemoglobin A1c. The expanded clinical model 
added γ-glutamyl transpeptidase to the modified FDRM. The FDRM showed an estimated 
AUC of 0.71, and the model's performance improved to an AUC of 0.82 after applying the 
redefined predictor. Adding clinical features (AUC = 0.83) to the modified FDRM further 
improved in discrimination, but this was not maintained in the validation data set. External 
validation was evaluated on population-based cohort data and both modified models 
performed well, with AUC above 0.82.
Conclusion: The performance of FDRM in the Korean population was found to be acceptable 
for predicting diabetes, but it was improved when corrected with redefined predictors. The 
validity of the modified model needs to be further evaluated.
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INTRODUCTION

In 2003, the World Health Organization and International Diabetes Federation predicted 
that the prevalence of diabetes would reach 350 million by 2030.1 However, in 2021, the 
International Diabetes Federation estimated that 537 million people already had diabetes 
worldwide, a number 1.5-fold higher than the official prediction, and that an additional 240 
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million people had undiagnosed diabetes.2 The prevalence and disease burden of diabetes are 
expected to increase continuously.

A simulation study demonstrated that early detection of diabetes through screening improves 
the prognosis of patients.3 Identification of individuals at high risk of disease allows effective 
disease prevention through targeted interventions and delays the development of disease. 
Therefore, several studies have evaluated predictive models for diabetes, including some based 
on machine learning. Fregoso-Aparicio et al.4 systematically reviewed 90 studies of prediction 
models based on machine learning and deep leaning that were published between 2017 and 
2021. Although several of the models demonstrated good performance, they have limited 
clinical applications. In 2007, the Framingham Diabetes Risk Model (FDRM), which is based 
on age, sex, body mass index (BMI), blood pressure, parental history of diabetes, fasting blood 
glucose (FBG), high-density lipoprotein cholesterol (HDL-C), and triglyceride (TG) levels, was 
proposed in the Framingham offspring study.5 The FDRM is based on easily available features 
that have good discriminative ability (area under the curve [AUC] = 0.85). It was developed 
for use in middle-aged adults and predicts the 8-year diabetes risk. Since 2011, the World 
Health Organization has recommended the use of hemoglobin A1c (HbA1c) for the diagnosis 
of diabetes.6 Additionally, in 2017, the American College of Cardiology/American Heart 
Association (ACC/AHA) changed its definition of hypertension (HTN) from blood pressure ≥ 
140/90 mmHg to ≥ 130/80 mmHg.7 Meanwhile, the Korean Society of HTN announced that it 
would maintain the existing diagnostic criteria in accordance with the 2022 HTN management 
guidelines.8 These discrepancies may affect the predictive power of disease prediction models.

Therefore, we evaluated the validity of the FDRM in an independent cohort in Korea and 
herein propose a modified version thereof based on predictors redefined using current 
clinical criteria. Additionally, we assessed whether predictive performance improved when 
additional predictors were added to the modified FDRM.

METHODS

Data and study subjects
We obtained data from the community-based cohort of the Korean Genome and 
Epidemiology Study (KoGES), which was established in 2001–2002 and has a biennial 
follow-up. The study included 10,030 volunteers aged 40–69 years who were living in the 
rural area of Ansung (n = 5,018) and the industrial area of Ansan (n = 5,012) in the province of 
Gyeonggi-do. Detailed information on the cohort has been published elsewhere.9

We excluded participants with cancer, a history of cardiovascular disease (myocardial 
infarction, stroke, coronary artery disease, or congestive heart failure), diabetes, an FBG 
level ≥ 126 mg/dL, or HbA1c ≥ 6.5%. This study included data up to the fourth follow-up, 
conducted in 2009–2010. Data were randomly split into derived and validation datasets at a 
ratio of 7:3. Finally, data from 2,547 males and 2,862 females (derivation dataset) were used 
to validate and improve the FDRM, while data from 1,097 males and 1,221 females (validation 
dataset) were used for internal validation of the prediction models. For temporal validation, 
data from the fourth follow-up of the same cohort conducted in 2009–2010 were used as the 
baseline, whereas incident diabetes recorded in the fifth to eighth follow-ups (2017–2018) 
was used as the outcome. Based on the eligibility criteria, data from 1,914 males and 2,177 
females (temporal validation data) were included in the study.
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For external validation, the validity of the predictive models was assessed using data from 
the KoGES Cardiovascular disease association study (KoGES-CAVAS), which was selected 
based on the availability of data that could be explained by the developed predictive model. 
We evaluated the validity of the prediction model among subjects aged 40–69 years using 
diagnosed and undiagnosed diabetes as the outcome. Thus, after applying the eligibility 
criteria, we obtained data from 790 males and 1,253 females (external validation data). 
Briefly, KoGES-CAVAS were collected from 28,337 people living in rural areas from 2005 
to 2011 for the purpose of preparing measures for disease prevention and early diagnosis 
through identification of risk factors related to the development of diseases, focusing on 
cardiovascular disease.9 Up to the 4th follow-up (2014-2016) data are available. HbA1c at 
baseline was measured only in some regional participants, so only 5,906 data exist. Fig. 1 
presents an overview of the study procedures.
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The community-based (Ansan-Anseong) KoGES cohort data KoGES-CAVAS data
8-year FU 8-year FU Median: 5-year FU

