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Abstract: Early detection and proper management of chronic kidney disease (CKD) can delay
progression to end-stage kidney disease. We applied metabolomics to discover novel biomarkers to
predict the risk of deterioration in patients with different causes of CKD. We enrolled non-dialytic
diabetic nephropathy (DMN, n = 124), hypertensive nephropathy (HTN, n = 118), and polycystic
kidney disease (PKD, n = 124) patients from the KNOW-CKD cohort. Within each disease subgroup,
subjects were categorized as progressors (P) or non-progressors (NP) based on the median eGFR slope.
P and NP pairs were randomly selected after matching for age, sex, and baseline eGFR. Targeted
metabolomics was performed to quantify 188 metabolites in the baseline serum samples. We selected
ten progression-related biomarkers for DMN and nine biomarkers each for HTN and PKD. Clinical
parameters showed good ability to predict DMN (AUC 0.734); however, this tendency was not
evident for HTN (AUC 0.659) or PKD (AUC 0.560). Models constructed with selected metabolites and
clinical parameters had better ability to predict CKD progression than clinical parameters only. When
selected metabolites were used in combination with clinical indicators, random forest prediction
models for CKD progression were constructed with AUCs of 0.826, 0.872, and 0.834 for DMN, HTN,
and PKD, respectively. Select novel metabolites identified in this study can help identify high-risk
CKD patients who may benefit from more aggressive medical treatment.
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1. Introduction

Chronic kidney disease (CKD) is defined as an impairment in renal structure or
function that has been present for more than 3 months [1]. The global prevalence of
CKD is estimated to be 13.4% [2,3], which means that CKD is a global public health
problem [4]. End-stage kidney disease (ESKD) refers to the stage of CKD where the kidneys
can no longer function on their own, and dialysis or kidney transplant is required [5]. To
reduce morbidities related to ESKD, Kidney Disease Improving Global Outcomes (KDIGO)
guidelines recommend stratifying individuals at high risk of progression to ESKD to
monitor them more closely [6]. Hence, to help improve patient management, more sensitive
and early biomarkers of CKD progression are required.

Nonetheless, identifying progressive CKD patients is challenging due to the extensive
variation in kidney function decline among individuals [7]. Current CKD blood indicators
of kidney function, including serum creatinine and blood urea nitrogen, are insufficient
to predict deterioration or provide insight into the underlying causative processes [8].
The kidneys are homeostatic regulators that function through filtration, reabsorption,
secretion, synthesis, and degradation of various metabolites [9]. Therefore, metabolomics
may identify biomarkers capable of predicting CKD progression. Previous studies have
investigated cross-sectional associations between serum metabolite concentrations and
renal function or CKD status [10,11]. However, it is not clear whether such associations are
the result of reduced kidney function or whether changes in metabolite profiles are genuine
causal drivers of CKD progression.

Additionally, although it is thought that there is a common pathophysiology underly-
ing renal progression in CKD patients, the pace of CKD progression varies depending on
the underlying etiology [12]. Diabetic nephropathy (DMN) and hypertensive nephropathy
(HTN), which are complications of diabetes and chronic hypertension, respectively, are the
two leading causes of CKD. Unlike DMN and HTN, polycystic kidney disease (PKD) is a
genetic disorder that causes the uncontrolled growth of numerous cysts in the kidney [13].
These causes of CKD along with other characteristics, such as estimated glomerular filtra-
tion rate (eGFR), albuminuria category, and comorbid diseases, are considered significant
predictors of outcomes in the KDIGO guidelines [6]. However, definitive markers to es-
timate the risk of deterioration of CKD to ESKD in diverse kidney diseases have not yet
been identified.

In the present study, we aimed to identify novel metabolic markers as indicators
of disease progression among non-dialytic CKD patients according to the cause of CKD.
In addition, we evaluated the ability of the novel metabolite markers to predict CKD
progression as compared to clinical parameters.

2. Materials and Methods
2.1. KNOW-CKD Cohort

The KNOW-CKD is an on-going multicenter prospective cohort study in Korea of
2238 patients aged between 20 and 75 years with non-dialyzed CKD stages 1–5 enrolled
from February 2011 through January 2016. Detailed design and methods of the KNOW-CKD
study have been described previously [14,15]. Based on the etiology of CKD, study subjects
were categorized into the following subgroups of kidney diseases: glomerular disease,
diabetic nephropathy (DMN), hypertensive nephropathy (HTN), and polycystic kidney
disease (PKD) [14,15]. Subgroup classification was aided by pathologic diagnosis when
kidney biopsy results were obtainable. If not, subgroup categorization was based on the
clinical diagnosis of the nephrologist. Patients with type 2 diabetes who had albuminuria
and diabetic retinopathy were classified as having DMN. Patients with hypertension and
CKD in the absence of other diseases that could induce renal damage were identified as
having HTN. Unified criteria were used to diagnose PKD [16]. For the current metabolomics
study, only subjects in the DMN, HTN, and PKD subgroups were analyzed.
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2.2. Ethical Approval

