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Objectives: The purpose of this study was to cluster long-term multifaceted

functional recovery patterns and to establish prediction models for functional

outcome in first-time stroke patients using unsupervised machine learning.

Methods: This study is an interim analysis of the dataset from the Korean Stroke

Cohort for Functioning and Rehabilitation (KOSCO), a long-term, prospective,

multicenter cohort study of first-time stroke patients. The KOSCO screened 10,636

first-time stroke patients admitted to nine representative hospitals in Korea during

a three-year recruitment period, and 7,858 patients agreed to enroll. Early clinical

and demographic features of stroke patients and six multifaceted functional

assessment scores measured from 7 days to 24 months after stroke onset were

used as input variables. K-means clustering analysis was performed, and prediction

models were generated and validated using machine learning.

Results: A total of 5,534 stroke patients (4,388 ischemic and 1,146 hemorrhagic;

mean age 63·31 ± 12·86; 3,253 [58.78%] male) completed functional assessments

24 months after stroke onset. Through K-means clustering, ischemic stroke (IS)

patients were clustered into five groups and hemorrhagic stroke (HS) patients

into four groups. Each cluster had distinct clinical characteristics and functional

recovery patterns. The final prediction models for IS and HS patients achieved

relatively high prediction accuracies of 0.926 and 0.887, respectively.

Conclusions: The longitudinal, multi-dimensional, functional assessment data

of first-time stroke patients were successfully clustered, and the prediction
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models showed relatively good accuracies. Early identification and prediction

of long-term functional outcomes will help clinicians develop customized

treatment strategies.
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stroke, functional recovery, artificial intelligence,machine learning, clustering, prediction

Introduction

Although early stroke management and rehabilitation

protocols have improved during the past decade, stroke remains

the most common cause of adult physical disability worldwide

(1). The number of stroke survivors and the related overall global

burden of stroke are both increasing (2). The ability to predict

long-term recovery and prognosis of functional deficits after stroke

is of interest. If clinicians could foresee the long-term functional

recovery prospects for a certain patient, they could devise better

treatment strategies.

Previous studies have attempted to develop algorithms to

predict the prognosis for recovery after stroke (3). However,

such algorithms considered only a single time point, making it

difficult to establish overall recovery patterns. Douiri et al. (4)

suggested creating decision curves to produce dynamic, time-

dependent, multivariate, patient-specific predictive models that

could overcome those limitations. Focusing on this attempt and

the results of previous studies, it seems to be necessary to include

the multifaceted functional outcomes for future prediction models.

Because stroke patients often suffer from distinct motor, language,

cognitive, and swallowing dysfunction, measuring only their ability

to perform activities of daily living (ADL) is insufficient to classify

patient-specific recovery patterns.

According to a previous study, lifestyle also is an important

factor in stroke outcome (5). Therefore, when designing a prognosis

prediction model for stroke patients, lifestyle factors need to

be considered. The Korean Stroke Cohort for Functioning and

Rehabilitation (KOSCO) (2) includes clinical characteristics; serial

data of various functional domains; and lifestyle factors such as

alcohol, smoking, and education level.

Therefore, in this study, we used a clustering analysis based

on an unsupervised machine learning method that is suitable

for classifying large, real-world KOSCO datasets containing

longitudinal, multi-dimensional, functional assessments. Our

primary aim in this study was to identify multifaceted, functional

recovery patterns among first-time stroke patients using an

unsupervised machine learning algorithm. Our secondary aim was

to generate a prediction model for those recovery pattern clusters

and examine the accuracy of the models.

Methods

Study populations

This study used data from the KOSCO study (6), a long-term,

prospective, multicenter cohort study of residual disability and

functional independence among Korean stroke patients following

their first stroke episode.

Between August 2012 and May 2015, the KOSCO study

recruited 10,636 Korean patients. The inclusion criteria were (1)

first-time acute IS or HS with a corresponding lesion on computed

tomography or magnetic resonance imaging/angiography, (2) at

least 19 years of age at stroke onset, and (3) onset of symptoms

within 7 days prior to study enrollment. Patients with any of

the following criteria were excluded: (1) transient ischemic attack,

(2) history of previous stroke, and (3) traumatic intracerebral

hemorrhage. Of the 10,636 first-time stroke patients (8,210 IS

patients and 2,426 HS patients) admitted to nine representative

hospitals in Korea during the recruitment period, 7,858 (6,253 IS

patients and 1,605 HS patients) agreed to enroll after exclusion of

patients who died or declined to participate. Among them, 5,534

patients (4,388 IS patients and 1,146 HS patients) who completed

their follow-up assessments through 24 months after stroke onset

were used in this analysis (Figure 1).

