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Abstract: Background and Objectives: Multiple factors are associated with postoperative functional
outcomes, such as acute kidney injury (AKI), following partial nephrectomy (PN). The pre-, peri-, and
postoperative factors are heavily intertwined and change dynamically, making it difficult to predict
postoperative renal function. Therefore, we aimed to build an artificial intelligence (AI) model that
utilizes perioperative factors to predict residual renal function and incidence of AKI following PN.
Methods and Materials: This retrospective study included 785 patients (training set 706, test set 79)
from six tertiary referral centers who underwent open or robotic PN. Forty-four perioperative features
were used as inputs to train the AI prediction model. XG-Boost and genetic algorithms were used for
the final model selection and to determine feature importance. The primary outcome measure was
immediate postoperative serum creatinine (Cr) level. The secondary outcome was the incidence of
AKI (estimated glomerular filtration rate (eGFR) < 60 mL/h). The average difference between the
true and predicted serum Cr levels was considered the mean absolute error (MAE) and was used as a
model evaluation parameter. Results: An AI model for predicting immediate postoperative serum Cr
levels was selected from 2000 candidates by providing the lowest MAE (0.03 mg/dL). The model-
predicted immediate postoperative serum Cr levels correlated closely with the measured values
(R2 = 0.9669). The sensitivity and specificity of the model for predicting AKI were 85.5% and 99.7%
in the training set, and 100.0% and 100.0% in the test set, respectively. The limitations of this study
included its retrospective design. Conclusions: Our AI model successfully predicted accurate serum
Cr levels and the likelihood of AKI. The accuracy of our model suggests that personalized guidelines
to optimize multidisciplinary plans involving pre- and postoperative care need to be developed.

Keywords: artificial intelligence; acute kidney injury; postoperative renal function; partial nephrectomy

1. Introduction

Partial nephrectomy (PN) is the standard treatment for small renal masses when
malignancy is suspected [1]. Even for larger anatomically complex renal tumors, PN
is increasingly performed using newly developed surgical techniques such as surgical
robots [2]. Renal function is reported to decline after PN by approximately 10% immediately
after surgery, recover to some degree, and stabilize after three months [3,4]. Renal function
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is monitored by estimated glomerular filtration rate (eGFR, mL/min/1.73 m2), which is
based on serum creatinine (Cr) levels and is adjusted by age, sex, and ethnicity [5].

Acute kidney injury (AKI) is a potentially life-threatening adverse event of PN [6],
with incidence rates as high as 30% [7]. AKI may lead to a chronic state or even to
irreversible end-stage renal disease (ESRD) [8]. A nationwide survey estimated the annual
cost of inpatient care related to AKI itself as over 1% of the total medical expenses [9], not
considering the larger socioeconomic burden of ESRD. Immediate postoperative serum Cr
levels are considered a better indicator of long-term renal function than those at later time
periods, which can be influenced by other nonsurgical events/interventions (i.e., renal-toxic
drugs and infection) [10].

Factors associated with AKI following PN include medical factors (age, presence of a
solitary kidney, diabetes, hypertension, preoperative eGFR) and surgical factors (estimated
blood loss, anesthesia time, and warm ischemic time) [4,6,7,11]. For PN, the anatomical com-
plexity of the tumor is also an important factor of postoperative renal function, which can be
quantified by using nomograms, such as the preoperative aspects and dimensions used for
anatomical classification (PADUA) or the radius, exophytic/endophytic properties, near-
ness of the deepest portion of the tumor to the collecting system or sinus, anterior/posterior
descriptor, and the location relative to the polar lines (RENAL) nephrometry score [12,13].
In addition, the amount of functional nephron loss by tissue resection (excluding the
tumor itself) and the ischemia counts for the reduction of affected kidney function are
important measurements [14]. Therefore, it is challenging to predict postoperative renal
function and the onset, severity, and duration of AKI, given the numerous preoperative
and intraoperative factors affecting renal function and their complex interactions.