The KNOW-CKD cohort study protocol was approved by the Institutional Review
Board (IRB) of each participating clinical center—i.e., Seoul National University Hospital
(1104-089-359), Seoul National University Bundang Hospital (B-1106/129-008), Yonsei
University Severance Hospital (4-2011-0163), Kangbuk Samsung Medical Center (2011-01-
076), Seoul St. Mary’s Hospital (KC11OIMI0441), Gil Hospital (GIRBA2553), Eulji General
Hospital (201105-01), Chonnam National University Hospital (CNUH-2011-092), and Pusan
Paik Hospital (11-091) in 2011. All procedures performed in this study involving human
participants followed the ethical standards of the IRB at Seoul National University Hospital
(IRB approval number 1710-032-891). Written informed consent was obtained from all the
subjects when they were enrolled in KNOW-CKD cohort and all the samples processed in
the lab are blinded and patients’ personal information were not disclosed. The study was
conducted in accordance with the principles of the Declaration of Helsinki.

2.3. Study Design

Serum creatinine was measured for each subject in the KNOW-CKD study at every
visit. Estimated GFR (eGFR) was calculated using the Chronic Kidney Disease Epidemiol-
ogy Collaboration (CKD-EPI) equation [17]. In previous studies, GFR slope was found to
be a strong surrogate end point of kidney disease progression that could replace end-stage
kidney disease or doubling of serum creatinine in both early and advanced CKD [18]. For
individual subjects, eGFR slope was calculated using a mixed model (random slope and
random intercept method) based on repeatedly measured eGFR [19]. Since the decline
of renal function over time is heavily dependent on the etiology of the kidney disease,
we conducted metabolomics analyses separately within subgroups of CKD. Within each
disease subgroup, subjects were categorized as progressors (P, case) or non-progressors
(NP, control) based on the median eGFR slope for each subgroup. Within each subgroup,
progressor-and-non-progressor pairs were selected randomly after best matching for age,
sex, and baseline eGFR. Metabolomics assays were carried out on fasting serum samples
obtained at study entry and preserved at −80 ◦C.

2.4. Targeted Metabolomics

Targeted metabolomics was performed using the AbsoluteIDQ® p180 kit provided by
Biocrates Life Science AG (Innsbruck, Austria). This commercial kit enables the quantitation
of a total of 188 metabolites by multiple reaction monitoring in two analysis modes. In
LC-MS/MS mode, 21 amino acids and 21 biogenic amines can be measured while in FIA-
MS/MS mode, 1 hexose, 40 acylcarnitines, 90 glycerophospholipids, and 15 sphingolipids
can be quantified. The LC-MS/MS system used in this study was an Agilent 1260 Infinity
LC system (Santa Clara, CA, USA) equipped with an AB Sciex API 4000 QTRAP mass spec-
trometer (Foster City, CA, USA). A SecurityGuard C18 column (4 × 3 mm, No. AJO-4287)
purchased from Phenomenex (Torrance, CA, USA) was connected to the LC system to sepa-
rate analytes. Serum samples were prepared and analyzed according to the p180 kit manual.
Internal standards, calibration standards, zero standards, and quality control samples are
provided in the commercial kit. In brief, 10 µL of each serum sample was extracted and
injected into the mass spectrometer for both LC-MS/MS analysis and FIA-MS/MS analysis.
In LC mode, the mobile phase A contained 0.2% formic acid in water, while mobile phase B
comprised 0.2% formic acid in ACN. Concentrations of each metabolite were calculated
according to the corresponding calibration curves using Analyst® 1.6.3 software (AB Sciex).
Calibration curves and quality controls were evaluated using MetIDQ software (Biocrates
Life Sciences AG). Data from different batches were normalized based on the same quality
control samples in all batches. Metabolites with more than 50% outliers or missing values
were removed before statistical analysis.
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2.5. Statistical Analysis