Written informed consent was obtained from all patients prior

to inclusion, and the study protocol was approved by the ethics

committees of the involved hospitals (Supplementary material).

Measurements

Demographic and clinical characteristics
We considered the following demographic and clinical

characteristics: sex, age, obesity (body mass index ≥ 26), education

level (high: more than 9 years, low: <9 years), and stroke

location (right, left, or both). Stroke severity was measured by

the National Institutes of Health Stroke Scale (NIHSS) for 7 days

after stroke onset for both IS and HS because the time from

stroke onset to emergency department admission was different

for each patient. A previous study showed that NIHSS is a

reliable tool for clinical monitoring not only IS, but also HS

patients (7). Combined condition- and age-related score (CCAS)

according to Charlson Comorbidity Index, smoking, and history

of alcohol consumption also was assessed. History of patient

risk factors such as hypertension (systolic blood pressure >

160mm Hg, diastolic blood pressure > 90mm Hg, or history of

hypertension or medical treatment), diabetes mellitus (DM; blood

glucose level >126 mg/d or history of DM or medical treatment),

hyperlipidemia (elevated low-density lipoprotein cholesterol level

>160 mg/dL, elevated total cholesterol level > 240 mg/dL, or

history of hy-perlipidemia or medical treatment), and atrial

fibrillation (documented by standard electrocardiogram [ECG],

long-term ECG, or history of atrial fibrillation or medical
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FIGURE 1

Flow chart of participant inclusion.

treatment) was assessed. Medical complications such as pneumonia

and urinary tract infection during admission period were

also included.

Functional assessments
The multifaceted functional assessments included six

international tools: the Fugl-Meyer Assessment (FMA; range

0–100, higher score means higher motor function) (8) for motor

function, the Functional Ambulation Classification (FAC; range

0–5, higher score means higher ambulatory function) (9) for

mobility and gait, the Korean Mini-mental State Examination (K-

MMSE; range 0–30, higher score means higher cognitive function)

(10) for cognition, the short version of the Korean version of the

Frenchay Aphasia Screening Test (short K-FAST; range 0–20,

higher score means higher language function) (11) for language

function, the American Speech-Language-Hearing Association’s

National Outcomes Measurement System (ASHA-NOMS; range

1–7, higher score means higher swallowing function) (12) for

swallowing function, and the Korea Modified Barthel Index

(K-MBI; range 0–100, higher score means higher activities of daily

living performance independence) (13) for ADL function. Serial

data from face-to-face functional assessments were gathered 7 days

and 3, 6, 12, 18, and 24 months after stroke onset for all measures

except K-MBI. K-MBI was not assessed at 7 days after stroke

because most patients remained in the stroke unit for intensive

care during the first week of admission.

The investigators of the KOSCO studywere expert occupational

therapists and underwent a standardized training program every 3

months to maintain inter-rater reliability.

Clustering of functional recovery patterns

Clustering of functional recovery patterns was performed in

first-time IS and HS stroke survivors. In order to select the

most suitable clustering algorithm for the KOSCO dataset, we

performed prior clustering using three well-known algorithms of

K-means clustering (14), the Gaussian Mixture Model (15), and

the Agglomerative clustering algorithm (15) and compared the

functional scores. With these three algorithms, prior clustering

was performed for cluster numbers 2–15, and the Silhouette Index

(SI) (16) was estimated (Supplementary Figure 1). Among the three

clustering algorithms, the K-means method was chosen for its

higher SI for both IS and HS than the others.

The K-means clustering algorithm is one of the most popular

unsupervised machine learning algorithms that partitions a dataset

into a given number of clusters. The algorithm gathers each data
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point to the nearest centroid according to the number of clusters

(17). To choose the optimal number of clusters that is not only

able to explain the clinical features of patients, but also suitable for

practical use, we used three functional scores: SI, Davies-Boulding

Index (DBI) (18), and Calinski-Harabasz Index (CHI) (19). Cluster

sizes from k = 2 to k = 15 were tested (Supplementary Figure 2).

