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Abstract: Noninvasive risk stratification is a challenging issue in the management of patients with
nonalcoholic fatty liver disease (NAFLD). This study aimed to identify multiomics-based predictors
of NAFLD progression, as assessed by changes in serial FibroScan-aspartate aminotransferase (FAST)
scores during lifestyle modification. A total of 266 patients with available metabolomics and geno-
typing data were included. The follow-up sub-cohort included patients with paired laboratory and
transient elastography results (n = 160). The baseline median FAST score was 0.37. The PNPLA3
rs738409 genotype was significantly associated with a FAST score > 0.35. Circulating metabolomics
significantly associated with a FAST score > 0.35 included SM C24:0 (odds ratio [OR] = 0.642; 95%
confidence interval [CI], 0.463–0.891), PC ae C40:6 (OR = 0.477; 95% CI, 0.340–0.669), lysoPC a C18:2
(OR = 0.570; 95% CI, 0.417–0.779), and tyrosine (OR = 2.743; 95% CI, 1.875–4.014). A combination of
these metabolites and PNPLA3 genotype yielded a c-index = 0.948 for predicting a FAST score > 0.35.
In the follow-up sub-cohort (median follow-up = 23.7 months), 47/76 patients (61.8%) with a baseline
FAST score > 0.35 had a follow-up FAST score ≤ 0.35. An improved FAST score at follow-up was sig-
nificantly associated with age, serum alanine aminotransferase, and tyrosine. In conclusion, baseline
risk stratification in NAFLD patients may be assisted using a multiomics-based model. Particularly,
patients with increased tyrosine may benefit from an earlier switch to pharmacologic approaches.

Keywords: steatosis; steatohepatitis; nonalcoholic steatohepatitis; risk stratification; prediction;
multiomics; genomics; metabolomics; weight change; outcome

1. Introduction

The prevalence of nonalcoholic fatty liver disease (NAFLD) is estimated at ~25%
worldwide [1]. A subset of these patients will develop nonalcoholic steatohepatitis (NASH),
a subset at an elevated risk of disease progression and thereby subject to new pharma-
cotherapies [2]. Because NASH is estimated to affect up to 20% of individuals with NAFLD,
a large number of NASH patients could eventually develop advanced liver disease, or even
require liver transplantation [3].

A liver biopsy has been the gold standard for the diagnosis of NASH [4]. However,
the need for alternative noninvasive tests or biomarkers has been growing owing to the
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imperfect nature of biopsy, which considers the invasiveness, risk of complications, cost,
sampling error, and inter-/intra-observer variability [5]. Furthermore, identification of
patients with high-risk NASH (NAFLD activity score ≥ 4 and significant [≥F2] liver
fibrosis) has been a pressing issue in clinical trial eligibility because those patients are
considered to be at greatest risk of disease progression and liver-related morbidity and
mortality [2,6]. In that context, the FibroScan-aspartate aminotransferase (FAST) score
has been developed recently for noninvasive identification of high-risk NASH based on
aspartate aminotransferase (AST), liver stiffness measurement (LSM), and a controlled
attenuation parameter (CAP) [7]. In addition, multiomics approaches have been widely
investigated for genotype–phenotype correlation, the development of biomarkers, and the
identification of therapeutic targets [8].

Although there are various ongoing clinical trials, no pharmacologic agent has been
approved for NASH yet, and lifestyle modification is the mainstay of management for
most patients with NAFLD [9]. To date, there are limited data on integrative methods for a
noninvasive risk stratification of NAFLD and early identification of individuals who may
benefit from lifestyle modification. Filling in these knowledge gaps could provide tailored
practical information on noninvasive risk stratification of NAFLD and early application of
upcoming pharmacotherapies. Hence, we aimed to explore multiomics-based predictors of
baseline risk stratification and NAFLD progression based on changes in the serial FAST
scores during lifestyle modification in a real-world setting.

2. Methods
2.1. Study Participants

We constructed a single-center prospective cohort of Korean patients with NAFLD
who had been referred to our liver clinic since October 2016 (see Supplementary Methods).
Patients were either referred by their primary care providers or referred from interdepart-
mental consultations inside our institution. The following exclusion criteria were applied:
(i) age <18 years, (ii) hepatitis B or C virus infection, (iii) presence of other chronic liver
diseases (e.g., autoimmune hepatitis, primary biliary cholangitis or primary sclerosing
cholangitis, drug-induced liver injury or steatosis, Wilson’s disease, and hemochromatosis),
(iv) excessive alcohol consumption (>30 g/day in men and >20 g/day in women) [4], and
(v) diagnosis of malignancy.

This was a retrospective analysis from our prospectively enrolled cohort. A total
of 423 NAFLD patients were enrolled between October 2016 and December 2020. Of
these, 266 patients with available metabolomics and genotyping data were included in
the cross-sectional analysis. All study participants were consulted for dietary and exercise
education at baseline according to practice guidelines (see Supplementary Methods). A
subset of patients was identified with one or more follow-up visit(s) until the closure date
for data analysis (31 March 2022), and those with paired laboratory and vibration-controlled
transient elastography (VCTE) results (n = 160, “follow-up sub-cohort”) were included in
the longitudinal analysis.