Baseline characteristics of enrolled participants are presented as mean ± standard
deviation and median and interquartile range [IQR] for continuous variables and frequency
(percentage) for categorical variables. To evaluate the significance of clinical differences
between progressors and non-progressors, clinical indices were compared in each disease
cohort by the Mann–Whitney U test. Univariate and multivariate analyses of targeted
metabolites were conducted using MetaboAnalyst 5.0. Before analysis, Pareto scaling was
carried out for data normalization. Wilcoxon rank-sum tests were performed to determine
metabolites that were significantly different between progressors and non-progressors. To
adjust the false discovery rate (FDR) in multiple comparison tests, Benjamini–Hochberg
procedures were implemented. Among all the metabolites with a q value (FDR adjusted
p value) less than 0.05, the ones with higher fold change between two progression status
means were selected as biomarker candidates. For DMN and PKD, the fold change thresh-
old was set to 1.2, while for the HTN group—in which more significant biomarkers were
found than in the other two groups—the fold change cut-off was set to 1.5. Individual box-
and-whisker plots of selected metabolites were drawn in Prism 9 software (version 9.4.1,
GraphPad, CA, USA). To investigate the ability of the selected biomarkers to differentiate
between disease progressors and non-progressors, principal component analysis (PCA)
and heatmap analysis were performed. Euclidean distances and Ward’s linkage method
were applied in the hierarchical clustering heatmap.

2.6. Prediction Modeling and Network Analysis

We also used prediction modeling to analyze the relationship between the metabolite
panels and disease progression outcomes. Prediction models were constructed to predict
progression and non-progression outcomes using clinical indices alone or with the selected
metabolites. Six of the clinical parameters most commonly used to evaluate progression
(age, sex, mean arterial pressure (MAP), baseline eGFR, body mass index [BMI], and random
urine protein/creatinine ratio [uPCR]) were selected by prediction modeling. For each
disease group, logistic regression models were constructed using clinical parameters only
and clinical parameters in conjunction with the selected progression-related biomarkers.
The random forest (RF) algorithm, which is a reliable classification tool that can achieve
a high level of accuracy in predicting outcomes, was adopted in this study. To validate
each model across different combinations of the datasets, 5-fold cross-validation was
adopted and the mean AUC was calculated. Receiver operating characteristic (ROC) curves
of the three models were generated using the pROC package in R (version 4.1.3). The
significance of differences in AUC values between pairwise models was evaluated by
DeLong’s test. To map the biochemical relationships among all statistically significant
metabolites, MetaMapp network analysis was performed for each CKD disease group.
Information including PubChem compound identifier number (CID), Kyoto Encyclopedia
of Genes and Genomes identifier number (KEGG ID), q value, metabolite fold change,
and simplified molecular-input line-entry system (SMILES) string of each metabolite was
organized before analysis. Global interaction network files were generated based on KEGG
and PubChem databases and converted into Cytoscape SIF files by MetaMapp in Google
Colaboratory (Colab). Cytoscape (version 3.9.1) was used to visualize metabolic networks,
including generated nodes and edge attributes.

3. Results
3.1. Baseline Characteristics of the Study Participants

Overall workflow and study design are presented in Figure 1. Three disease cohorts
were evaluated in this study: DMN, HTN, and PKD. Baseline characteristics of the KNOW-
CKD study sample according to the etiology of CKD are shown in Table 1. There were no
significant differences in sex, mean age, or mean baseline eGFR between progressors and
non-progressors within the three disease groups.
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Figure 1. Schematic description of this study. Clinical data and serum samples from three chronic
kidney disease cohorts, namely diabetic nephropathy (DMN, n = 124), hypertensive nephropathy
(HTN, n = 118), and polycystic kidney disease (PKD, n = 124), were collected. In each disease
group, half of the patients with lower eGFR slope were defined as disease-progressors, while the
others were defined as non-progressors. Other clinical parameters including age, sex, and baseline
eGFR, were confirmed to have no significant differences between progressors and non-progressors.
Targeted metabolomics was performed to quantify 188 metabolites in the baseline serum samples
of all the cohorts. For each group, disease progression-related metabolite biomarkers were selected
based on statistical analysis. Finally, predictive models were generated and validated through 5-fold
cross-validation. Images were created with BioRender.com.

Table 1. Baseline characteristics of enrolled patients according to the cause of chronic kidney disease.