To avoid dividing into the highest, middle, and lowest groups, we

considered only k >3. In IS, k = 5 showed tolerable functional

scores (SI 0.47, DBI 1.43, and CHI 2487.07). In HS, k = 4 showed

similar SI scores to that of IS (SI 0.42, DBI 1.36, CHI 875.67).

Finally, K-means clustering was performed with 100% of the

dataset (4,388 IS and 1,146 HS patients). In this step, early clinical

and demographic features of stroke patients and the repeated

multifaceted functional assessment scores until 24 months were

used as input variables. Missing or incomplete data were imputed

using the k-nearest neighbor-5 (kNN-5) method (20). To confirm

proper clustering, we visualized the clustered groups in low-

dimensional images derived by t-Distributed Stochastic Neighbor

Embedding (t-SNE) (21), which is widely used to convert high-

dimensional data into a two- or three-dimensional map.

Prediction model for long-term functional
recovery

After clustering, we generated models that predict the cluster of

new first-time stroke patients based on basic demographic data and

functional scores from 7 days to 3 months after stroke onset. We

used 70% of the dataset (3,071 IS and 802 HS patients) to generate

the models and the remaining 30% (1,317 IS and 344 HS patients)

for validation. Prediction models were simultaneously generated

by eight machine learning algorithms: Light Gradient Boosting

Machine (Light GBM) (22), extended version of Light GBM (Light

GBM-XT) (22), Random Forest (RF) (23), CatBoost (CB) (24),

extreme gradient boosting (XGBoost) (25), Weighted Ensemble

(26), Neural Network (27), and Extra Trees (28). The performance

metrics true positive (TP), true negative (TN), false positive

(FP), and false negative (FN) were calculated. The mathematical

expressions for F1 score, precision, and recall were as follows:

Precision (PR) was given by : PR =
TP

TP + FP

Recall (RC) was given by : RC =
TP

TP + FN

F1 score was given by : Fβ =

(

1 + β2
)

· PR · RC
(

β2 (PR + RC)
)

where β represents the weighted value between precision and

recall. In this case, β = 1.

The accuracy of the overall predictionmodel for each IS andHS

was calculated as follows:

Accuracy =
TP+ TN

TP+ TN+ FP+ FN

Computational details

Descriptive statistical analyses and within-group comparison

were implemented in R (version 4.0.3). The independent t-test was

used for comparison of continuous variables, and the chi-square

test was used for comparison of categorical variables between IS

and HS. The level of significance was set as two-sided p < 0.05.

All machine learning steps of data analysis, preprocessing of model

training, and visualization were performed using open source

libraries in Python (version 3.9.0). Pandas (version 1.5.2) was used

for data analysis and preprocessing, and scikit-learn (version 1.2.0)

was used to impute missing values and to establish the clustering

model. Visualization was conducted through plotly (version 5.9.0)

and matplitlib (version 3.6.2). Model predictions were performed

using Autogluon (version 0.6.2).

Results

Patient characteristics

The demographic and clinical characteristics of the participants

are provided in Table 1. Of the 5,534 patients who underwent

functional assessment 24 months after stroke onset, 4,388 were IS

(2,700 males) and 1,146 were HS (553 males) patients. The mean

age (standard deviation, SD) of IS patients was 64.8 (SD, 12.4)

years, and their mean NIHSS score at 7 days was 3.5 (SD, 5.1).

There were significant differences between IS and HS patients in

demographic and clinical characteristics except obesity and alcohol

history (p < 0.001).

Clustering of long-term functional
outcomes in survivors of first-time stroke

Regarding the K-means clustering algorithm, the optimal

number of clusters was five for IS patients and four for HS patients.

In both the IS and HS groups, the clusters differed in mean age,

initial stroke severity as measured by NIHSS scores, complications,

and comorbidities. Figure 2 visualizes IS (Figure 2A) and HS

(Figure 2B) K-means clustering using t-SNE.