The three aspects of post-PN AKI risk factors (medical, surgical, and tumor) have
complex interactions [15]. In addition, AKI is a dynamic event with a spectrum of severities
that further complicate the formation of a prediction model [16]. In this regard, we hypoth-
esized that the data could be best assessed by artificial intelligence (AI) because of its ability
to consider many factors and the relative speed of these approaches. Recently, the use of ar-
tificial intelligence has revolutionized the field of healthcare by enabling accurate diagnoses
and predictive assessments of diverse ailments [17,18]. A machine learning (ML)-based
model was developed to predict AKI in patients with solitary kidneys who underwent
PN [19]. However, no prior studies have utilized AI to predict postoperative serum Cr
levels, which then predict AKI, determining its severity as well as “near-miss” events.
Herein, we report a model for predicting postoperative serum Cr levels and examine the
possibility of AKI using AI for technological innovations in PN patient care.

2. Methods
2.1. Study Design and Population

This study was approved by the Ethics Committee of Ewha Womans University
Medical Center (approval No. 2022-08-028) and was conducted in compliance with the
Declaration of Helsinki. The data were collected from a customized database and analyzed.
All methods were performed in accordance with the relevant institutional guidelines and
regulations. This study was conducted using data from patients who underwent PN for
suspected kidney cancer based on contrast-enhanced computed tomography (CT) scans and
were followed up for longer than one year regarding renal function and oncologic outcome.
Patients treated between May 2006 and May 2019 at participating institutions were screened.
The inclusion criteria were as follows: (1) patients who underwent PN for a solid enhancing
renal mass suspicious for renal cell carcinoma (cT1, ≤7 cm) diagnosed by contrast-enhanced
CT; and (2) patients who had preoperative and postoperative serum Cr levels and eGFR.
The exclusion criteria were as follows: (1) patients with a single kidney; (2) patients with
two or more tumors in one or both kidneys; and (3) patients without renal function follow-
up data for 12 months before and after surgery. PN was performed according to the same
protocol, including patient selection for comorbidities, surgical methods, and postoperative
patient care at the participating institutions. Finally, the imaging data and medical records
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from participating institutions were analyzed in 785 patients, and the analyzed data were
de-identified and transferred to the Core Laboratory located at Ewha Womans University
Medical Center for data integration and model development.

2.2. Data Collection
2.2.1. Preoperative Features

Age, sex, height, weight, preoperative blood urea nitrogen level, and serum Cr level
were retrieved from the Electronic Medical Record (EMR). eGFR was calculated based on
data obtained from the EMR using the abbreviated Modification of Diet in Renal Disease
(MDRD) equation. In this study, AKI was defined by the Kidney Disease: Improving Global
Outcomes (KDIGO) criteria as follows [20]: (1) an increase in serum Cr by 0.3 mg/dL or
more within 48 h and (2) an increase in serum Cr to 1.5 times the baseline or more within the
last seven days. Because of the retrospective nature of the study, the third criterion, urine
output of less than 0.5 mL/kg/h for six hours, was not used. AKI severity was defined
as follows: stage 1, serum Cr 1.5–1.9 times the baseline or a ≥0.3 mg/dL increase; stage 2,
2–2.9 times the baseline; stage 3, an increase in serum Cr to ≥4 mg/dL or the initiation of
renal replacement therapy. The anatomical complexity of the tumor was determined by
three urologists reviewing the preoperative contrast-enhanced CT images using the RENAL
nephrometry score, PADUA classification, and centrality index (C-index) [12,13,21], with
a slight recent modification to the PADUA system [22]. Resected and ischemic volumes
(RAIVs) of the kidneys were calculated as previously described [14].

2.2.2. Intraoperative Features

The type of surgery (open vs. robotic), estimated blood loss (EBL), total anesthesia
time (TAT), total operation time (TOT), and warm ischemia time (WIT) data were retrieved
from EMR and operation videos.