Group Characteristic Non-Progressor Progressor p

DMN

Subject 62 (50%) 62 (50%) 0.999

Male sex 43 (69.4%) 43 (69.4%) 0.999

Age (years) 61.0 [51.0; 65.0] 60.0 [53.0; 64.0] 0.622

Baseline eGFR (mL/min/1.73 m2) 41.8 [35.2; 49.6] 42.2 [34.7; 49.9] 0.871

eGFR slope (mL/min/1.73 m2/year) 0.2 ± 1.3 −3.2 ± 1.3 <0.001

Systolic BP (mmHg) 129.3 ± 16.3 133.0 ± 16.8 0.207

Diastolic BP (mmHg) 75.1 ± 9.5 75.1 ± 9.8 0.985

BMI (kg/m2) 24.8 [23.0; 27.1] 24.8 [23.1; 26.6] 0.928

uPCR (g/g) 0.38 [0.23; 0.76] 2.17 [1.04; 4.28] <0.001

HTN

Subject 59 (50%) 59 (50%) 0.999

Male 46 (77.97%) 37 (62.7%) 0.107

Age (years) 62.00 [55.0; 67.5] 60.0 [56.0; 68.0] 0.948

Baseline eGFR (mL/min/1.73 m2) 33.30 [24.4; 45.0] 30.4 [25.9; 41.2] 0.823

eGFR slope (mL/min/1.73 m2/year) 0.6 [0.1; 1.3] −1.5 [−2.7; −1.2] <0.001

BioRender.com
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Table 1. Cont.

Group Characteristic Non-Progressor Progressor p

HTN

Systolic BP (mmHg) 122.7 ± 13.8 124.1 ± 14.8 0.603

Diastolic BP (mmHg) 75.1 ± 10.9 74.9 ± 9.8 0.951

BMI (kg/m2) 25.2 ± 3.4 24.9 ± 3.2 0.684

uPCR (g/g) 0.1 [0.05; 0.4] 0.6 [0.2; 1.1] <0.001

PKD

Subject 62 (50%) 62 (50%) 0.999

Male 40 (64.52%) 40 (64.5%) 0.999

Age (years) 46.5 ± 11.1 45.7 ± 8.6 0.679

Baseline eGFR (mL/min/1.73 m2) 81.3 [63.5; 106.6] 71.3 [60.9; 100.0] 0.202

eGFR slope (mL/min/1.73 m2/year) 0.4 [−0.3; 1.2] −2.8 [−4.2; −1.7] <0.001

Systolic BP (mmHg) 127.6 ± 12.6 129.9 ± 11.8 0.302

Diastolic BP (mmHg) 80.7 ± 9.3 81.5 ± 9.9 0.615

BMI (kg/m2) 23.2 [21.7; 25.2] 23.1 [21.6; 25.8] 0.656

uPCR (g/g) 0.06 [0.04; 0.15] 0.1 [ 0.0; 0.3] 0.020

DMN, diabetic nephropathy; HTN, hypertensive nephropathy; PKD, polycystic kidney disease; eGFR, estimated
glomerular filtration rate; BP, blood pressure; BMI, body mass index; uPCR, urine protein-to-creatinine ratio.

3.2. Potential Metabolic Biomarkers of Diabetic Nephropathy (DMN)

After removing unreliable quantitation results, we were left with results for 137 serum
metabolites for DMN patients. Among these metabolites, only 15 metabolites showed
significant differences between DMN progressors and non-progressors (q < 0.05, Table S1).
Most of these metabolites showed decreased abundance in progressive subjects. To reduce
the number of biomarkers for effective modeling, ten metabolites that had a fold-change
threshold of over 1.2 were retained, namely asymmetric dimethylarginine (ADMA), L-2-
aminoadipic acid (alpha-AAA), PC aa C34:1, PC aa C40:4, PC ae C32:2, PC ae C34:1, PC ae
C34:3, PC ae C36:5, SM (OH) C24:1, SM C26:1 (Table 2, Figure 2a).

Table 2. List of the selected disease progression related biomarkers in each disease group.

Group Metabolite Category q FC

DMN

SM C26:1 Sphingomyelin 0.002 0.567

L-2-Aminoadipic acid (alpha-AAA) Biogenic amine 0.003 0.666

PC ae C36:5 Phosphatidylcholine 0.004 0.805

PC aa C40:4 Phosphatidylcholine 0.008 0.785

PC aa C34:1 Phosphatidylcholine 0.019 0.790

Asymmetric dimethylarginine (ADMA) Biogenic amine 0.019 0.808

PC ae C34:1 Phosphatidylcholine 0.028 0.830

SM (OH) C24:1 Sphingomyelin 0.028 1.323

PC ae C34:3 Phosphatidylcholine 0.029 0.816

PC ae C32:2 Phosphatidylcholine 0.030 0.821

HTN

Dodecenoylcarnitine (C12:1) Acylcarnitine <0.001 2.257

PC aa C34:4 Phosphatidylcholine <0.001 0.580

PC ae C34:0 Phosphatidylcholine <0.001 0.631

PC ae C44:6 Phosphatidylcholine <0.001 0.653

PC aa C32:3 Phosphatidylcholine <0.001 0.565

PC ae C30:1 Phosphatidylcholine <0.001 1.726

SM C22:3 Sphingomyelin 0.007 2.085

Pimelylcarnitine (C7-DC) Acylcarnitine 0.010 0.658

SM C26:0 Sphingomyelin 0.034 1.834
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Table 2. Cont.