The functional recovery characteristics of the final five

clusters of IS patients are presented in Supplementary Table 1 and

Figure 3. Cluster 1, which contained 3,346 patients (60.46%), was

characterized by a mean age of 63.53 years (SD, 12.25) and a low 7-

day stroke severity with a mean of 1.44 (SD, 1.81). These patients

showed minimal deficits in every functional domain. Cluster 2,

comprising 405 patients (7.32%), was characterized by a mean

age similar to cluster 1 (mean [SD]; 64.47 years [12.12]) and

moderate initial severity (7.07 [5.24]). This cluster showed low

motor and ambulatory functions at onset but rapidly improved

during the subacute phase. Cluster 3, comprising 232 patients

(4.19%), was characterized by a mean age of 64.46 years (SD,

10.87), with a low but moderately severe NIHSS score of 11.88

(SD, 5.82). This group showed significant motor and ambulatory

dysfunction compared to cognitive and language functioning;

however, they showed continuous improvement during the 24-

month study period. In contrast, ADL and cognitive and language
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TABLE 1 Demographic and clinical characteristics of the participants.

All stroke patients
(n = 5,534)

Ischemic stroke
(n = 4,388)

Hemorrhagic stroke
(n = 1,146)

P- valuea

Age, years 63.31± 12.86 (19–98) 64.79± 12.38 (19–98) 57.64± 13.10 (20–92) <0.001∗∗∗

Sex, male 3,253 (58.78%) 2,700 (61.53%) 553 (48.26%) <0.001∗∗∗

Education

<9 years 3,776 (68.23%) 2,915 (66.43%) 861 (75.13%) <0.001∗∗∗

≥9 years 1,758 (31.77%) 1,473 (33.57%) 285 (24.87%) <0.001∗∗∗

Stroke location

Right 2,297 (41.51%) 1,975 (45.01%) 322 (28.10%) <0.001∗∗∗

Left 2,431 (43.93%) 2,125 (48.43%) 306 (26.70%) <0.001∗∗∗

Both 806 (14.56%) 288 (6.56%) 518 (45.20%) <0.001∗∗∗

Risk factors

Hypertension, yes 2,937 (53.07%) 2,446 (55.74%) 491 (42.84%) <0.001∗∗∗

Diabetes mellitus, yes 1,160 (20.96%) 1,048 (23.88%) 112 (9.77%) <0.001∗∗∗

Atrial fibrillation, yes 388 (7.01%) 371 (8.45%) 17 (1.48%) <0.001∗∗∗

Hyperlipidemia, yes 510 (9.22%) 460 (10.48%) 50 (4.36%) <0.001∗∗∗

Obesity (BMI ≥ 26), yes 615 (11.11%) 502 (11.44%) 113 (9.86%) 0.14

CCAS ≥ 6, yes 2,319 (41.90%) 1,989 (45.33%) 330 (28.80%) <0.001∗∗∗

Smoking, yes 1,505 (27.20%) 1,244 (28.35%) 261 (22.77%) <0.001∗∗∗

Alcohol, yes 2,228 (40.26%) 1,751 (39.90%) 477 (41.62%) 0.31

Complications

Pneumonia, yes 137 (2.48%) 78 (1.78%) 59 (5.15%) <0.001∗∗∗

Urinary tract infection, yes 135 (2.44%) 80 (1.82%) 55 (4.80%) <0.001∗∗∗

NIHSS at 7 days 4.05± 6.23 (0–42) 3.53± 5.11 (0–42) 6.71± 8.85 (0–42) <0.001∗∗∗

Functional assessments at 7 days

FMA 78.77± 32.41 (0–100) 81.89± 29.73 (0–100) 66.84± 38.83 (0–100) <0.001∗∗∗

FAC 2.89± 1.91 (0–5) 3.17± 1.80 (0–5) 1.82± 1.95 (0–5) <0.001∗∗∗

K-MMSE 21.61± 8.79 (0–30) 22.64± 7.98 (0–30) 17.65± 10.45 (0–30) <0.001∗∗∗

Short K-FAST 13.01± 6.35 (0–20) 13.63± 5.92 (0–20) 10.65± 7.30 (0–20) <0.001∗∗∗

ASHA-NOMS 5.92± 1.95 (1–7) 6.13± 1.76 (1–7) 5.11± 2.38 (1–7) <0.001∗∗∗

Functional assessments at 3

months

K-MBI 86.37± 25.35 (0–100) 87.89± 23.55 (0–100) 80.58± 30.63 (0–100) <0.001∗∗∗

Values are mean± standard deviation (range) or number (%).
aThe independent t-test was used for continuous variables and the chi-square test was used for categorical variables between ischemic and hemorrhagic stroke types.
∗∗∗p < 0.001.