The present study was conducted in accordance with the ethical guidelines of the
World Medical Association’s Declaration of Helsinki and was approved by the institutional
review board of Ewha Womans University Mokdong Hospital (approval no.: EUMC 2016–
07–052; approval date: 8-30-2016). Written informed consent was obtained from each
participant in the cohort.

2.2. Baseline Clinical and Laboratory Assessments

Initial assessments included anthropometric measurements, routine laboratory tests,
body composition analysis, and VCTE. Body composition was assessed using bioelectrical
impedance analysis (InBody 720 body composition analyzer, InBody, Seoul, Korea) (see
Supplementary Methods). VCTE procedures were performed after fasting for at least 3 h
using the FibroScan 502 Touch device equipped with both M and XL probes (Echosens,
Paris, France). Study participants were placed in the supine position with their right arm
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fully abducted. Upon obtaining 10 valid measurements, final values of CAP (dB/m) and
LSM (kPa) were recorded as the median values of 10 consecutive valid measurements.
LSM values were considered unreliable when the interquartile range (IQR)/median was
higher than 30% [10]. All VCTE procedures were performed by research personnel who
were trained and certified by Echosens and who were blinded to the clinical and laboratory
details of the participants at the time of the examination.

2.3. Metabolomics and Genotyping

Targeted metabolomics were assessed using a Triple Quadrupole 6500 plus system
(AB Sciex, Framingham, MA, USA), which consists of a SHIMADZU Nexera (Shimadzu
Corporation, Kyoto, Japan) ultra-high performance liquid chromatography coupled with
a hybrid triple quadrupole/linear ion trap mass spectrometer. A total of 180 metabolites
were quantified using an Absolute IDQ®p180 kit (BIOCRATES Life Science AG, Innsbruck,
Austria). The kit allowed the concurrent high-throughput detection and quantification of
metabolites in plasma samples. Genotyping was performed for several known risk alleles
for NAFLD as follows: PNPLA3 rs738409 C>G, TM6SF2 rs58542926 C>T, SREBF2 rs133291
C>T, MBOAT7-TMC4 rs641738 C>T, and HSD17B13 rs72613567 adenine insertion (A-INS)
single-nucleotide polymorphisms (see Supplementary Methods).

2.4. Statistical Analysis

The statistical significance of differences between groups was evaluated using the
independent t-test or Mann–Whitney U test for continuous variables and the chi-square test
for categorical variables. Relevant risk factors for the outcome were explored with logistic
regression analysis using baseline clinical characteristics, metabolomics, and genotyping
data (see Supplementary Methods). To identify significantly different metabolites, p-
values were adjusted for multiple testing using the Benjamini–Hochberg procedure for
conceptualizing the false discovery rate (FDR). Multiple logistic regression was used to
investigate the independent factors determining the risk groups according to the FAST
score. A multivariable model was constructed through stepwise selection among candidate
risk factors with p < 0.05 in the univariable analysis. Model performance was presented
using the concordance index (c-index) and their 95% confidence intervals were estimated
using 1000 bootstrap samples. Hosmer–Lemeshow goodness-of-fit tests were conducted as
calibration statistics.

For the follow-up sub-cohort, the mean difference in changes in clinical parameters
according to the level of weight change during the follow-up period was tested using an
analysis of covariance (ANCOVA). Additionally, among patients with baseline a FAST
score > 0.35, a multiple logistic regression model and mediation analysis were performed
to evaluate the determining factors associated with a categorical change in the FAST score
to a low risk (≤0.35). ANCOVA and mediation analysis were assessed by adjusting for sex,
age, follow-up duration, baseline weight, and baseline clinical parameters.

All statistical tests were two-sided with p < 0.05 as the threshold for statistical sig-
nificance. The SAS 9.4 (SAS Institute, Cary, NC, USA) and R 3.6.2 software packages (R
Foundation for Statistical Computing, Vienna, Austria) were used for all statistical analyses.

3. Results
3.1. Baseline Characteristics

The baseline FAST score was 0.37 (IQR, 0.14–0.53). Compared with patients with a
lower FAST score (≤ 0.35, n = 126 [47.4%]), patients with a higher score (>0.35, n = 140
[52.6%]) showed higher BMI, waist circumference, glycometabolic parameters, liver injury
markers, CAP (305 vs. 271 dB/m), and LSM (7.7 vs. 4.6 kPa), and more frequently had
metabolic syndrome (65.0% vs. 42.9%) and sarcopenia (38.6% vs. 20.7%); all p-values <0.05
(Table 1). There was no significant difference in the minor allele frequency of each genotype
between the two groups (FAST score ≤ 0.35 vs. > 0.35; Table 1).
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Table 1. Baseline characteristics.