2.3. Model Development

We developed an ML model (SYN-PRF-AN. v1.0.0; Synergy A.I. Co., Ltd., Seoul,
Republic of Korea) to predict postoperative Cr levels using the XgBoost 1.7.3 (eXtreme
Gradient Boosting) algorithm [23], a gradient-descent algorithm used to search a group of
candidate solutions to find the most effective one. Using the aforementioned features (a
total of 44 features), the ML model was trained for the levels of immediate postoperative
serum Cr. The mean absolute error (MAE) was calculated by subtracting the model-derived
Cr value from the individual ground true value and was used as a reference for each model’s
fitness. Given the variety of forms and distribution of the data collected, we used a genetic
algorithm as a feature selection method, which selected the best “performing” subset
from the whole feature set by reinforcement learning. The performance was determined
by the model fitness, herein, MAE. We trained and validated our model with a 5-fold
cross-validation scheme, and the accuracy of the model was defined by averaging the
accuracies over the five tests performed in multiple rounds of cross-validation. The means
and confidence intervals were calculated from these multiple trials, where the models were
trained on a randomly split train-validation set. Among these models, we selected the
model with the best performance (the model with the lowest MAE) and tested it using the
hold-out test dataset. By addressing the threats posed by missing values, imbalanced data,
and the risk of overfitting, we aimed to ensure the reliability and generalizability of our
ML model’s performance in predicting postoperative Cr levels.

2.4. Outcome Measures

The primary endpoint was the difference between the model-predicted and the actual
immediate postoperative serum Cr levels. The secondary endpoint was the difference
between the predicted and actual incidences of AKI events. In addition, we assessed
the frequency of the features selected from all the input data using the models and the
correlation among the features included in the final model.
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2.5. Statistical Analysis

Demographic and perioperative data are presented as descriptive statistics. The
count data are expressed as percentages, and continuous data are presented as means
and standard deviations. A Bland–Altman plot (difference plot) was used to analyze the
agreement between the observed Cr values and model-predicted values. Student’s t tests
were used to compare the differences between the measured and model-predicted values.
For all statistical analyses, two-sided p-values < 0.05 were considered to indicate statistical
significance. All analyses were conducted using R [24].

3. Results

The initially collected data consisted of renal function follow-up data of 794 PN cases
for one year before and after surgery. After excluding nine cases with the exclusion criteria,
a training dataset (n = 706) and a test dataset (n = 79) were generated (Table 1). In this
study, 44 features known to be associated with postoperative renal function were selected
as inputs, including TAT, type of surgery, preoperative serum Cr levels, and eGFR. From
the original training set, we created 2000 new training sets (T1~T2000, each n = 706) by
sampling using the replacement method. An independent prediction model was generated
(M1 ~ M2000). The performance of each model was evaluated by comparing the MAE of
the predicted value with the ground truth Cr value (Figure 1).

Table 1. Baseline patient characteristics.

Data
Type Training Set Test Set p-Value

Number of Patients 706 79

Patient Physical
Status

Age (years) n 53.4 ± 12.7 50.2 ± 12.0 0.478
Sex (Male: Female) n 461:244 46:32

BMI (kg/m2) n 24.6 ± 3.6 25.2 ± 4.35 0.345
DM (Diabetes Mellitus) c 136 15

HTN (Hypertension) c 356 36
ASA score (1:2:3) n 1.52 ± 0.77 1.56 ± 0.64 0.642

Tumor
Radiology

Location (Left/Right) c 335/367 38/40
Depth (cm) n 1.74 ± 1.17 1.51 ± 0.94 0.124
Width (cm) n 1.09 ± 0.23 1.13 ± 0.24 0.246
Radius (cm) n 1.55 ± 0.87 1.34 ± 0.64 0.091

RAIV, resected volume (cm3) n 35.9 ± 38.5 28.7 ± 20.9 0.062
RAIV, ischemized volume (cm3) n 58.8 ± 75.9 42.2 ± 38.0 0.059

Surgery

Clamp Type
(zero ischemia: selective: full) c 110: 117: 440 11: 20: 44

Total Operation Time (TOT, min) n 177.0 ± 78.2 164.5 ± 75.6 0.134
Total Anesthesia Time (TAT, min) n 245.2 ± 86.3 237.6 ± 72.4 0.541
Warm Ischemia Time (WIT, min) n 21.3 ± 12.7 20.3 ± 11.7 0.633
Type of Surgery (Robot: Open) n 620: 38 73: 1

Estimated Blood Loss (EBL, mL) n 498.6 ± 715.4 376.3 ± 355.6 0.111
Conversion to Radical Nephrectomy

(True/False) n 10:427 0:37

Sliding clip renorrhapy (n) c 625 65
Use of reno-protective agents c 34 6
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Table 1. Cont.