BMI, Body mass index; CCAS, Combined condition- and age-related score; NIHSS, National Institutes of Health Stroke Scale; FMA, Fugl-Meyer Assessment; FAC, Functional Ambulatory

Category; K-MMSE, Korean Mini-Mental State Examination; Short K-FAST, Short Korean-language Frenchay Aphasia Screening Test; ASHA-NOMS, American Speech-Language-Hearing

Association National Outcome Measurement System Swallowing Scale; K-MBI, Korean Modified Barthel Index.

functions showed little decline after 12 months. Cluster 4, which

contained 204 patients (3.69%), was characterized by a relatively

older mean age of 76.24 years (SD, 8.44) and a 7-day NIHSS score

of 5.35 (SD, 4.74). All functional domains showed dysfunction,

especially the motor and ambulatory domains, which showed little

improvement during the first 6 months and then decreased later.

Cluster 5, which contained 201 patients (3.63%), was characterized

by relatively older age, with a mean of 75.10 years (SD, 8.92),

and a higher mean initial NIHSS score of 15.90 (SD, 8.07).

This cluster showed the worst functional recovery over all six

functional domains.

The final four clusters of HS patients and their functional

recovery characteristics are presented in Supplementary Table 1

and Figure 4. The 710 patients (61.95%) in cluster 1 were
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FIGURE 2

Visualized K-means clusters results in 2- and 3-dimensional spaces. (A) Visualized ischemic K-means clusters results (k = 5), (B) Visualized

hemorrhagic K-means cluster results (k = 4).

characterized by young age (55.99 years [12.64]) and mild initial

severity (1.61 [2.61]), similar to IS cluster 1. Cluster 2, which

contained 208 patients (18.15%), was characterized by a mean

age of 59.02 years (SD, 13.40) and a 7-day NIHSS of 12.51

(SD, 8.68). These patients had low scores in motor, cognitive,

language, ambulatory, and swallowing functions at 7 days after

stroke onset, but they recovered rapidly, especially in the motor

and ambulatory domains. Cluster 3, comprising 128 patients

(11.17%), was characterized by a mean age of 57.56 years (SD,

12.66) and a 7-day NIHSS of 15.44 (SD, 7.71). The average age

was younger than in cluster 2, but the initial stroke severity

was slightly higher. All functional domains showed low scores

at 7 days after stroke and improved significantly during the first

3 months. Those patterns were similar to those of cluster 2.

However, motor and ambulatory functions were much lower in

cluster 3. Cluster 4, which contained 100 patients (8.73%), was

characterized by older age (66.52 years [12.44]) and the highest

initial severity (19.59 [9.92]). All domains showed the lowest

initial scores with a slight improvement in the first 3 months;

however, these patients showed little improvement or even worse

performance over time.

Predicting recovery patterns after first-time
stroke

The predictive model was developed to predict the recovery

pattern for up to 24 months with only patient information up to

the subacute phase of stroke. The input variables were demographic

features and functional scores assessed 7 days and 3 months

after stroke onset. The accuracy, F1 score, precision, and recall

scores of the final IS cluster (k = 5) are demonstrated in Table 2.

Among the eight machine learning models, CatBoost and Light

GBM-XT showed the best performance (accuracy, 0.926 and 0.925,

respectively). All other models showed accuracies higher than 0.90

for IS (XGBoost, 0.920; RF, 0.919; Light GBM, 0.917; Weighted

Ensemble, 0.917; Neural Net, 0.912; Extra trees, 0.912).