('01–'02) ('09–'10) ('17–'18) ('06–'11) ('14–'16)

Randomly split 7:3

Evaluated models according to data
- FDRM
- Modified FDRM
- Expanded clinical model

- Modified FDRM
- Expanded clinical model

- Modified FDRM
- Expanded clinical model

List of variables according to predictive models
FDRM
Sex
Age
HTN (130/85 mmHg or antihypertensive
drug)
TG (≥ 150 mg/dL)
Hypo HDL-C
(< 40 mg/dL for male and < 50 mg/dL for
female)
Elevated FBG (≥ 100 mg/dL)

BMI (cut-off points 25.0 and 30.0 kg/m2)

Age
HTN (140/90 mmHg or antihypertensive
drug)
TG (≥ 150 mg/dL)
Hypo HDL-C
(< 40 mg/dL for male and < 50 mg/dL for
female)

Elevated FBG (100–125 mg/dL)

Elevated HbA1c (5.7–6.4%)
BMI (cut-off points 25.0 and 30.0 kg/m2)

Age
HTN (140/90 mmHg or antihypertensive
drug)
TG (≥ 150 mg/dL)
Hypo HDL-C
(< 40 mg/dL for male and < 50 mg/dL for
female)
Elevated FBG (100–125 mg/dL)

Elevated HbA1c (5.7–6.4%)
Log γ-GTP

BMI (cut-off points 25.0 and 30.0 kg/m2)

Modified FDRM Expanded clinical model

Parental history of DM

External validation data
(n = 2,043)Temporal validation data

(n = 4,091)

Derivation data
(n = 5,459)

Internal validation data
(n = 2,318)

Fig. 1. Study summary. 
The data sources used in this study, predictive models evaluated, and variables included therein are presented. 
KoGES = Korean Genome and Epidemiology Study, KoGES-CAVAS = Korean Genome and Epidemiology Study-cardiovascular disease association study, FDRM = 
Framingham Diabetes Risk Model, HTN = hypertension, TG = triglyceride, HDL-C = high-density lipoprotein cholesterol, FBG = fasting blood glucose, BMI = body 
mass index, HbA1c = hemoglobin A1c, DM = diabetes mellitus, γ-GTP = γ-glutamyl transpeptidase.



Outcome
Incident diabetes was defined as diagnosis of diabetes by a physician and the use of 
medication for diabetes, or as an FBG level ≥ 126 mg/dL or HbA1c level ≥ 6.5%. The 
cumulative incidence of diabetes was 8.5% (255 of 2,547 males and 205 of 2,862 females) 
in the 8-year follow-up derivation dataset and 7.8% (85 of 1,097 males and 95 of 1,221 
females) in the internal validation dataset. In the temporal validity dataset, 368 individuals 
(9.0%) developed diabetes during the 8-year follow-up period (172 of 1,914 males and 196 
of 2,177 females). In the external validation dataset from the KoGES-CAVAS, the estimated 
cumulative incidence of diabetes was 6.8% (62 of 790 males and 76 of 1,253 females).