Total (N= 266) FAST≤0.35
(n = 126, 47.4%)

FAST > 0.35
(n = 140, 52.6%) p

Age 49.6 ± 14.3 50.3 ± 12.7 49.1 ± 15.7 0.478
Sex (male) 158 (59.4%) 77 (61.11%) 81 (57.8%) 0.589

BMI (kg/m2) 27.2 ± 3.6 26.1 ± 3.1 28.3 ± 3.8 <0.001
Waist circumference (cm) 93.4 ± 9.9 91.5 ± 8.9 95.4 ± 10.5 0.002

Metabolic syndrome 145 (54.5%) 54 (42.9%) 91 (65.0%) 0.001
Hypertension 83 (31.2%) 33 (26.19%) 50 (35.71%) 0.094

Diabetes 61 (22.93%) 17 (13.39%) 44 (31.43%) 0.001
Dyslipidemia 37 (13.9%) 21 (16.67%) 16 (11.43%) 0.228
AST (IU/L) 38 (26–60) 26 (21–32) 56.5 (43.5–76) <0.001
ALT (IU/L) 52 (31–94) 31 (20–48) 88 (57–120.5) <0.001
GGT (IU/L) 44 (27–72) 32 (22–52) 59 (36–89) <0.001

Glucose (mg/dL) 103 (96–115) 100 (95–108) 105.5 (97.5–123) 0.002
Cholesterol (mg/dL) 195.8 ± 45.5 200 ± 47.97 191.99 ± 42.87 0.149

TG (mg/dL) 142.5 (100–201) 129 (84–186) 152 (113–213.5) 0.005
HDL (mg/dL) 47.2 ± 12.2 49.7 ± 13.2 44.9 ± 10.8 0.002
LDL (mg/dL) 122.7 ± 40.2 124.5 ± 43.4 121.0 ± 37.1 0.484

Insulin (µIU/mL) 11.9 (7.9–18.9) 9.1 (6.4–13.8) 15.3 (10.4–25.8) <0.001
Uric acid (mg/dL) 5.9 ± 1.5 5.8 ± 1.4 6.0 ± 1.6 0.261

FFA (mmol/L) 819.1 ± 314.5 774.8 ± 339.3 858.8 ± 286.1 0.048
WBC (103/µL) 6.73 ± 1.72 6.37 ± 1.68 7.05 ± 1.70 0.002

Hemoglobin (g/dL) 14.7 ± 1.6 14.7 ± 1.5 14.7 ± 1.7 0.981
Platelet (103/µL) 244.3 ± 64.0 245.8 ± 55.8 244.9 ± 69.1 0.910

Serum creatinine (mg/dL) 0.91 ± 0.18 0.92 ± 0.19 0.90 ± 0.17 0.237
HOMA-IR 3.2 (2.0–5.4) 2.3 (1.6–3.6) 4.2 (2.8–7.2) <0.001

SMI_wt 28.0 ± 3.9 28.8 ± 3.6 27.2 ± 4.0 0.001
Sarcopenia 74 (29.8%) 25 (20.7%) 49 (38.6%) 0.002

Fat% 32.4 ± 7.9 30.6 ± 7.7 34.1 ± 7.7 <0.001
Handgrip strength (kg) 34.8 ± 10.9 35.1 ± 10.7 34.4 ± 11.1 0.688

TSH (mIu/L) 2.1 (1.3–3.1) 2.1 (1.4–3.2) 2.1 (1.3–3.1) 0.695
Free T4 (ng/dL) 1.3 (1.2–1.4) 1.3 (1.2–1.4) 1.3 (1.1–1.4) 0.093

HbA1c 5.9 (5.5–6.6) 5.8 (5.3–6.2) 6.0 (5.6–6.9) 0.009
CAP (dB/min) 289.3 ± 43.5 271.4 ± 39.6 305.4 ± 40.6 <0.001

LSM (kPa) 6.2 (4.6–8.6) 4.6 (3.8–6.1) 7.7 (6.1–10.2) <0.001
FAST score 0.37 (0.14–0.53) 0.14 (0.09–0.25) 0.52 (0.43–0.64) <0.001

PNPLA3 rs738409 C/C 61 (23.3%) 36 (28.8%) 25 (18.3%) 0.129
C/G 130 (49.6%) 58 (46.4%) 72 (52.5%)
G/G 71 (27.1%) 31 (24.8%) 40 (29.2%)

TM6SF2 rs58542926 C/C 222 (84.7%) 108 (86.4%) 114 (83.2%) 0.534
C/T 39 (14.9%) 17 (13.6%) 22 (16.1%)
T/T 1 (0.4%) 0 (0%) 1 (0.7%)

MBOAT7 rs641738 C/C 154 (59.3%) 75 (60.5%) 79 (58.1%) 0.729
C/T 95 (36.5%) 45 (36.3%) 50 (36.8%)
T/T 11 (4.2%) 4 (3.2%) 7 (5.1%)

SREBF2 rs133291 C/C 84 (32.1%) 39 (31.2%) 45 (32.9%) 0.950
C/T 142 (54.2%) 69 (55.2%) 73 (53.3%)
T/T 36 (13.7%) 17 (13.6%) 19 (13.9%)

HSD17B13 rs72613567 −/− 137 (52.3%) 69 (55.2%) 68 (49.64%) 0.665
−/A 103 (39.3%) 46 (36.8%) 57 (41.61%)
A/A 22 (8.4%) 10 (8%) 12 (8.76%)