The performance scores of the final HS cluster (k = 4) are

described in Table 2. Both CatBoost and Light GBM-XT showed

the highest accuracy of 0.887, and the Extra trees model showed

the lowest accuracy of 0.861. All other models showed accuracies

higher than 0.85 for HS (Light GBM, 0.887; XGBoost, 0.883;

Weighted Ensemble, 0.883; RF, 0.883; Neural Net, 0.870; Extra

trees, 0.861).
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FIGURE 3

Functional recovery patterns of clusters of ischemic stroke patients until 24 months after onset. (A) Cluster 1 (n = 3,346); minimal functional deficit in

all domains, (B) Cluster 2 (n = 405); rapid improvement of motor and ambulatory functions during the subacute phase, (C) Cluster 3 (n = 232);

significant motor and ambulatory dysfunctions with continuous improvement, (D) Cluster 4 (n = 204); moderate dysfunctions with late phase

decrement, (E) Cluster 5 (n = 201); severe dysfunctions in all domains. FMA, Fugl-Meyer Assessment; FAC, Functional Ambulatory Category; K-MMSE,

Korean Mini-Mental State Examination; Short K-FAST, Short Korean version of the Frenchay Aphasia Screening Test; AHSA-NOMS, American

Speech-Language-Hearing Association National Outcome Measurement System Swallowing Scale; K-MBI, Korean modified Barthel Index.

The detailed parameters of CatBoost and Light GBM-XT

models, which showed the highest accuracies in this study, are

described in the Supplementary material.

Discussion

In this study, we used an unsupervised machine learning

algorithm to extract clusters of long-term, multifaceted functional

recovery patterns in first-time stroke patients. After identifying the

most suitable algorithm and number of clusters for our data, we

identified five distinct IS clusters and four HS clusters based on

clinical and demographic features. All prediction models for the IS

and HS clusters achieved accuracies of 0.90 and 0.85, respectively,

when using demographic, 7-day, and 3-month functional data after

stroke. Among the models evaluated, CatBoost and Light GBM-XT

showed the best performance in both IS and HS.

Recently, machine learning has played an increasing role in

medical research. The number of publications about machine

learning in the medical field is increasing annually. PubMed
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FIGURE 4

Functional recovery patterns of clusters of hemorrhagic stroke patients until 24 months after onset. (A) Cluster 1 (n = 710); minimal functional deficit

in all domains, (B) Cluster 2 (n = 208); early rapid recovery of all functions, (C) Cluster 3 (n = 128); significant improvement in all domains over 24

months after stroke with lower motor and ambulatory function, (D) Cluster 4 (n = 100); severe dysfunctions in all domains. FMA, Fugl-Meyer

Assessment; FAC, Functional Ambulatory Category; K-MMSE, Korean Mini-Mental State Examination; Short K-FAST, Short Korean version of the

Frenchay Aphasia Screening Test; AHSA-NOMS, American Speech-Language-Hearing Association National Outcome Measurement System

Swallowing Scale; K-MBI, Korean modified Barthel Index.

showed only 370 articles using machine learning in 2007; however,

the number increased to 3,978 articles in 2017 (29). Machine

learning has advantages in personalized medicine, handling large

data sets, and design of prediction models. Indeed, multiple

studies have attempted to predict prognoses after stroke using

methods that showed relatively acceptable levels of accuracy (3,

30, 31). Among them, the Predicting Recovery Potential (PREP)

(32) and Time to Walking Independently After Stroke (TWIST)

(33) algorithms used decision trees, which is a machine learning

method, to predict upper limb or walking abilities. The PREP

algorithm for prognosis of upper limb motor recovery had a

positive predictive power of 88%, specificity of 88%, and sensitivity

of 73%. The TWIST algorithm for prognosis of independent gait

at 3 months after stroke showed prediction accuracy for 95% of

patients. Scrutinio et al. (34) compared three tree-based machine

learning algorithms to predict whether a patient who suffered a

severe stroke would be dead or alive 3 years later. The machine

learning model that showed the highest performance score had

an area under the curve (AUC) of 0.928 and an accuracy of

86.1%. Another recent study used five types of machine learning

algorithms to predict favorable outcomes (modified Rankin Scale

0 or 1) for acute IS patients at 3 months (35) and revealed

that all five algorithms had an AUC >0.8. All those studies

suggest the possibilities and usefulness of machine learning in

clinical medicine.