Group Metabolite Category q FC

PKD

PC aa C42:5 Phosphatidylcholine <0.001 1.846

PC aa C36:6 Phosphatidylcholine <0.001 1.449

PC ae C30:1 Phosphatidylcholine <0.001 1.407

Pimelylcarnitine (C7-DC) Acylcarnitine 0.007 1.666

PC aa C32:3 Phosphatidylcholine 0.010 1.227

PC aa C36:0 Phosphatidylcholine 0.013 1.225

Creatinine Biogenic amine 0.015 1.200

PC aa C34:4 Phosphatidylcholine 0.022 1.201

Hexadecenoylcarnitine (C16:1) Acylcarnitine 0.025 1.316

q: FDR-adjusted p value; FC: fold change of the metabolites in progressor with respect to non-progressor;
DMN, diabetic nephropathy; HTN, hypertensive nephropathy; PKD, polycystic kidney disease; PC aa: diacyl-
phosphatidylcholine; PC ae: acyl-alkyl-phosphatidylcholine.
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Figure 2. Multivariate statistical analysis and predictive modeling of the selected DMN progression-
related biomarkers. (a) Individual box-and-whisker plot (median, 5–95 percentile) of the selected
metabolites in DMN progressors (P, red) and non-progressors (NP, blue). (b) PCA of two components
of selected metabolites from DMN progressors (P, red) and non-progressors (NP, blue). (c) Heatmap
and hierarchical clustering analysis of the selected metabolites from DMN progressors (P, red) and
non-progressors (NP, blue). (d). ROC curves for three prediction models of DMN progression:
models using clinical parameters only (red) or together with selected metabolite biomarkers (green:
by logistic regression; blue: by random forest). Solid line: mean AUC of the 5-fold cross-validation.
Shaded area: 95% CI of AUC. * q < 0.05, ** q < 0.01. PC aa: diacyl-phosphatidylcholine; PC
ae: acyl-alkyl-phosphatidylcholine.

To evaluate the ability of these 10 metabolic biomarkers to distinguish progressors and
non-progressors, unsupervised multivariate analyses were performed. Although obvious
separation of the two groups was not observed in the PCA plot, the distribution trends
of the two groups were different (Figure 2b). In the cluster heatmap, progressors and
non-progressors did not cluster separately (Figure 2c). The logistic regression model based
on clinical parameters only achieved a decent prediction ability with a mean AUC of
0.734. Addition of metabolite data increased the average AUC of the logistic regression
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model slightly to 0.769 but without statistical significance (Table S2). However, when the
RF algorithm was used, the mean AUC of the prediction model containing both clinical
parameters and biomarker data improved to 0.826 (p < 0.05, Figure 2d, Table 3).

Table 3. Classification performance metrics for each predictive model.

Group Model Mean AUC Accuracy Sensitivity Specificity F1 Score

DMN

Model 1 0.734 0.71 0.80 0.62 0.73

Model 2 0.770 0.72 0.68 0.75 0.71

Model 3 0.826 0.74 0.67 0.82 0.71

HTN

Model 1 0.659 0.62 0.65 0.58 0.63

Model 2 0.817 0.75 0.67 0.82 0.72

Model 3 0.872 0.79 0.71 0.87 0.77

PKD

Model 1 0.561 0.58 0.58 0.58 0.58

Model 2 0.767 0.72 0.72 0.73 0.72

Model 3 0.834 0.72 0.70 0.73 0.71
Model 1, clinical only; Model 2, clinical + metabolites; Model 3, clinical + metabolites in random forest.

3.3. Potential Metabolic Biomarkers for Hypertensive Nephropathy (HTN)

For the HTN cohort, 139 serum metabolites were measured successfully. Fifty-five
metabolic biomarker candidates were found to differentiate HTN progressors and non-
progressors (q < 0.05, Table S1). Most of the biomarker candidates decreased in concentra-
tion in HTN progressors. To find biomarkers representative of HTN disease progression,
the fold-change threshold was set to 1.5. Ultimately, nine metabolites were selected as HTN
progressive biomarkers, namely dodecenoylcarnitine (C12:1), pimelylcarnitine (C7-DC), PC
aa C32:3, PC aa C34:4, PC ae C30:1, PC ae C34:0, PC ae C44:6, SM C22:3, SM C26:0 (Table 2,
Figure 3a).