Assessment of prediction model
We assessed the validity of the FDRM and modified it as follows: first, the predicted 
individual diabetes risk was calculated by applying the beta coefficient derived from the 
FDRM to the derivation and validation datasets. Thus, according to the FDRM definition,5 
eight component features were defined: age, sex, blood pressure, parental history of 
diabetes, BMI, and FBG, HDL-C, and TG levels:

Beta = −5.517 + (male × −0.01) + [HTN (> 130/85 mmHg or receiving therapy) × 0.498] + [high 
TG (≥ 150 mg/dL) × 0.575] + [hypo HDL-C (< 40 mg/dL for males and < 50 mg/dL for females) 
× 0.944] + [high FBG (≥ 100 mg/dL) × 1.98] + (parental history of diabetes × 0.565)

if BMI 25.0–29.9 kg/m2, + 0.301; if BMI ≥ 30.0 kg/m2, + 0.92 and if age 50-64 years, −0.018; if 
age ≥ 65 years, −0.081

Second, we modified the FDRM by adding the revised definition of HTN (blood pressure 
≥ 140/90 mmHg or use of antihypertensive drugs8) and HbA1c (5.7–6.4%),6,10 as well as by 
excluding sex and parental diabetes history (named modified FDRM).5,11 Third, additional 
clinical features were applied to the modified FDRM to improve its performance (named 
expanded clinical model). We assessed diabetes-related features identified in previous 
studies10,12-15 that are recorded routinely and were available in the KoGES dataset. We 
assessed the associations of incident diabetes with 35 features (Supplementary Table 1). 
Regarding redundant features, we excluded highly correlated features (correlation coefficient 
[γ] > 0.8). The stepwise selection method was used to identify the most important features 
in the modified FDRM. To evaluate collinearity among the features included in the predictive 
model, we estimated the variance inflation factor. We also evaluated the interaction terms 
for the features included in the predictive model. The internal and external validity of the 
modified FDRM and expanded clinical model were evaluated.

Statistical analysis
Statistical analysis was performed using R (version 3.6.2; R Foundation for Statistical 
Computing, Vienna, Austria) and SAS (version 9.4; SAS Institute Inc., Cary, NC, USA) 
software. Demographic characteristics are presented as means with standard deviations or 
medians with interquartile ranges for continuous variables, as appropriate, and as numbers 
with percentages for categorical variables. Associations of incident diabetes with the features 
are presented as odds ratios, 95% confidence intervals (CIs), c-index (i.e., AUC) values, and 
scores derived from the logistic model. We calculated the AUC to compare the predictive 
models in terms of discrimination ability. Within-study validity was assessed using 10-fold 
cross validation. Sensitivity analysis was performed as follows. In the validation data, HTN 
was defined according to the ACC/AHA standards7 (blood pressure ≥ 130/80 mmHg or use 
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of antihypertensive drugs) and the difference in discrimination power was evaluated when 
applied to the prediction models. We also evaluated model performance for diabetes, defined 
as physician diagnosis and diabetes medication use, FBG level ≥ 126 mg/dL or HbA1c level ≥ 
6.5% or 2-hour blood glucose level ≥ 200 mg/dL in oral glucose tolerance test. Due to data 
availability, it was evaluated on internal and temporal validation data. We also evaluated 
model performance in subgroups (male/female, normoglycemia/prediabetes). A two-tailed P 
value < 0.05 was considered to indicate statistical significance.

Ethics statement
This study was performed in accordance with the Declaration of Helsinki. The study protocol 
was approved by the Institutional Review Board (IRB) of Ewha Womans University Hospital 
(approval no. EUMC 2021-03-008). The requirement for written informed consent was waived 
by the IRB because the study used an anonymous dataset.

RESULTS

Table 1 presents the baseline characteristics of the participants. In the derivation dataset, 
47.1% of the participants were males; their mean age was 51.5 (range, 40–69) years, 40.4% 
had a BMI > 25.0 kg/m2 and 7.8% had a parental history of diabetes. Approximately a quarter 
of the participants had a blood pressure ≥ 140/90 mmHg (24.4%) and half of the participants 
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Table 1. Basic characteristics of the participants in the derivation and validation datasets
Characteristics Derivation data 

(n = 5,409)
Internal validation data 

(n = 2,318)
P value

Male 2,547 (47.09) 1,097 (47.33) 0.848
Age, yr 51.52 ± 8.73 51.72 ± 8.79 0.364
Parental history of diabetes 422 (7.80) 170 (7.33) 0.479
BMI, kg/m2 24.41 ± 3.10 24.42 ± 3.06 0.916

< 25.0 3,221 (59.56) 1,372 (59.24) 0.608
25.0–29.9 1,939 (35.85) 848 (36.61)
≥ 30.0 248 (4.59) 96 (4.15)

Waist circumference, cm 81.99 ± 8.73 82.12 ± 8.67 0.558
≥ 94 for males and ≥ 80 for females 1,687 (31.22) 748 (32.28) 0.358