The KOSCO data are characterized by multi-time point

longitudinal and multivariate assessments. A previous study using

KOSCO data suggested that long-term functional recovery patterns

varied by patient baseline characteristics (36). This indicates that

it would be difficult to predict prognosis using only fragmentary

information. Moreover, our primary aim was not just to predict

a binary classification at a specific time point, but to predict

functional recovery patterns of six domains over 24 months.

The KOSCOdata indicated that 60.46% of IS patients (cluster 1)

and 61.95% of HS patients (cluster 1) showed minimal dysfunction

after stroke. Another 11.51% of IS patients (clusters 2 and 3)

and 29.32% of HS patients (clusters 2 and 3) showed significant

improvement over 24 months, reaching near full or significant

recovery from their dysfunction, though some exceptions showed

unsatisfactory recovery. In addition, 201 (4.58%) IS patients

(cluster 5) and 100 (8.73%) HS patients (cluster 4) showed severe

dysfunction from the onset of stroke. Another 3.69% of IS patients

(cluster 4) showed a decline in functional outcomes during the late

phase of follow-up. Overall, clusters with older patients presented
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TABLE 2 Performance scores of the prediction models.

Ischemic stroke Hemorrhagic stroke

Model Accuracy F1a Precisiona Recalla Model Accuracy F1a Precisiona Recalla

CatBoost 0.926 0.751 0.780 0.737 CatBoost 0.887 0.778 0.796 0.771

Light GBM-XT 0.925 0.747 0.789 0.731 Light GBM-XT 0.887 0.793 0.802 0.789

XGBoost 0.920 0.728 0.809 0.708 Light GBM 0.887 0.786 0.795 0.785

Random Forest 0.919 0.722 0.764 0.711 XGBoost 0.883 0.779 0.837 0.765

Light GBM 0.917 0.725 0.764 0.718 Weighted Ensemble 0.883 0.775 0.799 0.765

Weighted Ensemble 0.917 0.725 0.764 0.718 Random Forest 0.883 0.77 0.786 0.765

Neural Network 0.912 0.714 0.809 0.699 Neural Network 0.870 0.749 0.750 0.749

Extra Trees 0.912 0.702 0.757 0.683 Extra Trees 0.861 0.735 0.746 0.732

aValues are presented as mean values for every cluster.

Light GBM, Light Gradient Boosting Machine; Light GBM-XT, extended version of Light GBM; XGBoost, extreme gradient boosting.

worse outcomes than those of younger patients. The reason for the

larger number of clusters of poor prognoses in IS (cluster 4 and 5)

than HS (cluster 4) likely is not only the larger number of patients,

but also their older mean age.

For both stroke types, CatBoost and Light GBM-XT were the

most suitable of the eight machine learning algorithm prediction

models for the KOSCO data. Whereas previous studies targeted

only one or two time points and used few types of functional

outcomes in their predictions, our study provides stronger

evidence.We used six functional assessments to characterizemotor,

mobility, cognitive, language, and swallowing functions and ADL

independence at five to six time points. Therefore, our study can

describe patients in a more detailed and accurate manner than

previous studies and shows time-course changes. Although we

analyzed high-dimensional clinical data from a large, long-term

cohort of patients, the accuracy of our best prediction model was

0.926 for IS and 0.887 for HS.

Limitations and conclusions

This study has some limitations. First, because the KOSCO

dataset contains long-term repetitive assessment data, some

data were missing and were handled by statistical methods.

First, because the KOSCO dataset contains long-term repetitive

assessment data, some data were missing. All subjects included

in this study were followed for up to 24 months after stroke, but

some cases had missing data at some time point. In such cases, we

imputed data using the k-NN5 method as described in the Method

section. Second, we analyzed data only for those who survived

at 24 months after stroke. Therefore, the subjects of this study

may not represent all stroke patients in Korea. Finally, imaging

biomarkers such as dynamic nomogram (37) or diffusion tensor

image and functional MRI (38) also are useful predictors. However,

the KOSCO study did not include such imaging biomarkers

because there were limitations in the study design as a multicenter

national study with a large number of subjects and many time

points assessment.

Despite the above limitations, this study successfully clustered

long-term functional recovery patterns in IS and HS patients using

machine learning. Machine learning algorithms are increasing

in efficacy and overcoming their limitations. Early identification

and accurate prediction of long-term functional outcomes using

machine learning will help clinicians to develop customized

management strategies for stroke patients.
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