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Backgrounds: Many studies have shown particulate matter has emerged as one

of the major environmental risk factors for diabetes; however, studies on the

causal relationship between particulate matter 2.5 (PM2.5) and diabetes based

on genetic approaches are scarce. The study estimated the causal relationship

between diabetes and PM2.5 using two sample mendelian randomization (TSMR).

Methods: We collected genetic data from European ancestry publicly

available genome wide association studies (GWAS) summary data through

the MR-BASE repository. The IEU GWAS information output PM2.5 from the

Single nucleotide polymorphisms (SNPs) GWAS pipeline using pheasant-derived

variables (Consortium = MRC-IEU, sample size: 423,796). The annual relationship

of PM2.5 (2010) were modeled for each address using a Land Use Regression

model developed as part of the European Study of Cohorts for Air Pollution E�ects.

Diabetes GWAS information (Consortium = MRC-IEU, sample size: 461,578) were

used, and the genetic variants were used as the instrumental variables (IVs). We

performed three representative Mendelian Randomization (MR) methods: Inverse

Variance Weighted regression (IVW), Egger, and weighted median for causal

relationship using genetic variants. Furthermore, we used a novel method called

MR Mixture to identify outlier SNPs.

Results: From the IVWmethod,we revealed the causal relationship between PM2.5

and diabetes (Odds ratio [OR]: 1.041, 95% CI: 1.008–1.076, P = 0.016), and the

finding was substantiated by the absence of any directional horizontal pleiotropy

through MR-Egger regression (β = 0.016, P = 0.687). From the IVW fixed-e�ect

method (i.e., one of the MR machine learning mixture methods), we excluded

outlier SNP (rs1537371) and showed the best predictive model (AUC= 0.72) with a

causal relationship between PM2.5 and diabetes (OR: 1.028, 95% CI: 1.006–1.049,

P = 0.012).

Conclusion: We identified the hypothesis that there is a causal relationship

between PM2.5 and diabetes in the European population, using MR methods.
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Introduction

Diabetes is a multifactorial disease caused by an interaction of

genetic and environmental components (1). Over the past decade

there has been a marked increase in its prevalence worldwide and

is thus becoming an increasing public health threat (2). Diabetes

imposes substantial financial and societal costs upon healthcare

systems and society at large (3).

Diabetes’s cause is multifactorial and includes genetic and

environmental components (1). Some well-established risk factors

for diabetes are obesity, sedentary lifestyle habits, an unhealthy

diet, family history and increasing age; in addition to these well-

recognized risk factors, research is currently investigating any

correlation between exposure to ambient air pollution and the

development of diabetes (1).

Particulate matter 2.5 (PM2.5), an air pollutant that has recently

drawn significant media attention for its harmful impacts on

respiratory and cardiovascular health, has attracted considerable

public attention in recent years (4). PM2.5 refers to fine particles

with diameters <2.5 micrometers that can penetrate deeply into

respiratory systems and enter bloodstream. Sources that emit this

pollution include vehicle exhaust emissions, industrial emissions,

combustion processes, etc.

Previous studies have investigated the association between

PM2.5 exposure and diabetes, and its related complications,

and intriguing results. Epidemiological studies conducted across

various populations have pointed to an association between

long-term PM2.5 exposure and an increased risk of diabetes

development—often through measures such as air pollution

exposure assessments, biomarker analyses and health outcome

evaluations (5, 6).

The exact mechanisms connecting PM2.5 exposure with

diabetes remain to be understood; it has been hypothesized

that it may induce systemic inflammation, oxidative stress and

endothelial dysfunction which all play key roles in its pathogenesis

(7). Furthermore, exposure has been linked to insulin resistance,

impaired glucose metabolism and changes in pancreatic beta-

cell function; all of which are fundamental aspects of diabetes

development (8).

According to previous studies, genetic polymorphism is an

important factor to consider when studying the effects of pollutants

on different physiological and immunological functions in humans.

For instance, a genetics-based study revealed that women with

GPX4-rs376102 AC/CC genotype are more susceptible to air

pollutants (9). Epidemiological studies conducted in various

populations have indicated a positive correlation between long-

term PM2.5 exposure and the risk of developing diabetes (5,

6). These studies have employed methods such as assessing air

pollution exposure, analyzing biomarkers, and conducting detailed

evaluations of health outcomes.

Regarding PM2.5 and diabetes, MR studies employ

genetic variants associated with exposure as instrumental

variables. Unaffected by confounders or reverse causation

effects, they allow researchers to estimate the causal impact

of PM2.5 exposure on diabetes risk estimation. By using

large-scale genetic data sets along with robust statistical

techniques, these MR studies may offer valuable insight into

any possible causal relationships between PM2.5 exposure and

diabetes risk.