The continuous variables are expressed as the means ± standard deviations (normally distributed) or medians
(interquartile ranges) (not normally distributed), and the differences between groups were evaluated using
an independent t-test or Mann–Whitney U test, respectively. Categorical data were expressed as the number
(%), and the differences between groups were determined using the χ2 test. Abbreviations: BMI, body mass
index; AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT, γ-glutamyl transpeptidase; TG,
triglyceride; HDL, high-density lipoprotein; LDL, low-density lipoprotein; FFA, free fatty acid; WBC, white blood
cell; HOMA-IR, homeostasis model assessment of insulin resistance; SMI_wt, weight-adjusted skeletal muscle
index; fat%, fat percentage; TSH, thyroid stimulating hormone; HbA1c, glycated hemoglobin; CAP, controlled
attenuated parameter; LSM, liver stiffness measurement; FAST, FibroScan-aspartate aminotransferase.
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3.2. Risk Factors for Higher FAST Score (>0.35) at Baseline

In univariable analysis, significant risk factors for a higher FAST score (>0.35) included
the following (Table 2): higher values of BMI, waist circumference, ALT, GGT, fasting blood
glucose, insulin, WBC, HOMA-IR, and fat%; lower values of HDL-cholesterol and SMI_wt;
and the presence of metabolic syndrome and diabetes. Among genotypes, only PNPLA3
rs738409 was significantly associated with a higher FAST score.

Table 2. Clinical characteristics and genetic risk factors associated with high-risk NASH (FAST
score > 0.35).

Variable OR 95% CI p

Age 0.99 0.98–1.01 0.482
Sex (male) 1.14 0.70–1.87 0.590

BMI 1.20 1.11–1.30 <0.001
Waist circumference 1.04 1.02–1.07 0.003
Metabolic syndrome 1.57 1.27–1.93 <0.001

Hypertension 1.57 0.93–2.65 0.095
Diabetes 2.94 1.58–5.48 0.001

Dyslipidemia 0.65 0.32–1.30 0.220
ALT 1.06 1.05–1.08 <0.001
GGT 1.02 1.01–1.03 <0.001

Glucose 1.02 1.01–1.04 0.002
Cholesterol 1.00 0.99–1.00 0.151

TG 1.00 1.00–1.00 0.101
HDL 0.97 0.95–0.99 0.002
LDL 1.00 0.99–1.00 0.483

Insulin 1.10 1.06–1.14 <0.001
WBC 1.28 1.09–1.50 0.003

HOMA-IR 1.45 1.27–1.66 <0.001
SMI_wt 0.90 0.84–0.96 0.001

Fat% 1.06 1.03–1.10 0.001
PNPLA3 (ref. C/C)

C/G 2.02 1.09–3.88 0.034
G/G 2.10 1.01–4.37 0.047

linear (per 1 risk allele) 1.35 0.96–1.91 0.089
C/G+G/G vs. C/C 1.81 1.01–3.24 0.045
TM6SF2 (ref. C/C)

C/T 1.30 0.65–2.60 0.464
linear (per 1 risk allele) 1.33 0.69–2.56 0.398

C/T, T/T vs. C/C 1.28 0.65–2.53 0.474
MBOAT7 (ref. C/C)

C/T 1.06 0.63–1.76 0.838
T/T 1.66 0.47–5.91 0.433

linear (per 1 risk allele) 1.14 0.75–1.74 0.546
C/T, T/T vs. C/C 1.10 0.67–1.81 0.695
SREBF2 (ref. C/C)

C/T 0.89 0.51–1.56 0.695
T/T 1.06 0.48–2.34 0.879

linear (per 1 risk allele) 0.97 0.67–1.40 0.864
C/T, T/T vs. C/C 0.93 0.55–1.56 0.776

HSD17B13 (ref. −/−)
Heterozygous −/A 1.26 0.75–2.10 0.382
Homozygous A/A 1.22 0.49–3.01 0.669

Abbreviations: NASH, nonalcoholic steatohepatitis; FAST, FibroScan-aspartate aminotransferase; BMI, body mass
index; ALT, alanine aminotransferase; GGT, γ-glutamyl transpeptidase; TG, triglyceride; HDL, high-density
lipoprotein; LDL, low-density lipoprotein; WBC, white blood cell; HOMA-IR, homeostasis model assessment of
insulin resistance; SMI_wt, weight-adjusted skeletal muscle index; fat%, fat percentage.

In Table 3, circulating metabolites had significant correlations with a higher FAST
score (>0.35), as seen with sphingomyelin (SM [OH] C22:2, odds ratio [OR] = 0.53, 95%
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confidence interval [CI] 0.41–0.70, PFDR = 0.001; SM C24:0, OR = 0.59, 95% CI 0.45–0.77,
PFDR = 0.003; and SM C16:0, OR = 0.59, 95% CI, 0.45–0.77, PFDR = 0.004), phosphatidyl
choline (PC ae C40:6, OR = 0.56, 95% CI 0.43–0.74, PFDR = 0.003; PC ae C38:0, OR = 0.58, 95%
CI 0.44–0.76, PFDR = 0.004; and lysoPC a C18:2, OR = 0.61, 95% CI 0.47–0.80, PFDR = 0.004),
and tyrosine (OR = 1.56, 95% CI 1.19–2.03, PFDR = 0.013).