Data
Type Training Set Test Set p-Value

PADUA
Score *

Polar location
(upper/lower: medium) c 407:270 38:39

Exophytic rate
(≥50%:<50%: endophytic) c 224:330:123 21:41:15

Rim location (lateral: medial) c 454:223 46:31
Renal sinus involvement

(absent not: present) c 400:277 39:38

Sinus/UCS involvement
(absent: sinus only: UCS only: both) c 392:277:7:1 38:38:1:0

Tumor size (cm) (≤4:4.1–7:>7) c 516:135:26 60:16:1
PADUA total (score) n 8.70 ± 1.77 9.06 ± 1.78 0.125

RENAL
Score

Radius (≤4:>4 but 7:>7) c 510:136:31 60:16:1
Exophytic properties

(≥50%:<50%: endophytic) c 228:326:122 24:39:14

Nearness to Sinus or UCS (mm)
(≥7:>4 but <7:≤4) c 249:108:320 22:15:40

Location to coronal plane
Anterior (A): Posterior (P): Neither (X) c 328:329:18 38:38:1

Location to polar line
(upper/lower: cross: across or midline) c 277:206:194 37:16:24

RENAL total (score) n 6.11 ± 2.11 6.60 ± 2.00 0.411

Centrality Index
(C-index)

x (cm) n 2.04 ± 2.20 2.84 ± 4.65 0.365
y (cm) n 2.90 ± 4.96 4.30 ± 7.01 <0.05
x2 + y2 n 41.8 ± 232.8 94.6 ± 239.1 <0.05

c
(√

x2 + y2
)

n 3.87 ± 5.19 5.78 ± 7.97 <0.05

r(d/2) n 1.53 ± 0.86 1.36 ± 0.61 0.123
C-index (score) n 2.72 ± 3.27 3.20 ± 4.06 0.241

Renal Function
Preop eGFR (mL/min/1.73 m2) n 87.1 ± 26.2 91.8 ± 22.8 0.289
Preoperative serum Cr (mg/dL) n 0.90 ± 0.28 0.85 ± 0.25 0.124

Postoperative day 0 serum Cr (mg/dL) n 1.01 ± 0.33 0.94 ± 0.28 0.223

BMI—body mass index; DM—diabetes mellitus; HTN—hypertension; ASA—American Society of Anesthesiol-
ogists; RAIV—resected and ischemic volume (preoperatively calculated); PADUA—Preoperative aspects and
dimensions used for an anatomical classification of renal tumors; UCS—urinary collecting system; RENAL—
Radius, exophytic/endophytic, nearness, anterior/posterior, location nephrometry schemes; *—Revised version
of PADUA score (the Simplified PADUA REnal nephrometry system) was used.

3.1. Feature Importance

The most commonly selected features in the model training stage were preoperative
eGFR, sex, and TAT (Figure 2a). The model with the lowest MAE in this study used the
following features: age, sex, height, tumor size, TAT, type of surgery, preoperative eGFR
and Cr levels, polar location, renal rim, sinus, and collecting system of PADUA scoring
(bold font in Figure 2a). We generated a Pearson correlation matrix of the features used in
the model with the lowest MAE (Figure 2b). The radiological features showed very high
intercorrelations, whereas the remaining clinical features were independent variables.

3.2. Model Performance

The Cr values predicted by the model correlated very well with the ground truth Cr
values (R2 = 0.9669) (Figure 2c). The MAE of the predicted serum Cr level of the model was
0.034 mg/dL. The distribution of the differences between the ground truth and predicted
values was similar to a normal distribution (Figure 2d). We compared the performance of
the models in predicting the development of AKI (postoperative eGFR < 60 mL/min). The
MAE of the AKI group was 0.038 mg/dL, which was not significantly different from that
of the whole population (0.034 mg/dL).
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(Cr, mg/dL) values (X-axis) and ground truth values (Y-axis). The vertical bar indicates the standard
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3.3. AKI Prediction