Mendelian Randomization (MR), which utilizes genetic

variations as instrumental variables and SNP data from GWAS

to explore causal relationships, was applied to investigate PM2.5’s

possible link to diabetes (10). This approach reduces biases and

has profound implications for public health interventions and

preventive strategies. First, using genetic variants as instrumental

variables makes the method more reliable to examine causation

than traditional observational research methods; thus, minimizing

bias. Second, establishing the link between PM2.5 and diabetes

through multivariate analysis could have serious ramifications for

public health interventions and preventive measures designed to

lower air pollution and lessen diabetes risks among the general

population. Therefore, we created an alternative hypothesis

suggesting a causal relationship between PM2.5 and diabetes and

performed two-sample MR analysis to accept/reject it using data

available through GWAS (11, 12).

Methods

Study population and data sources

The genetic data for this study were retrieved from GWAS

summary data. The data is available in the MR-BASE repository.

The repository was created by the Medical Research Council

Integrative Epidemiology Unit, University of Bristol, for facilitating

TSMR created the repository made repository. The GWAS

outcomes depicted are insufficiently precise, which destabilize

the effective application of this analysis (12). The referred

repository (http://www.mrbase.org) comprises 11 billion SNP-

trait associations from 1,673 GWAS. The repository is updated

regularly (11).

The MRC-IEU UK Biobank genome wide association study

(GWAS) pipeline has been optimized to conduct GWAS quickly,

effectively, and uniformly on the imputed genetic dataset of the

full 500,000 from UK Biobank. Participants were aged between

40 and 69 years when they joined UK Biobank between 2006 and

2010. Each participant attended a baseline assessment at a center in

England (89%), Scotland (7%) and Wales (4%) (13).

The IEU GWAS information output PM2.5 from the SNPs

GWAS pipeline using pheasant derived variables consortiumMRC-

IEU. The annual relationship of PM2.5 (2010) were modeled for

each address using a Land Use Regression model developed as part

of the European Study of Cohorts for Air Pollution Effects. For

the outcome variable diabetes, the GWAS data were obtained from

theMRC-IEU. Diabetes GWAS information consortiumMRC-IEU

were used, and the genetic variants were used as the IVs.

The PM2.5 GWAS summary dataset (GWAS ID: ukb-b-

10817) included 423,796 participants of European ancestry. PM2.5

concentrations at participants’ home addresses were estimated

using a Land Use Regression (LUR) model (14). The diabetes

was diagnosed by doctor (output from GWAS pipeline using

pheasant derived variables from UK Biobank) GWAS summary

dataset (GWAS ID: ukb-b-10753) contained 461,578 individuals of

European descent, including 22,340 cases and 439,238 controls.
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FIGURE 1

Flow chart of Mendelian randomization.

The number of European participants with a PM2.5 phenotype

was 423,796, while that for diabetes in the same population was

461,578, suggesting predisposition of PM2.5 phenotype to diabetes.

The GWAS data was retrieved from the MR-BASE repository.

The total 9,851,867 PM2.5 SNPs were using a Bonferroni

statistical threshold (p < 5 × 10 – 8). Linkage disequilibrium

(LD) was used to identify the independent SNPs by using the R2

threshold <0.005. After adjusting for correlated SNPs, 7 of them

were selected as the genetic instruments for evaluating genetic

predisposition to being PM2.5. Once the genetic instruments were

selected, the final set of harmonized data were completed by

extracting information from the outcome GWAS matched to each

instrument SNP (Figure 1).

Assumptions of mendelian randomization

In this Study, the TSMR approached was used. Where causal

relationship between PM2.5 and diabetes are obtained by dividing

the instrument outcome associated by the instrument exposure

association of each SNP (Figure 2). These association ratios are then

combined using the IVWmethod for the main MR analysis (15).

MR estimate the valid, the instruments must satisfy three

key assumptions (Figure 2):

IV1. The instruments must be robustly associated with

the exposure.

IV2. The instruments must not be associated with any

confounders of the exposure-outcome relationship.

IV3. The instruments can only be associated with outcome via

the exposure and not via a different biological pathway

independent of the exposure.

Statistical analysis

To evaluate the causal directionality between PM2.5 and

diabetes, we performed three representative MR methods: IVW,

Egger, and Weighted median for causal relationship using genetic

variants (16, 17). Furthermore, we applied a mixture-of-experts

machine learning framework (MR Mixture) to improve the

performance of MR estimation after identifying outlier SNPs.