Table 3. Metabolites that were significantly associated with high-risk NASH (FAST score > 0.35).

Variable OR 95% CI Rawp–Value Rank BH
Adjustedp–Value

SM (OH) C22:2 0.53 0.41–0.709 5.76193E–06 1 0.001198481
SM (OH) C16:1 0.57 0.43–0.74 3.95722E-05 2 0.004115505

PC ae C40:6 0.56 0.43–0.74 4.39683E-05 3 0.003048471
SM C16:0 0.59 0.45–0.77 7.63941E-05 4 0.003972496

PC ae C38:0 0.58 0.44–0.76 9.78989E-05 5 0.004072592
SM C24:0 0.59 0.45–0.77 9.88366E-05 6 0.003426335

PC ae C40:5 0.57 0.43–0.76 0.000114559 7 0.003404043
PC aa C38:0 0.60 0.46–0.78 0.000149 8 0.003874005

SM C24:1 0.60 0.46–0.78 0.000155451 9 0.003592655
SM (OH) C22:1 0.60 0.46–0.79 0.000179669 10 0.003737106

SM C16:1 0.61 0.47–0.79 0.000194861 11 0.003684646
PC ae C38:6 0.61 0.47–0.79 0.000200649 12 0.003477909
PC ae C36:2 0.61 0.47–0.79 0.000220253 13 0.003524049

LysoPC a C18:2 0.61 0.47–0.80 0.000289073 14 0.004294803
PC aa C36:6 0.62 0.48–0.81 0.000311757 15 0.004323034
PC ae C40:4 0.60 0.46–0.80 0.000394197 16 0.005124564
PC aa C36:5 0.62 0.48–0.82 0.000557316 17 0.006818923

Tyrosine 1.56 1.19–2.03 0.00108511 18 0.012539053
PC aa C42:4 1.99 1.30–3.04 0.001440041 19 0.01576466
PC ae C38:5 0.66 0.51–0.86 0.001646602 20 0.017124665

DCA 1.57 1.18–2.08 0.001794496 21 0.017774053
GLCA 2.06 1.30–3.27 0.002110225 22 0.019951219
LCA 1.89 1.26–2.83 0.002162058 23 0.019552522

PC ae C36:1 0.68 0.52–0.87 0.002786416 24 0.024148943
SM (OH) C14:1 0.68 0.53–0.88 0.003112874 25 0.025899116

TUDCA 3.10 1.46–6.58 0.003205053 26 0.025640423
PC ae C36:5 0.68 0.53–0.88 0.003436294 27 0.026472192

LysoPC a C18:1 0.68 0.52–0.89 0.004346437 28 0.032287817
GCDCA 1.59 1.16–2.19 0.0044439 29 0.031873489
SM C18:1 0.69 0.54–0.99 0.004463313 30 0.030945637

PC aa C36:0 0.70 0.54–0.90 0.005357294 31 0.035945714
SM C18:0 0.70 0.54–0.90 0.006127907 32 0.039831397

GDCA 1.59 1.14–2.22 0.006191177 33 0.039023178
LysoPC a C17:0 0.69 0.52–0.90 0.00685643 34 0.041945216

Abbreviations: NASH, nonalcoholic steatohepatitis; FAST, FibroScan-aspartate aminotransferase; OR, odds
ratio; CI, confidence interval; BH, Benjamini–Hochberg; SM, sphingomyeline; PC, phosphatidylcholine; lysoPC,
lysophosphatidylcholine; DCA, deoxycholic acid; GLCA, glyco-lithocholic acid; LCA, lithocholic acid; TUDCA,
tauro-ursodeoxycholic acid; GCDCA, glyco-chenodeoxycholic acid; GDCA, glyco-deoxycholic acid.

In multiple logistic regression analysis (Table 4), relevant risk factors for a higher
FAST score were identified as follows: age, ALT, HOMA-IR, sarcopenia, PNPLA3 genotype
(dominant model), PC ae C40:6, lysoPC a C18:2, SM C24:0, and tyrosine. The multiomics-
based prediction model (Model 3, c-index = 0.948; 95% CI 0.927–0.978; p for Hosmer–
Lemeshow = 0.190) and the clinico-genomic model (Model 2, c-index = 0.933; 95% CI
0.906–0.964; P for Hosmer–Lemeshow = 0.209) yielded a higher predictive performance
compared to the metabolomics-based model (Model 1, c-index = 0.782; 95% CI 0.734–0.838;
P for Hosmer–Lemeshow = 0.246) (p < 0.001).
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Table 4. Multiple logistic regression analysis on risk factors for high-risk NASH (FAST score > 0.35).