SBP, mmHg 120.54 ± 17.82 120.10 ± 18.31 0.319
DBP, mmHg 80.00 ± 11.45 79.61 ± 11.32 0.172

≥ 140/90 mmHg 1,321 (24.42) 550 (23.73) 0.514
≥ 130/80 mmHg 2,825 (52.23) 1,178 (50.82) 0.256

Antihypertensive drug use 441 (8.15) 194 (8.37) 0.751
HbA1c, % 5.55 ± 0.35 5.54 ± 0.34 0.133

5.7–6.4 2,050 (37.90) 854 (36.84) 0.379
Fasting blood glucose, mg/dL 83.06 ± 8.93 82.69 ± 8.81 0.089

100–125 258 (4.80) 101 (4.37) 0.413
2-hr blood glucose in OGTT, mg/dL 116.90 ± 34.50 115.27 ± 33.05 0.055

≥ 140 1,052 (19.45) 428 (18.46) 0.313
Triglyceride, mg/dL 130.00 (96.0–183.0) 132.00 (99.0–183.0) 0.618

≥ 150 2,072 (38.31) 907 (39.15) 0.491
HDL-C, mg/dL 45.15 ± 10.19 44.77 ± 9.87 0.124

< 40 for males and < 50 for females 2,843 (52.57) 1,253 (54.06) 0.231
WBC, × 1,000/µL 6.50 ± 1.79 6.44 ± 1.78 0.189
γ-GTP, IU/L 20.00 (14.0–35.0) 20.00 (14.0–36.0) 0.335
Incident diabetes at the 8-year follow-up 460 (8.50) 180 (7.77) 0.280
Values are presented as mean ± standard deviation or median (interquartile range) or number (%).
BMI = body mass index, SBP = systolic blood pressure, DBP = diastolic blood pressure, HbA1c = hemoglobin A1c, 
OGTT = oral glucose tolerance test, HDL-C = high-density lipoprotein cholesterol, WBC = white blood cell, γ-GTP 
= γ-glutamyl transpeptidase.



had a low HDL-C level (52.6%). The mean FBG and HbA1c levels were 83.1 mg/dL and 5.6%, 
respectively. There were no significant differences between the derivation and validation 
datasets in terms of the baseline characteristics.

The modified FDRM included age (continuous variable; years), BMI (categorical variable; < 
25.0, 25.0–29.9, or ≥ 30.0 kg/m2), HTN (≥ 140/90 mmHg or use of antihypertensive drugs), 
low HDL-C level (< 40 mg/dL for males and < 50 mg/dL for females), and elevated TG (≥ 150 
mg/dL), FBG (100–125 mg/dL), and HbA1c (5.7–6.4%) levels. The stepwise selection method 
was used to develop an expanded clinical model including the white blood cell (WBC) count 
(continuous variable; × 1,000/µL) and log-transformed γ-glutamyl transpeptidase (γ-GTP) 
level (continuous variable; unit of raw value IU/L) to the modified FDRM. However, because 
the difference between the model adding WBC and γ-GTP (AUC = 0.831) and the model 
adding only γ-GTP (AUC = 0.830) was minimal (P = 0.474), only γ-GTP was included in the 
expanded clinical model. Table 2 presents the beta coefficients of the models. The modified 
FDRM and expanded clinical models can be used to calculate the diabetes risk as follows:

Modified FDRM:
Beta = −4.7926 + (age × 0.00964) + (HTN × 0.2724) + (high TG × 0.5917) + (hypo HDL-C × 
0.05) + (high FBG × 2.0429) + (high HbA1c × 1.9041)

if BMI 25.0–29.9 kg/m2, + 0.2842; if BMI ≥ 30.0 kg/m2, + 0.6765

Expanded clinical model:
Beta = −6.7119 + (age × 0.0159) + (HTN × 0.2139) + (high TG × 0.3256) + (hypo HDL-C × 
0.2596) + (high FBG × 1.8876) + (high HbA1c × 1.8972) + (log γ-GTP × 0.4906)

if BMI 25.0–29.9 kg/m2, + 0.2727; if BMI ≥ 30.0 kg/m2, + 0.6705

Probability = 1/[1 + exp(−beta)]

Examples of the diabetes risk calculation are presented in the Appendix 1.