Since the assumption of MR can be violated due to SNPs that

have horizontal pleiotropy, there were various attempts to develop
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FIGURE 2

Flow diagram of two-sample Mendelian randomization.

TABLE 1 Description of GWAS consortium used for exposure and outcome.

Variable Phenotype Population Sex Sample size
(cases)

Unit Consortium

Exposure Particulate Matter (PM2.5)
b European All 423,796 SD MRC-IEUa

Outcome Diabetes diagnosed by doctor European All 461,578 (22,340) Log odds MRC-IEUa

aMRC-IEU, MRC integrative epidemiology unit.
bUK BIOBNANK ID 24006: Output from GWAS pipeline using Pheasant derived variables from UK Biobank Consortium.
∗Standard deviation.

methods lowering level of horizontal pleiotropy (18). Machine

learning algorithms can help identify potential pleiotropic variants

(genetic variants that affect multiple traits), and assess their

impact on multivariate analysis. Furthermore, machine learning

approaches may assist in creating genetic risk scores or polygenic

risk scores to capture the combined effects of multiple genetic

variants. Machine Learning methods commonly utilized in MR

include regularized regression and mixture-of-experts machine

learning framework (MR Mixture). They can help with variable

selection, predictionmodeling and exploring complex relationships

among genetic instruments, exposures and outcomes (19). The

MR Mixture is one of automatic model selection based on

Random Forest algorithm to select the most appropriate method

across a range of different MR strategies. MR strategies contains

the combination of two instrument selections (Top hits, Steiger

filtering) to identify outlier and fourteen MR estimation method

(IVW fixed effects meta-analysis, IVW random effects meta-

analysis, Egger fixed effects, Egger random effects, Rucker point

estimate, Rucker mean of the jackknife, Rucker median of the

jackknife, simple median, weighted median, penalized weighted

median, simple mode, weighted mode, each weighted with or

without the assumption of no measurement error in the exposure

estimates) (20).

The fixed effects meta-analysis assumes that the only source

of differences between relationship across the studies is due to

sampling variation. In the MR context this translates to each

SNP exhibiting no horizontal pleiotropy. Gene must be valid

instruments. If all SNPs exhibit horizontal pleiotropy, then the

effect estimate is asymptotically unbiased, but the standard error

will be overly precise. Uses weights that assume the SNP-exposure

association is known, rather than estimated, with no measurement

error (i.e., known as the NOME assumption). Causal effect

relationship from the IVW approach exhibit weak instrument bias

whenever SNPs used as IVs violate the NOME assumption, which

can be measured using the F-statistic with IVWmethods (21, 22).

The leave-one-out sensitivity method was performed to

compute whether random relationship were affected by an

individual genetic locus. For further interpretation, scatterplots,

forest plots, and funnel plots were also produced (11).

In this study, all MR analyses were calculated using R packages

in R version 4.1.1 from the R Core Team, based in Vienna, Austria.

Results

The inclusion of sample sizes in Table 1 indicates the number

of individuals from whose genetic data and pertinent information

were acquired for each dataset. These datasets are critical for

undertaking Mendelian randomization (MR) analyses, which use

genetic variants linked with an exposure (in this case, PM2.5)

to assess the causal impact on an outcome of interest (in

this case, diabetes, and its associated risk factors). For genetic

instruments, PM2.5, and diabetes GWAS data were obtained for

European ancestry.

The fact that the GWAS data were obtained for people of

European ancestry implies that the findings and genetic tools
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TABLE 2 Causal relationship between particulate matter (PM2.5) and diabetes.

Exposure Outcome Method Nsnpa β SEb OR (95%
CI)c

P

Particulate

Matter (PM2.5)

Diabetes (diagnosed

by doctor)

IVWd 7 0.040 0.017 1.041

(1.008–1.076)

0.016

MR Egger 7 0.016 0.057 1.017

(0.906–1.140)

0.791

Weighted median 7 0.034 0.017 1.035

(1.001–1.070)

0.040

Fixed-Effect IVW 6 0.027 0.01 1.028

(1.006–1.049)

0.011

aNsnp, number of (single nucleotide polymorphism, SNP).
bSE, standard error.
cOR, odd ratio (95% confidence intervals).
dIVW, inverse variance weight.

FIGURE 3

Scatter plots of genetic associations with particulate matter 2.5 against the genetic associations with diabetes. The slopes of each line represent the

causal association for each method. The blue line represents the IVW estimate, the green line represents the weighted median estimate, and the dark

blue line represents the MR-Egger estimate.

found in this investigation are most applicable and relevant to

people of European heritage. Because genetic architecture and allele

frequencies change between populations, it is critical to consider

ancestry while conducting MR analysis or interpreting the results.