Model 1 Model 2 Model 3

OR 95% CI p OR 95% CI p OR 95% CI p

PC ae C40:6 0.48 0.34–0.67 <0.001 0.61 0.35–1.04 0.071
lysoPC a C18:2 0.57 0.42–0.78 <0.001 0.72 0.43–1.20 0.201

SM C24:0 0.64 0.46–0.89 0.008 0.57 0.35–0.92 0.022
Tyrosine 2.74 1.88–4.01 <0.001 2.07 1.14–3.78 0.018

Sex 1.03 0.44–2.43 0.945 1.30 0.50–3.39 0.591
Age 1.05 1.02–1.09 0.002 1.04 1.00–1.08 0.035
ALT 1.07 1.05–1.10 <0.001 1.07 1.05–1.09 <0.001

HOMA-IR 2.94 1.20–7.21 0.019 2.14 0.84–5.49 0.113
Sarcopenia 3.14 1.30–7.59 0.011 3.85 1.45–10.26 0.007
PNPLA3 1.53 0.59–3.94 0.384 1.83 0.62–5.40 0.272

Note. Model 1 used metabolomics data; Model 2 used clinical + genomics data; Model 3 used clinical +
metabolomics + genomics data. Abbreviations: NASH, nonalcoholic steatohepatitis; FAST, FibroScan-aspartate
aminotransferase; OR, odds ratio; CI, confidence interval; SM, sphingomyeline; PC, phosphatidylcholine;
lysoPC, lysophosphatidylcholine; ALT, alanine aminotransferase; HOMA-IR, homeostasis model assessment of
insulin resistance.

3.3. Follow-Up Sub-Cohort (n = 160)

A total of 160 patients who were followed up more than twice with at least one
follow-up VCTE during the study period comprised the follow-up sub-cohort. During
a median follow-up of 23.7 months (IQR, 13.2–33.8), weight loss > 5% between baseline
and the last visit was observed in 30 patients (18.7%), weight loss ≤ 5% was observed in
75 patients (46.9%), and weight gain was observed in 55 patients (34.4%). Figure 1 depicts
the changes in the FAST score (≤ 0.35 vs. 0.35–0.67 vs. ≥ 0.67) according to the level of
weight change under lifestyle modification. Low-risk patients at baseline (FAST ≤ 0.35,
n = 84) mostly remained in the same category at follow-up (79, 94.0%). However, 47 out
of 76 patients (61.8%) with a baseline FAST score > 0.35 were classified as low-risk NASH
(FAST score ≤ 0.35) at follow-up (Table S1).
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Figure 1. Changes in the FAST score during follow-up. Distribution of changes in the FAST score
between baseline and the last follow-up, according to the levels of weight change under lifestyle
modification (≥5% weight loss (A), <5% weight loss (B), and weight gain (C)).

Significant differences in terms of changes in skeletal muscle mass, fat%, ALT, GGT,
FAST score, and LSM were observed among the three subgroups according to the extent of
weight change (all p < 0.05; Table S2). Multiple logistic regression analysis of the follow-up
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sub-cohort showed that age, ALT, and tyrosine were significantly associated with a shift in
the FAST score toward a low-risk score (≤0.35) from a baseline level of >0.35, regardless of
baseline weight or weight changes during follow-up (Table 5).

Table 5. Multiple logistic regression analysis on the predictors of NASH resolution defined as
follow-up FAST score ≤ 0.35 following lifestyle modification in patients with baseline FAST score >
0.35.

Model 1 Model 2

OR 95% CI p OR 95% CI p

PC ae C40:6 2.54 0.91–7.07 0.074 2.47 0.81–7.53 0.111
LysoPC a C18:2 0.97 0.40–2.36 0.940 0.98 0.38–2.54 0.973

SM C24:0 1.10 0.44–2.79 0.835 1.25 0.41–3.80 0.693
Tyrosine 0.36 0.15–0.88 0.025 0.36 0.13–0.97 0.044

Sex 0.86 0.20–3.76 0.836 0.31 0.05–2.07 0.227
Age 0.92 0.86–0.98 0.010 0.88 0.81–0.97 0.007
ALT 0.97 0.95–0.99 0.001 0.96 0.94–0.99 0.002

HOMA-IR 0.84 0.11–6.55 0.867 1.26 0.13–11.99 0.841
Sarcopenia 0.42 0.10–1.84 0.247 0.90 0.13–6.23 0.915
PNPLA3 0.93 0.13–6.65 0.938 0.98 0.11–8.61 0.983

Baseline weight 0.93 0.86–1.01 0.099
Weight change (ref.:

weight loss <5%)
weight loss ≥ 5% 6.25 0.55–70.64 0.138

weight gain 0.65 0.12–3.46 0.612
c–index 0.845 (95% CI 0.815-0.989) * 0.861 (95% CI 0.858-1.000) *

Note. Model 1 used baseline clinical characteristics and multiomics data; Model 2: Model 1 + weight change.
P values for Hosmer–Lemeshow test were 0.207 for Model 1, and 0.783 for Model 2, respectively. * Using
bootstrap resampling (times = 1000). Abbreviations: NASH, nonalcoholic steatohepatitis; FAST, FibroScan-
aspartate aminotransferase; OR, odds ratio; CI, confidence interval; SM, sphingomyeline; PC, phosphatidylcholine;
lysoPC, lysophosphatidylcholine; ALT, alanine aminotransferase; HOMA-IR, homeostasis model assessment of
insulin resistance.