The relative importance of the features varied between the improved models (Fig. 2). HbA1c 
of 5.7–6.4% was the most important feature in both models, followed by an FBG level of 
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Table 2. Estimates and ORs for predictive models of incident diabetes based on the derivation dataset
Parameter Modified Framingham Diabetes Risk Model Expanded clinical model

Beta coefficients OR (95% CI) Beta coefficients OR (95% CI)
Intercept −4.7926 −6.7119
Age, yr (continuous) 0.00964 1.01 (1.00–1.02) 0.0159 1.02 (1.00–1.03)
HTN, ≥ 140/90 mmHg or antihypertensive drug use 0.2724 1.31 (1.05–1.65) 0.2139 1.24 (0.99–1.56)
TG, ≥ 150 mg/dL 0.5917 1.81 (1.45–2.25) 0.3256 1.39 (1.09–1.75)
Hypo HDL-C, < 40 mg/dL for males and < 50 mg/dL for females 0.0500 1.05 (0.84–1.31) 0.2596 1.30 (1.03–1.64)
FBG, 100–125 mg/dL 2.0429 7.71 (5.70–10.43) 1.8876 6.60 (4.86–8.97)
HbA1c, 5.7–6.4% 1.9041 6.71 (5.20–8.66) 1.8972 6.67 (5.16–8.61)
BMI, kg/m2

< 25.0 0 1.00 0 1.00
25.0–29.9 0.2842 1.33 (1.06–1.67) 0.2727 1.31 (1.04–1.66)
≥ 30.0 0.6765 1.97 (1.32–2.92) 0.6705 1.96 (1.31–2.91)

Log γ-GTP (continuous) 0.4906 1.63 (1.42–1.89)
OR = odds ratio, 95% CI = 95% confidence interval, HTN = hypertension, TG = triglyceride, HDL-C = high-density lipoprotein cholesterol, FBG = fasting blood 
glucose, HbA1c = hemoglobin A1c, BMI = body mass index, γ-GTP = γ-glutamyl transpeptidase.



100–125 mg/dL. In the expanded clinical model, log-transformed γ-GTP ranked third in terms 
of importance and HTN was the least important variable. In the modified FDRM, a TG level ≥ 
150 mg/dL ranked third and a low HDL-C level was the least important variable.

Fig. 3 compares the AUC values for the derivation and validation datasets among the 
predictive models. In the derivation dataset, the FDRM had the lowest AUC value (0.710, 95% 
CI, 0.684–0.736) and the expanded clinical model had the highest (0.830, 95% CI, 0.811–
0.849); that of the modified FDRM was 0.820 (95% CI, 0.799–0.841). Both modified models 
had significantly higher AUC values than the FDRM (all P < 0.001), and the expanded clinical 
model had higher AUC values than the modified FDRM (P = 0.004). The accuracy of the 
expanded clinical model was 92.02% (95% CI, 91.27–92.73) and that of the modified FDRM 
was 91.93% (95% CI, 91.17–92.65). The accuracy of the FDRM was not calculated due to its 
low predictive value. When 10-fold cross-validation was applied, the AUCs of the modified 
FDRM and expanded clinical model were 0.813 and 0.825, respectively. The variance inflation 
factor of both models was < 1.5. We evaluated the interaction terms between the features of 
the predictive model. Although TG (≥ 150 mg/dL) and HbA1c (5.7–6.4%) showed a significant 
interaction, the interaction did not improve model performance (0.820 and 0.831 for the 
modified FDRM and expanded clinical model, respectively). Therefore, these features were 
not included in the model.

In the internal validation dataset, the discrimination abilities of the expanded clinical model 
and the modified FDRM were acceptable (0.822, 95% CI, 0.792–0.852 and 0.817, 95% CI, 
0.785–0.850, respectively), and there was no significant difference between the models 
(P = 0.602). The accuracies of the expanded clinical model and the modified FDRM were 
similar to that in the derivation dataset (92.34%, 95% CI, 91.18–93.39 and 92.51%, 95% CI, 
91.36–93.55, respectively; Fig. 3). In the temporal validation dataset, the γ-GTP data were not 
collected at the fourth follow-up, so data from the third follow-up were used. The AUC values 
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Fig. 2. Relative importance of features included in the improved predictive models for diabetes. (A) Modified Framingham Diabetes Risk Model and (B) expanded 
clinical model. 
HTN was defied as blood pressure ≥ 140/90 mmHg or the use of antihypertensive drugs. Due to the skewed distribution, γ-GTP values were log-transformed. 
Hypo HDL-C was defined as HDL-C < 40 mg/dL for males and < 50 mg/dL for females. Age, log-transformed γ-GTP, and WBC were included as numerical 
variables; all of the other variables were binary. 
HbA1c = hemoglobin A1c, FBG = fasting blood glucose, TG = triglyceride, BMI = body mass index, HTN = hypertension, HDL-C = high-density lipoprotein 
cholesterol, WBC = white blood cell, γ-GTP = γ-glutamyl transpeptidase.