According to the PCA plot based on this metabolite panel, even though there was
overlap between progressors and non-progressors, there were obvious differences in sam-
ple distributions and directionality (Figure 3b). Moreover, the heatmap showed distinct
differences between the two disease status cohorts for the nine selected biomarkers, and
hierarchical clustering distinguished between these two groups well (Figure 3c). Clinical
indicators appeared to be somewhat underpowered in predicting disease progression by lo-
gistic regression models, with a mean AUC of 0.659. The combination of clinical parameters
and metabolite data resulted in a significant improvement in the logistic regression model,
as demonstrated by a high average AUC of 0.817 (p < 0.005). Moreover, the predictive
ability of the combined biomarkers was enhanced significantly in the RF model, with a
5-fold AUC ranging from 0.804 to 0.940 (p < 0.05, Figure 3d, Table 3).

3.4. Potential Metabolic Biomarkers for Polycystic Kidney Disease (PKD)

One hundred and thirty-four metabolites were validated in serum metabolite quantita-
tion of PKD cohorts. Fifteen of the metabolites with a q value less than 0.05 were selected as
potential metabolic biomarker candidates (Table S1). Unlike the other two disease cohorts,
almost all of these biomarker candidates tended to have increased concentrations in the
PKD progressive cohort. Metabolites with a fold-change of less than 1.2 were removed
from the biomarker candidates to construct a more efficient predictive model. Eventually,
nine metabolites, namely hexadecenoylcarnitine (C16:1), C7-DC, creatinine, PC aa C32:3,
PC aa C34:4, PC aa C36:0, PC aa C36:6, PC aa C42:5, PC ae C30:1 were chosen as PKD
progression-related biomarkers (Table 2, Figure 4a).



Metabolites 2022, 12, 1125 9 of 16

Metabolites 2022, 12, x FOR PEER REVIEW 9 of 17 
 

 

Table 3. Classification performance metrics for each predictive model. 

Group Model Mean AUC Accuracy Sensitivity Specificity F1 Score 

DMN 

Model 1 0.734 0.71 0.80 0.62 0.73 

Model 2 0.770 0.72 0.68 0.75 0.71 

Model 3 0.826 0.74 0.67 0.82 0.71 

HTN 

Model 1 0.659 0.62 0.65 0.58 0.63 

Model 2 0.817 0.75 0.67 0.82 0.72 

Model 3 0.872 0.79 0.71 0.87 0.77 

PKD 

Model 1 0.561 0.58 0.58 0.58 0.58 

Model 2 0.767 0.72 0.72 0.73 0.72 

Model 3 0.834 0.72 0.70 0.73 0.71 

Model 1, clinical only; Model 2, clinical + metabolites; Model 3, clinical + metabolites in random 

forest. 

3.3. Potential Metabolic Biomarkers for Hypertensive Nephropathy (HTN) 

For the HTN cohort, 139 serum metabolites were measured successfully. Fifty-five 

metabolic biomarker candidates were found to differentiate HTN progressors and non-

progressors (q < 0.05, Table S1). Most of the biomarker candidates decreased in 

concentration in HTN progressors. To find biomarkers representative of HTN disease 

progression, the fold-change threshold was set to 1.5. Ultimately, nine metabolites were 

selected as HTN progressive biomarkers, namely dodecenoylcarnitine (C12:1), 

pimelylcarnitine (C7-DC), PC aa C32:3, PC aa C34:4, PC ae C30:1, PC ae C34:0, PC ae C44:6, 

SM C22:3, SM C26:0 (Table 2, Figure 3a).  

 

Figure 3. Multivariate statistical analysis and predictive modeling of the selected HTN progression-

related biomarkers. (a) Individual box-and-whisker plot (median, 5–95 percentile) of the selected 

metabolites in HTN progressors (P, red) and non-progressors (NP, blue). (b) PCA of two 

components of selected metabolites from HTN progressors (P, red) and non-progressors (NP, blue). 

(c) Heatmap and hierarchical clustering analysis of the selected metabolites from HTN progressors 

(P, red) and non-progressors (NP, blue). (d) ROC curves for three prediction models of HTN 

progression: models using clinical parameters only (red) or together with selected metabolite 

biomarkers (green: by logistic regression; blue: by random forest). Solid line: mean AUC of the 5-

Figure 3. Multivariate statistical analysis and predictive modeling of the selected HTN progression-
related biomarkers. (a) Individual box-and-whisker plot (median, 5–95 percentile) of the selected
metabolites in HTN progressors (P, red) and non-progressors (NP, blue). (b) PCA of two components
of selected metabolites from HTN progressors (P, red) and non-progressors (NP, blue). (c) Heatmap
and hierarchical clustering analysis of the selected metabolites from HTN progressors (P, red) and
non-progressors (NP, blue). (d) ROC curves for three prediction models of HTN progression: models
using clinical parameters only (red) or together with selected metabolite biomarkers (green: by
logistic regression; blue: by random forest). Solid line: mean AUC of the 5-fold cross-validation.
Shaded area: 95% CI of AUC. * q < 0.05, ** q < 0.01, *** q < 0.001. PC aa: diacyl-phosphatidylcholine;
PC ae: acyl-alkyl-phosphatidylcholine.