The Table 2 shows the IVW method, we revealed the causal

relationship between PM2.5 and diabetes (Odds ratio [OR]: 1.041,

95% CI: 1.008–1.076, P = 0.016), and the finding was substantiated

by the absence of any directional horizontal pleiotropy through

MR-Egger regression (β = 0.016, P = 0.687). From the IVW

fixed-effect method (i.e., one of the MR Mixture methods),

we excluded outlier SNP (rs1537371) and showed the best

predictive model (AUC = 0.72) with a causal relationship

between PM2.5 and diabetes (OR: 1.028, 95% CI: 1.006–1.049,

P = 0.012).
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FIGURE 4

Forest plot of the causal e�ects of particulate matter 2.5 associated SNPs on diabetes.

Based on the two-sample MR randomization, it was revealed

that a causal association between PM2.5 and diabetes existed. The

MR slopes of the plots for the IVW andweightedmedian regression

indicated positive direction plots and were statistically significant

suggesting a causal relationship between the measurement variable

SNP PM2.5 on diabetes (Figure 3). On the contrary, the MR-

Egger regression indicated that the slope (causal effect) had no

significant relationship with the outcome. This assumption suggests

that there might be horizontal pleiotropy or significant outliers that

violate the findings of the IVW, and weighted mean regarding the

relationship between genetic predispositions to PM2.5 and diabetes.

The Figure 3 substantiated the assumption as the effect size on

SNP-based outcome was lowest for MR-Egger.

MR analysis identified an outlier with the estimated causal

effects suggested having been >2 SDs off the average causal effect

that was obtained from the 7 PM2.5 SNPs. Furthermore, the MR

size had an effect on the PM2.5’s association with diabetes based

on the all IVW and all MR-Egger relationship, indicating varied

MR effects for these two measurements (Figure 4). However, all the

measurements involving both MR-Egger and IVW relationship for

MR-leave-one-out revealed a stronger association between PM2.5’s

and diabetes. Such assumptions were ruled out when one of the

SNPs were left out from the analysis (Figure 5). The respective SNP

could be considered a potential outlier for the relationship between

PM2.5 and diabetes. On the other hand, the funnel plot (Figure 6)

showed thatMR-Egger produced relatively more asymmetry for the

effects of PM2.5 on diabetes compared to IVW.

Discussion

This study explored the causal relationship between PM2.5 and

diabetes as a function of TSMR using suitable platforms. The MR-

Egger estimate reflected the absence of horizontal pleiotropy on

diabetes as its intercept was positive but non-significant (β = 0.016,

P = 0.687). Genetically predisposed PM2.5 was significantly related

to the increased risk of diabetes as depicted by the IVW estimation

(Odds ratio [OR]: 1.041, 95% CI: 1.008–1.076, P = 0.016).

MR is gaining high popularity in epidemiological studies

because it helps to establish whether a modifiable exposure has

a causal relationship with the pathophysiology of a disease (16).

Also, MR is increasingly used due to the availability of GWAS

that provides an opportunity to use a large number of genetic

variants in the referred analysis. If the variants in totality could

explain a larger proportion of variance in the exposure variable,

it would lead to more precise relationship of the causal effects.
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FIGURE 5

Leave one out the sensitivity analysis plot-the causal e�ect of particulate matter 2.5 on diabetes.

The precise estimation would increase the reliability of the cause-

effect relationships with the referred variables. On the contrary,

analysis conducted with an enlarged set of genetic variants is

more likely to incorporate invalid instrument variables due to the

violations of the assumptions of MR. One such set of variants

are those causing horizontal pleiotropy. This is in contrast to

vertical pleiotropy, where two traits that are biologically related

are correlated irrespective of the gene or variant that is responsible

for the effect. The study explored whether genetically predisposed

PM2.5 significantly increases the risk of diabetes.

PM2.5 acts as a mediator linking endothelial dysfunction and

insulin resistance. Alterations in endothelial function have been

implicated in reduced peripheral glucose uptake (18). In addition,

tumor necrosis factor (TNF-a), interleukin-6 (IL-6), resist in, and

leptin levels were elevated with PM2.5 exposure, in keeping with a

proinflammatory insulin-resistant state.

In addition, PM exposure results in elevations in prothrombotic

adipokines such as plasminogen activator inhibitor 1 and increased

circulation adhesion molecules such as intracellular adhesion

molecule-1 and E-selectin.