were 0.824 (95% CI, 0.800–0.848) and 0.821 (95% CI, 0.796–0.846) for the expanded clinical 
model and the modified FDRM (comparison between two models, P = 0.345), respectively. 
The accuracies of both the expanded clinical model and the modified FDRM were greater 
than 88% (88.41%, 95% CI, 87.28–89.47 and 88.32%, 95% CI, 87.29–89.28, respectively). In 
the external validation dataset, the AUCs of the expanded clinical model and the modified 
FDRM were 0.837 (95% CI, 0.800–0.875) and 0.821 (95% CI, 0.781–0.860), respectively. 
The accuracies of the expanded clinical model and modified FDRM were 92.51% (95% CI, 
91.29–93.62) and 92.17% (95% CI, 90.92–93.30), respectively (Fig. 3). Temporal and external-
validated data for participant characteristics are presented in Supplementary Table 2. They 
had higher average age, FBG, and lower TG than the participants in the derivation data and 
internal validation data.

Even when HTN according to the ACC/AHA standards was applied to the two modified 
models, the model performance was slightly lower, but generally showed a similar level 
(Supplementary Table 3). The cumulative incidence of incident diabetes, defined by adding 
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Fig. 3. Validation of the FDRM for predicting diabetes and comparison with the modified FDRM and expanded clinical model. (A) Derivation data, (B) internal 
validation data, (C) temporal validation data, and (D) external validation data. 
FDRM = Framingham Diabetes Risk Model.



a 2-hour blood glucose level ≥ 200 mg/dL in the oral glucose tolerance test, was 13.53% 
(308/2,276) in internal validation data and 13.02% (490/3,764) in temporal validation, 
respectively. Overall, both modified models showed predictive power levels above 0.7, which 
were acceptable (Supplementary Table 4). The model performance of both modified models 
for men and women was above 0.8, with internal and temporal validation data being higher 
for women and external validation data being higher for men. However, the 95% CI were 
found to overlap. Although the overall model performance of both modified models was 
reduced in subjects with normoglycemia or prediabetes, model performance in prediabetic 
subjects was higher than that in normoglycemic subjects (Supplementary Table 5).

DISCUSSION

The FDRM showed acceptable predictive performance for incident diabetes in non-diabetic 
Korean individuals (AUC, 0.71); the predictive performance was improved by modifying 
the included factors (AUC, 0.82 for the modified FDRM). Although the addition of 
clinical features to the modified FDRM provided further improvement (AUC, 0.83), it was 
not maintained in the validation data. Furthermore, although the characteristics of the 
population-based cohort (e.g., KoGES-CAVAS) and the temporal validation dataset were 
different from those of the derived data, the modified FDRM showed good performance in 
each dataset (AUC, 0.82 and 0.82, respectively). This model performed equally well in both 
men and women. Even when diabetes prediction probability was calculated by defining HTN 
according to ACC/AHA, the overall model performance did not change significantly.

The FDRM has been validated for use in Taiwanese,16 German,17 Swedish,18 American,19 
and Canadian populations,11 with only some studies reporting acceptable performance. 
The different results among previous studies may have been due to the heterogeneity in the 
distribution of predictors and disease.11,19 Indeed, in the present study, the participants 
were thinner (24.4 vs. 27.1 kg/m2) and had higher proportions of low HDL-C level (52.6% 
vs. 36.9%) and incident diabetes (8.5% vs. 5.1%) than in the Framingham offspring study.5 
Previous studies, including the Framingham offspring study, diagnosed diabetes on the basis 
of the FBG level, 2-hour postprandial blood glucose level, or use of antidiabetic drugs.5,18,20 
The American Diabetes Association recommends HbA1c as a substitute for FBG for the 
diagnosis of diabetes, and as a reliable prognostic marker for diabetes.6,21 HbA1c reflects 
the mean plasma glucose level over the previous 8–12 weeks.22 In the present study, HbA1c 
had the highest importance among the features included in the prediction model. Changes 
in diagnostic criteria may affect the performance of the predictive model. Previous studies 
of the predictive ability of clinical models based on 2-hour glucose and FBG levels have 
shown conflicting results.23,24 The diagnosis guidelines for diabetes recommend a 2-hour 
glucose-tolerance test, but it is not mandatory for screening. Studies that developed diabetes 
prediction models using health checkup data generally did not consider 2-hour glucose when 
defining diabetes.25,26 However, in line with previous studies,27,28 we observed differences in 
prevalence depending on the definition of diabetes. Also, one meta-study suggested lowering 
the cutoff values for FBG and HbA1c in relation to diabetes diagnosis.28 Therefore, prior to 
developing a diabetes prediction model, it seems necessary to resolve this discrepancy.