PKD non-progressors were not well separated from progressors based on the 9-
metabolite panel when using unsupervised PCA (Figure 4b). In the cluster heatmap,
progressors and non-progressors did not cluster completely separately, but local aggre-
gations of members of these two groups were evident (Figure 4c). Clinical indices did
not classify PKD progressors and non-progressors well, with a low mean AUC of 0.5608.
However, when metabolite results were added to the clinical data for classification, the pre-
dictive ability of the logistic regression model improved considerably (mean AUC of 0.767,
p < 0.001). Similar to the other two groups, the RF model based on clinical and metabolite
data had the best predictive performance with an average AUC of 0.834 (p < 0.05, Figure 4d,
Table 3).

3.5. Metabolite Network Analysis

To interpret changes in the metabolic patterns in the three disease groups, all signifi-
cant metabolites (q < 0.05) in the DMN, HTN, and PKD subgroups were analyzed using
MetaMapp (Table S1). Accordingly, biochemical interactions of a total of 67 metabolites
were mapped based on their chemical structures and functional groups. Metabolic biomark-
ers in the HTN group showed the most significant differences between progressors and
non-progressors (Figure 5). Biogenic amines like ADMA and alpha-AAA decreased only in
progressive DMN, and phosphatidylcholines including both diacyl-phosphatidylcholines
(PC aa) and acyl-alkyl-phosphatidylcholines (PC ae) showed a slight downward trend in
DMN progressors (Figure 5a). Similarly, PCs except for one lyso PC and two PC ae de-
creased dramatically in HTN progressors (Figure 5b). Unlike the other two groups, amino
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acids and biogenic amines related to glutamine metabolism tended to be higher in HTN
progressors. One acylcarnitine and two sphingomyelins showed a considerable increase in
HTN progressors. Interestingly, metabolic biomarkers like PC aa and acylcarnitines tended
to be higher in PKD progressors, which was the complete opposite of what was observed
in the other two disease groups (Figure 5c).
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Figure 4. Multivariate statistical analysis and predictive modeling of the selected PKD progression-
related biomarkers. (a) Individual box-and-whisker plot (median, 5–95 percentile) of the selected
metabolites in PKD progressors (P, red) and non-progressors (NP, blue). (b) PCA of two components
of selected metabolites from PKD progressors (P, red) and non-progressors (NP, blue). (c) Heatmap
and hierarchical clustering analysis of the selected metabolites from PKD progressors (P, red) and
non-progressors (NP, blue). (d) ROC curves for three prediction models of PKD progression: models
using clinical parameters only (red) or together with selected metabolite biomarkers (green: by
logistic regression; blue: by random forest). Solid line: mean AUC of the 5-fold cross-validation.
Shaded area: 95% CI of AUC. * q < 0.05, ** q < 0.01, *** q < 0.001. PC aa: diacyl-phosphatidylcholine;
PC ae: acyl-alkyl-phosphatidylcholine.
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Figure 5. Changes in metabolic patterns of disease progressors compared to non-progressors in the
three disease groups. MetaMapp metabolite networks of 67 metabolites altered in DMN (a), HTN
(b), and PKD (c), with nodes representing metabolites and edges, indicating chemical relationships.
ADMA, asymmetric dimethylarginine; alpha-AAA, L-2-aminoadipic acid; C7-DC, pimelylcarnitine;
C12:1, dodecenoylcarnitine; C16:1, hexadecenoylcarnitine; PC aa: diacyl-phosphatidylcholine; PC ae:
acyl-alkyl-phosphatidylcholine.

4. Discussion

CKD is usually classified into five stages based on biomarkers such as serum crea-
tinine and proteinuria [20]. Due to the heterogeneity in kidney function decline among
individuals, evaluating the progression of CKD to ESKD in patients based on CKD stage
is challenging [21]. Therefore, we applied metabolomics to discover serum biomarkers
that can better predict the risk of progression of three different types of CKD—namely
DMN, HTN, and PKD—than existing biomarkers. For all three groups, selected metabolite
biomarkers were used to construct CKD progression diagnostic models. In HTN and
PKD disease group, the predictive models based on the combination of selected novel
metabolomics biomarkers and clinical parameters were better able to predict disease pro-
gression than the models based on clinical parameters alone.