Sun et al. also reported experimental evidence of mouse model

(23). PM2.5 exposure exaggerates insulin resistance and visceral

inflammation and adiposity, so these findings proved a new link

between air pollution and type 2 DM. PM exposure was associated

with impairment in phosphatidylinositol 3-kinase–Akt–endothelial

nitric oxide synthase signaling in the aorta and decreased

tyrosine phosphorylation of IRS-1 in the liver, providing evidence

for abnormal insulin signaling in the vasculature. In addition,

Liu et al., also suggested that PM2.5 -mediated alterations in

glucose homeostasis and PM2.5-mediated inflammation in visceral

adipose tissue (24). Toll-like receptors (TLRs) and nucleotide

oligomerization domain receptors (NLRs) can be mediated as

particular matter sensors. Long et al. studied systemic increase in

IL-6 may play an important role in the deterioration of the type

2 DM via IL-6/signal transducer and activator of transcription 3

(STAT3)/suppressor of cytokine signaling (SOCS) pathway in liver

after short-term exposure to PM2.5 (25).

Evidence from epidemiological studies, combined with

animal and toxicologic experiments, supports the notion that

inflammatory responses to environmental factors are the key

mechanism that helps explain the emerging epidemic in metabolic

diseases like diabetes. Both genetic and environmental factors

undoubtedly play a role, in the emergence of such diseases but the

contributions of the physical and social environment determining
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FIGURE 6

Funnel plot showing the relationship between the cause-e�ect of particulate matter 2.5 and diabetes.

susceptibility may also be critical. Nontraditional factors such

as air pollution that are pervasive in the urban environment

may together with other dominant factors provide synergism in

accelerating the propensity for T2DM.

Future studies are warranted to gain greater insight into

the molecular mechanisms involved (e.g., intermediary, and

intracellular signaling pathways), the responsible pollutants (e.g.,

components, sizes/sources), the role of combined exposures to

mixtures (e.g., ozone plus PM), and susceptibility factors (e.g.,

gene-environment interactions, vulnerable populations).

The purpose of a machine-learning application is different

by its field or data but mainly could be used for improving

performance of a predictive model. However, despite the popular

use of machine learning, prior studies show that applying machine

learning to GWAS is still rare. In the current study, MR mixture

based on machine-learning algorithm showed its potential for

making higher performance in estimation and lowering bias in

estimates. This is because it was possible not only to improve

the prediction of causal estimates but also to select important

instrumental variables through automatic data-driven methods.

In addition, MR mixture turned out to predict unbiased causal

estimates with higher power compared to existing traditional

methods (20). Although further evidence needs to be accumulated

in future, we could suggest that machine-learning applications

for GWAS (e.g., MR mixture) had quite a degree of feasibility

and efficiency.

Strengths and limitations

The main strength of this study is large-scale GWAS data was

used for the MR analysis. The large sample size allowed for reliable

causal effect estimation, assessing the consistency of associations

across different MR methods. The MR-Egger approach reduced

the bias due to reverse causality and confounding. The IVW

coupled withMR-Egger increased the reliability and reproducibility

of the study across different comorbid conditions related to

diabetes. Second, we robustly confirmed the causal relationship

between PM2.5 and diabetes through traditional MR estimation

and machine-learning MR estimation. Traditional methods alone

cannot thoroughly exclude the potential possibility of violating

the horizontal pleiotropy assumption. It takes a lot of effort to

find the best method among several MR strategies that had the

most predictive and lower level of horizontal pleiotropy for the

data. The data-driven MR-Mixture method can automatically find

the best combination of the outlier filtering method and the

MR estimation method based on the machine-learning method.

Both traditional and MR-mixture methods showed a prominent
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causal relationship between PM2.5 and diabetes, and we found

that the estimation of causal effects could be improved when

outliers were removed from traditional methods based on the

MR-Mixture method.

The major limitation of this study is that we only used the

data from individuals of European descent. Therefore, it should

be cautious about generalizing our findings to other populations.

Another limitation of this study was the small sample size that

might have increased the risk of Type-I error. Also even if diabetes

was diagnosed by a doctor in UKB platform, it is not well known to

determine what the diagnostic criteria were type 1 diabetes or type

2 diabetes.

Moreover, no power estimations were conducted for

selecting the sample size, which might have further reduced the

reproducibility of the findings. Nevertheless, the limited availability

of population-specific information on genetic associations, genetic

instruments tend to show poor statistical power. On the contrary,

different MR frameworks substantiated the causal relationship

between the genetic predisposition of being PM2.5 and diabetes

after removing the outliers. Such measures increased the reliability

and validity of the findings of our study.

Conclusion

We identified the hypothesis that there is a causal relationship

between PM2.5 and diabetes in the European population, using MR

methods. Therefore, the findings from this study discovered that

person exposed to more PM2.5 was strongly related to higher risk

of diabetes in European population.
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