Various prediction models for diabetes have been developed over the last 20 years.4 Age, 
family history of diabetes, HTN, BMI or obesity, waist circumference, and sex have frequently 
been included in prediction models of diabetes.10 To reduce the cost and the time required to 
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predict diabetes risk, Lindstrom and Tuomilehto20 proposed the Finnish Diabetes Risk Score 
based on lifestyle features, rather than laboratory tests, to identify high-risk individuals; the 
score had an AUC of 0.85 for the prediction of diabetes. Stern et al.23 developed a predictive 
model based on the components of metabolic syndrome for Mexican-American and non-
Hispanic whites. The model which consisted of metabolic features, had higher discriminative 
ability than the 2-hour oral glucose tolerance test alone for high-risk individuals.23 In the 
present study, the discrimination abilities of 2-hour glucose, HbA1c (5.7–6.4%), and FBG 
levels (100–125 mg/dL) were 0.78, 0.74, and 0.61, respectively (Supplementary Table 1). 
Our findings also showed that the modified FDRM had a higher 8-year prediction ability for 
diabetes than univariate models based on 2-hour glucose, HbA1c, and FBG levels. Several 
studies have found that metabolic features are reasonable and useful for the prediction of 
diabetes. However, as with the Framingham offspring study,5 making models more complex 
by adding clinical features did not improve their performance. We selected γ-GTP and WBC 
as potential risk factors of diabetes. Previous studies have identified an association between 
chronic subclinical inflammation and insulin resistance. In addition, several studies found 
an association between an elevated WBC count and diabetes.29,30 In a study of Taiwanese 
individuals, a predictive model based on age, BMI, WBC count, TG, HDL-C, and FPG levels 
was developed and had an AUC of 0.70.16 However, it did not appear to primarily contribute 
to the performance of the diabetes prediction model, so it was not included in the expanded 
clinical model. Liver-related biomarkers are associated with diabetes, and γ-GTP is an 
early and sensitive marker of inflammation and oxidative stress.31 In addition, it has been 
suggested that γ-GTP is an independent predictor of diabetes, HTN, metabolic syndrome, 
and coronary artery disease.32 A study by Lee et al.33 from the same data source as this study 
also found that higher γ-GTP was associated with the development of diabetes. Another 
Korean study using health examination data also found that γ-GTP contributed to the 
prediction of diabetes.25 The role of oxidative stress in the development of diabetes-related 
complications is unclear; some studies found associations with peripheral neuropathy and 
retinopathy.34,35 Although the Framingham offspring study developed a simple predictive 
model, the use of a parental history of diabetes is challenging. Parental history of diabetes 
is asked in routine clinical settings, but its availability in research appears to be limited. A 
Canadian study that analyzed electronic medical records as primary care data evaluated the 
FDRM after excluding a parental history of diabetes (due to a lack of data),11 whereas another 
study used family history instead of a parental history of diabetes.19 In external validation 
data, data on parental history of diabetes was missing in 26.2% of subjects. In addition, 
in our study, no significant contribution of parental history of diabetes was observed in 
predicting diabetes. Also, like previous studies,5,25 the contribution of sex to diabetes 
prediction was not found to be significant. Instead, the modified FDRM showed a predictive 
power of over 0.8 for both sexes.

Certain factors should be considered when interpreting our results. First, we evaluated 
the validity of the modified FDRM in various data settings. Further studies are needed to 
determine the validity of the model in other populations. Second, misclassification bias may 
have occurred due to measurement error.