In the training set (n = 706), 69 (9.8%) AKI events occurred in the immediate postop-
erative period, as defined by the KDIGO criteria. Two events (2.8%) were stage 2 (serum
Cr 2–2.9 times the baseline), and the rest were stage 1 (serum Cr 1.5–1.9 times baseline or
≥0.3 mg/dL increase). In the test set (n = 79), there were three (3.8%) AKI events, all stage
1. The sensitivity and specificity of the model for predicting AKI were 85.5% and 99.7% in
the training set, and 100.0% and 100.0% in the test set, respectively (Figure 3a,b). Notably,
AKI staging predictions were 100% accurate (Figure 3c,d).
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3.4. Clinical Scenario

Given that the other factors in the model (age, sex, height, tumor size, type of surgery,
preoperative eGFR and Cr levels, and PADUA score) were fixed, we drew a 2D projection
plot of the predicted serum Cr levels by TAT as an adjustable feature (Figure 3e). The model
implied that (1) the relationship between postoperative Cr levels and TAT was nonlinear,
and (2) Cr levels were predicted to be stable when TAT < 150 min and increased when TAT
exceeded 150 min.

4. Discussion

Precision medicine, or predictive, preventive, personalized, and participatory (4P)
medicine, refers to individualized disease prevention and treatment. The average often
fails to represent the characteristics of a diverse or heterogenous group of individuals.
However, owing to technical limitations, with current evidence-based medicine, the average
values or overall trends of the target disease group are used to guide clinical decisions.
Recently, owing to innovations in the field of data science, more personalized analyses of
each patient are possible with large-scale genomic, proteomic, metabolomic, and clinical
databases. In this context, an AI-based approach has the potential to fully utilize the
rich data and enable true 4P medicine to be provided [25]. The use of AI in diagnosing
and predicting the prognosis of various diseases has indeed been extensively explored
in medical research [26–32]. In the clinical field of urology, more than 100 papers have
been published on the use of AI in clinical applications, such as in the diagnosis of various
urological malignancies in pathology, surgical outcomes of various cancers and urolithiasis,
treatment planning for radiotherapy, and drug selection [16,33].

Predicting the likelihood and severity of AKI after PN is challenging given the nu-
merous preoperative and intraoperative factors affecting renal function and their complex
interactions. Therefore, we used AI to build a model using patient age, sex, height, preop-
erative serum Cr and eGFR, type of surgery, renal tumor size, and complexity factors to
cooperatively predict Cr levels immediately after surgery. While previous studies have
shown that AKI events themselves can be predicted with acceptable accuracy, our model
provides the advantages of predicting the Cr levels and eGFR directly, estimating the
severity of AKI as low as a subclinical level of injury, and can be interpreted contextually.

Residual nephron volume and various other factors, such as age, preoperative renal
function, operation time, and tumor location (RENAL nephrometry score), can affect post-
operative outcomes [6]. Nomograms using conventional statistical methods predict the like-
lihood of postoperative AKI by combining preoperative medical or surgical factors [11,34].
Using these methods, residual renal function after PN could be predicted based only on
statistical trends, not at the individual patient level. In contrast, our model predicts Cr
levels on the immediate postoperative day for each individual, providing an exact eGFR
and accurately predicting AKI occurrence and severity. The statistical methodology that we
have used so far predicts the probability of AKI at a level of a few percent, so it is difficult
to provide specificity in how to prepare for that risk. However, the predicted Cr value
provided by our AI model is derived from the stochastic possibility and might be helpful
for actual clinical treatment, enabling a practical approach to decide the level of operation
and anesthesia to be performed and the management of various risk factors. Thus, our AI
model might maximize the chance of detecting AKI and administering interventions in a
timely manner, which may save patients with chronic kidney disease [10].

One of the advances in AKI patient care is the introduction of an electronic alert
(e-alert) system. The e-alert system reduces the real-world response time to changes in
Cr levels and the chances of further renal impairment [35]. Our model can be integrated
into an e-alert system that identifies patients at risk of acute damage. For example, we
present a clinical scenario in which the TAT threshold can be used to predict the occurrence
of postoperative AKI. While it is generally consistent with previous reports that eGFR
decreases during the duration of the surgical procedure [7], our model further indicates an
inflection point of TAT and AKI risk relationship. This information might be helpful in the
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operating room to customize the treatment strategies to avoid AKI. One plausible explana-
tion for this observed dependency lies in the potential impact of prolonged anesthesia and
surgical procedures on renal function. During lengthier operations, a cascade of factors
can come into play, including reduced renal blood flow, compromised renal perfusion, and
the occurrence of ischemia–reperfusion injury [36]. These mechanisms can collectively
contribute to postoperative kidney dysfunction, subsequently leading to elevated creatinine
levels. Consequently, a longer total anesthesia time indirectly affects renal function and
ultimately influences the changes observed in postoperative creatinine levels.