In the mediation analysis, in patients with a baseline FAST score > 0.35, weight gain
was associated with an increase in serum ALT (β = 3.154, 95% CI 1.283–5.026, p = 0.001).
A follow-up FAST score ≤ 0.35 showed a significant inverse relationship with an increase
in serum ALT (β = −0.083, 95% CI −0.127–−0.039, p < 0.001). The indirect effect of ALT
as a mediator on the association between changes in weight and a shift toward a FAST
score ≤ 0.35 was statistically significant (Table S3).

4. Discussion

The present exploratory study demonstrated that the combination of clinical (age,
ALT, HOMA-IR, and sarcopenia), metabolomic (sphingolipids, glycerophospholipids, and
tyrosine), and genomic (PNPLA3 genotype) biomarkers accurately predicted a higher
FAST score (>0.35). In the follow-up sub-cohort, predictors of a shift of the FAST score
toward a low-risk score (≤0.35) following lifestyle modification included a younger age
and lower baseline levels of serum ALT and tyrosine. Mediation analysis suggested that a
downward shift in the FAST score in association with weight change might be mediated by
the mitigation of hepatic inflammation.

Identification of patients at high risk of disease progression is a challenging issue [2].
Given the inherent limitations of liver biopsy, noninvasive tests (NITs) have been developed
for routine practice and sustainable clinical care pathways. However, longitudinal changes
in those NITs following certain treatments remain to be elucidated because those NITs
were derived and validated in cross-sectional settings [11]. In the current study, at baseline,
47.4% of participants were classified as low-risk (FAST ≤ 0.35), 10.1% of participants were
classified as high-risk (FAST ≥ 0.67), and 42.5% of participants were classified as in the gray
zone (0.35 < FAST < 0.67). The FAST score demonstrated a good diagnostic performance
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for high-risk NASH in the derivation cohort as well as in the external validation cohorts [7].
However, an independent external validation study by Puri et al. involving 199 United
States veterans reported a lower positive predictive value (0.26) of an upper cut-off (0.67)
to rule in, compared with the original study, along with a high proportion of the gray zone
(35.5%) [12]. Given that the diagnostic performance of biomarkers depends on different
clinical settings, the major implication of the FAST score in the present study could be the
confirmatory exclusion of patients with high-risk or fibrotic NASH based on the lower
cut-off [13]. Another concern in relation to the FAST score seems to be its inherently high
dependency on AST levels, considering that most patients with advanced liver fibrosis on
biopsy present with normal aminotransferase levels [14]. Thus, experts recommend paying
attention to the LSM per se to minimize the risk of the underestimation of patients with
advanced fibrosis, suggesting sequential testing in case of high LSM despite being below a
low-risk cut-off [15]. Given the low baseline LSM value (median, 4.6 kPa; IQR, 3.8–6.1) in
patients with a FAST score ≤ 0.35 in our real-life cohort (Table 1), the utilization of a lower
cut-off (0.35) as an exclusion of high-risk NASH seems justifiable. Thus, we dichotomized
study participants according to the lower cut-off (0.35) to distinguish probable low-risk
patients from patients falling in the gray zone or high-risk NASH patients who would
benefit from further testing or enrollment in clinical trials. In addition, since most low-risk
patients remained low risk at follow-up (94%) in the follow-up sub-cohort, we attempted
to identify the predictors of a downward shift in the risk group, in which patients in the
gray zone and high-risk patients became the low-risk group after follow-up.

In the present study, univariable analysis showed that only the PNPLA3 rs738409
genotype was significantly associated with a FAST score > 0.35. Among the 34 metabolites
which met the FDR-adjusted threshold for a significant association with a higher FAST
score, the top four metabolites panel based on the stepwise regression included sphin-
golipids, glycerophospholipids, and amino acids. A model combining clinical (age, sex,
ALT, HOMA-IR, and sarcopenia), genomic (PNPLA3 rs738409), and metabolomic (PC ae
C40:6, lysoPC a C18:2, SM C24:0, and tyrosine) parameters achieved the highest c-index
(0.948) for the prediction of high-risk NASH. Low concentrations of certain glycerophos-
pholipids (acyl-alkyl PC or PC ae) and sphingolipids were characteristic of NAFLD in
previous studies, suggesting the increased turnover and size of adipocytes, which necessi-
tate high PC amounts for cell membrane production in the pathogenesis of NAFLD [16].
Sphingolipids and PCs are both biochemically related phospholipids and key components
of the cell membrane, which explains a significant inverse relationship with a higher FAST
score (>0.35) or low likelihood of high-risk NASH, as our results indicated. In addition,
lysophosphatidylcholines (lysoPCs) were associated with liver fat content as the hallmark
of NAFLD in a Finnish study [17]. Subsequent evidence was added regarding lysoPC a
C18:2 as a marker of impaired glucose tolerance [18], obesity [19], and type 2 diabetes [20].
In our results, lysoPC a C18:2 was inversely associated with a FAST score > 0.35. Given that
lysoPCs are formed by the oxidation of PCs in phospholipid-containing cell membranes
or low-density lipoprotein (LDL) [21], this inverse relationship might result from an in-
creased breakdown of lipid from metabolically active tissues, which is in line with previous
studies [18,20].