Our results have significant implications because we evaluated the usefulness of the FDRM 
and proposed a modified FDRM in consideration of utilization in the clinical setting. In 
addition, the validity of the modified model was assessed using various datasets in terms 
of temporal validation and external validation. In total, 37.9% and 36.8% of the population 
had prediabetes (HbA1c of 5.7–6.4%) in the derivation and validation datasets, respectively; 
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this variable made the largest contribution to the prediction of incident diabetes (Fig. 2). 
Therefore, for individuals with prediabetes, interventions to prevent or delay the onset of 
diabetes are required. In primary care, high-risk individuals should be targeted for counseling 
and interventions to prevent diabetes.

Taken together, our results show that the predictive performance of the FDRM was acceptable 
in a Korean general population, although lower than that in the Framingham offspring study. 
The discrimination ability of the FDRM was improved when the redefined features based 
on recent clinical criteria were added. However, adding clinical features to the modified 
FDRM did not improve model performance. Identification of high-risk individuals and early 
intervention may reduce the diabetes burden. Further studies are needed to confirm the 
validity of the diabetes-prediction models in various populations.
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Appendix 1. Example diabetes risk calculation using the modified FDRM and expanded clinical model
Parameter Modified FDRM Expanded clinical model

Beta coefficients Case 1 Beta coefficients Case 1
Intercept −4.7926 −6.7119
Age, yr (continuous) 0.00964 50 0.0159 50
HTN, ≥ 140/90 mmHg or antihypertensive drug use 0.2724 Present (0) 0.2139 Present (0) 
TG, ≥ 150 mg/dL 0.5917 Absent (0) 0.3256 Absent (0)
Hypo HDL-C, < 40 mg/dL for males and < 50 mg/dL for females 0.0500 Present (1) 0.2596 Present (1)
FBG, 100–125 mg/dL 2.0429 Absent (0) 1.8876 Absent (0)
HbA1c, 5.7–6.4% 1.9041 Present (1) 1.8972 Present (1)
BMI, kg/m2

< 25.0 0 Absent (0) 0 Absent (0)
25.0–29.9 0.2842 Present (1) 0.2727 Present (1)
≥ 30.0 0.6765 Absent (0) 0.6705 Absent (0)

log γ-GTP (continuous) 0.4906 2.398

FDRM = Framingham Diabetes Risk Model, HTN = hypertension, TG = triglyceride, HDL-C = high-density lipoprotein cholesterol, FBG = fasting blood glucose, 
HbA1c = hemoglobin A1C, BMI = body mass index, γ-GTP = γ-glutamyl transpeptidase. 

The probability of incident diabetes of a 50-year-old female with a BMI of 25.5 kg/m2, fasting blood glucose level of 99 mg/dL, HbA1c of 5.9%, TG of 91 mg/dL, 
HDL-C of 47 mg/dL, SBP/DBP of 118/89 mmHg, no anti-hypertensive drug use, and γ-GTP of 11 IU/L can be calculated as follows: 

Modified FDRM: 
Beta = −4.7926 + [age (50) × 0.00964] + [HTN (0) × 0.2724] + [high TG (0) × 0.5917] + [hypo HDL-C (1) × 0.0500] + [high FBG (0) × 2.0429] + [high HbA1c (1) × 
1.9041] + [25.0 ≤ BMI < 30.0 (1) × 0.2842] = −2.0723 
Probability =1/{1+exp[−(−2.0723)]} = 0.112, 11.2% 

Expanded clinical model: 
Beta = −6.7119 + [age (50) × 0.0159] + [HTN (0) × 0.2139] + [high TG (0) × 0.3256] + [hypo HDL-C (1) × 0.2596] + [high FBG (0) × 1.8876] + [high HbA1c (1) × 1.8972] + 
[log γ-GTP (2.3979) × 0.4906] + [25.0 ≤ BMI < 30.0 (1) × 0.2727] = −2.3110 
Probability = 1/{1 + exp[−(−2.3110)]} = 0.090, 9.0% 

For this case, the probabilities of developing diabetes according to the modified FDRM and expanded clinical model were estimated to be 11.2% and 9.0%, 
respectively.


	Validation of the Framingham Diabetes Risk Model Using Community-Based KoGES Data
	INTRODUCTION
	METHODS
	Outcome
	Assessment of prediction model
	Statistical analysis
	Ethics statement

	RESULTS
	DISCUSSION
	SUPPLEMENTARY MATERIALS
	Supplementary Table 1
	Supplementary Table 2
	Supplementary Table 3
	Supplementary Table 4
	Supplementary Table 5

	REFERENCES