It is important, however, to acknowledge the intricacies inherent in the relationship
between total anesthesia time and postoperative creatinine elevation. This relationship is
multifaceted and influenced by a multitude of patient-specific factors, such as baseline renal
function, comorbidities, and surgical intricacies. Furthermore, various surgical techniques
and perioperative management practices can also contribute to the overall impact on renal
function and subsequent creatinine level alterations.

Notably, the PADUA system was most often selected between the RENAL and PADUA
scoring systems. Previous comparative studies have demonstrated that the RENAL and
PADUA scores have nearly equal predictive power [37,38]. However, in our study, PADUA
scoring components regarding renal rim, renal sinus, and urinary collecting system (UCS)
involvement seemed to be preferred by AI to enhance prediction performance. It might be
relevant to refer to the components of a recently modified version of PADUA, the Simplified
PADUA REnal (SPARE) classification [22]. Since the SPARE system no longer uses UCS
involvement, we combined renal sinus involvement and UCS involvement components
and scored them as 0, 1, 2, or 3 (absent, UCS only, sinus only, or both, respectively). Further
studies are necessary to validate our strategy of using the modified PADUA system.

A strength of our study is that we used a multi-institutional dataset of intraoperative
variables, and baseline features were not associated with the treatment outcomes. These
advantages enabled us to overcome the frequent “overfitting” issues encountered in AI-
based modeling in the clinical fields [39]. In general, all available inputs should be used
to build an ML model with the best performance, and the importance of features may be
“interpreted” afterward. In this study, we selected data inputs that have been associated
with postoperative renal function outcomes according to clinical experience and previous
studies, which resulted in a model of high compliance despite the relatively small number
of features.

However, we recognize that this study has several limitations. First, the study popu-
lation was relatively small and consisted mostly of Asian patients with limited variation
in body mass index. External validation may be necessary for populations from different
regions and ethnicities. Second, because this study was retrospective, patients with unfit
health conditions (uncontrolled diabetes or hypertension and advanced disease states) were
excluded. Therefore, it is difficult to claim that the features studied were associated with
postoperative AKI in all the patients. Third, for the association between anesthesia time
and postoperative renal function, there are other possible explanations for the inflection
points, such as surgical complexity and the amount of functional parenchyma removed or
the year of surgery, which were not assessed in this model. Fourth, our dataset presented
challenges including missing values, a limited number of samples, and the risk of overfit-
ting. Collecting data from multiple medical centers resulted in missing values, making the
dataset prone to evaluation as an imbalanced dataset. Additionally, the limited number of
samples increased the likelihood of overfitting, where the model becomes overly complex
and fails to generalize well to new data. To mitigate these challenges, we employed a
genetic algorithm for feature selection and implemented a 5-fold cross-validation scheme
to ensure robust evaluation. By carefully addressing these threats, we aimed to develop a
reliable and generalizable ML model for predicting postoperative Cr levels.

In the future, the presented model can be enhanced by various populations with racial
differences, hospital conditions, and the addition of our previously developed AI algorithm
that directly measures residual nephron volume following PN, as residual nephron volume
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after surgery has been shown to be useful in predicting the renal function preservation
effects of PN in advanced cases of T2 or higher disease [40].

5. Conclusions

We found that it is feasible to build a postoperative serum Cr level prediction model
using AI with a high accuracy for PN. Rather than dichotomously determining whether
AKI will occur, our AI-generated model directly provides immediate postoperative serum
Cr levels that can be utilized for timely intervention. Our results further indicate that
renal function is best preserved by testing multiple possible factors, such as extended
anesthesia time, and they provide multidisciplinary guidance for clinicians. Finally, this
study supports AI as an important tool for 4P medicine, where individualized, digitalized
patient care is realized, maximizing the socioeconomic output of healthcare.
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