Alterations in circulating amino acids have been documented in patients with NAFLD,
including increases in branched chain amino acids or aromatic amino acids [22]. The altered
hepatic amino acid composition implies the role of amino acids as adaptive response mech-
anisms to lipotoxicity in progressive NAFLD [23]. Specifically, tyrosine has been reported to
be a marker of development of insulin resistance, upregulated in NAFLD/NASH patients,
and positively correlated with total and LDL cholesterol [24–26]. Decreased gene expression
of amino acid transporters, such as SLC16A10, was suggested to be a potential mechanism
for the elevation of tyrosine levels in NASH patients [24], which could not be verified due
to lack of sufficient liver samples. Although the mechanism of tyrosine dysregulation in
NAFLD remains to be elucidated, the blood tyrosine level has been arguably identified as a
potential biomarker for NAFLD [27], which might also be the marker of risk stratification
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for fibrotic NASH, in agreement with our results. Furthermore, tyrosine was the only
significant metabolite in the prediction of a FAST score ≤ 0.35 at follow-up in patients with
a baseline FAST score > 0.35. A recent Finnish study suggested that an exercise-related
decrease in fasting plasma glucose and improved cardiorespiratory fitness might be de-
rived by the increased tyrosine level in the adipose tissue, given tyrosine is a catecholamine
precursor which plays a vital role in athletic performance and lipolysis [28]. Our results
might also reflect the similar role of tyrosine in patients undergoing lifestyle modification,
which requires further validation. Lastly, in the mediation analysis, the significant indirect
effect of serum ALT on weight changes and outcomes (e.g., FAST score at follow-up) is in
line with previous reports in which beneficial effects of lifestyle modification result from the
amelioration of hepatic inflammation with or without an improvement in fibrosis according
to the extent of weight loss [29]. However, ALT change was the only statistically significant
mediator in the relationship between weight change and the follow-up FAST score in the
mediation analysis. This finding suggests that the mediation analysis was possibly not
able to capture certain beneficial effects of lifestyle modification on other pathophysiologic
aspects of NAFLD/NASH, such as metabolic comorbidities. One possible explanation
would be the insufficient follow-up duration (median 23.7 months) and/or number of study
participants. In addition, sarcopenia was not significantly associated with the outcome,
unlike previous reports, possibly because of the relatively low proportion of high-risk
(FAST ≥ 0.67) patients (10.1%) [30,31].

This study has several limitations. First, and most importantly, a liver biopsy was
performed in only a subset of patients, which raises the possibility of misclassification
bias and precluded an external validation of the FAST score or comparison with other
noninvasive tests, using histologic data as a gold standard. However, performing a biopsy
in the entire study participants would be unethical given the substantial proportion of the
low-risk group (FAST ≤ 0.35). Instead, we focused on the following questions: who would
be in the low-risk group and who would not, given that there are no widely approved
pharmacological agents against NASH and virtually all patients with NAFLD should
undergo lifestyle modification. In that context, the dichotomous categorization into low-
risk vs. gray zone + high-risk according to the lower cut-off (0.35) seems reasonable
considering the low LSM values in the low-risk group, instead of using three categories
without reference to the histological data. Second, 39.9% (106/266) of the entire cohort
were lost to the follow-up, which might have affected the results of the present study by
way of the Hawthorne effect [32]. In addition, the relatively short duration of the follow-up
(2 years) might have affected the lower frequency of progression in the FAST score in the
follow-up sub-cohort. However, lifestyle modification was presumed to be implemented
strictly, given that the low-risk FAST score was maintained in 94% of the follow-up sub-
cohort, which reduces concerns in relation to compliance bias. Third, the observational
nature of this study might preclude the assessment of causality, mechanistic links, and roles
of the identified risk factors.

In conclusion, the present study suggests the potential usefulness of a multiomics-
based risk categorization based on glycerophospholipids (PC ae C40:6, lysoPC a C18:2),
sphingolipids (SM C24:0), and amino acids (tyrosine) at baseline as well as at follow-up
after lifestyle modification. Despite the aforementioned limitations, our results provide
solid data on the dynamic change of paired NITs and would facilitate the development of a
risk stratification strategy before and after lifestyle modification if properly validated.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13030444/s1, Supplementary Methods [4,33–46]; Table S1:
longitudinal changes in patient distribution according to the FAST score at baseline and at follow-up;
Table S2: changes in parameters according to weight change during follow-up; Table S3: mediation
analysis of anthropometric and clinical parameters in the relationship between weight change during
follow-up and a FAST score ≤ 0.35 at follow-up among subjects with baseline level > 0.35; Figure
S1: area under the receiver operating characteristic curve of the multiomics-based model for the
prediction of a FAST score > 0.35.
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