An important strength of this study is that we successfully constructed predictive
models for three different disease groups. Although clinical indices such as eGFR, protein-
uria, and mean blood pressure have been validated for CKD classification [22], they are
often not effective at identifying high-risk subjects among patients with similar clinical
symptoms. In our study, clinical indicators only showed good predictive power in the
DMN group. The combination of metabolomics results and clinical data addressed this
issue. In the HTN and PKD groups, even though the clinical classifiers showed much lower
predictive ability than in the DMN group, the addition of metabolomics data improved the
classification power of these models to a greater extent than observed in the DMN group.
When a logistic regression method was adopted, the presence or absence of metabolite data
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did not significantly affect the performance of the model to predict disease progression in
DMN. However, the selected biomarkers showed high predictive power when modeled
using a machine learning approach. Random forest models exhibited better ability to
predict disease deterioration than logistic regression models in all three disease groups.
This highlights the potential of using machine learning methods in clinical medicine.

The causes of CKD are varied. DMN is one of the most profound consequences of
diabetes mellitus in the general adult population of the US [23,24] and has become the
leading cause of ESKD in Korea [25] and across the world. Hypertension, which can cause
damage to the blood vessels and filters in the kidney, is also one of the main risk factors
for the development and progression of CKD [26,27]. These two diseases are caused by a
variety of factors, including environmental or secondary effects of other chronic diseases.

One of our findings is that a prediction model based on clinical indicators is sufficient
to predict DMN deterioration without the addition of metabolic biomarkers. Several predic-
tive models for CKD progression in diabetic patients have been developed [28–31]. Most
previous studies used clinical parameters while others included laboratory findings such as
age, eGFR, albuminuria, hemoglobin A1c, diabetic retinopathy, and diabetes duration. The
AUC values of these prediction models were usually more than 0.7, including in the current
study (Figure 2d), indicating fair performance in a clinical setting. Since the addition of
metabolites to the predictive model did not improve the prediction ability of the model, it
can be inferred that DMN progression reflects clinical phenotype more than it does changes
in the metabolomic phenotype. Although microalbuminuria is generally thought to be the
earliest marker of DMN and is an important predictor of CKD progression in clinical prac-
tice, more than 30% of patients with type 2 diabetes may have renal function decline before
microalbuminuria [32–34]. Novel biomarkers to recognize DMN without albuminuria to
improve clinical outcomes are required, and metabolomics has the potential to identify
these markers. In this study, because many DMN patients already had albuminuria or
proteinuria and subjects with advanced stage CKD were included, additional studies in
different cohorts are needed to identify novel metabolites that can identify non-albuminuria
DMN patients.

HTN, represented by hypertensive nephrosclerosis, is less often diagnosed with kidney
biopsy than other causative diseases of CKD, and its clinical phenotypes are diverse, so
the diagnostic criteria for this disease entity remain controversial [35–38]. Therefore, few
studies have attempted to predict CKD progression in those with CKD caused by HTN.
Clinical indicators such as long-standing hypertension, no diabetes, no hematuria, and
no overt proteinuria have shown a positive predictive value of 97% in African Americans
and 4% in Italians [38,39]. Thus, it is difficult to diagnose and predict HTN with clinical
parameters alone, and novel biomarkers to predict CKD progression in this group are
essential. Although additional validation studies are needed, the combination of clinical
indicators and metabolites identified in this study significantly improved the ability of our
model to predict CKD progression in the HTN group (Figure 3d).

Metabolic biomarkers differentiating between HTN progressors and non-progressors
showed the most significant differences and the highest ability to predict disease progres-
sion. Phosphatidylcholines and sphingomyelins, which are mediators linking lipid-induced
inflammatory pathways [40] and have been shown to be associated with renal impair-
ment [41], showed the most significant changes between progressors and non-progressors
in the HTN subgroup. Sphingomyelin, a type of sphingolipid found in cellular membranes,
has been reported as a significant biochemical covariate of urinary albumin excretion in
renal disease [42]. Sphingomyelin levels in the plasma of hypertensive rats were found
to be increased, which was ameliorated by administration of a cardio-renal protective
drug [43]. Amino acids as the building blocks of proteins play a vital role in metabolic
processes and organ function [44]. Elevated levels of plasma amino acids have been shown
to correlate with a reduction in kidney function [45]. Kidneys take up glutamine from
arterial blood and release a small amount of lysine, leucine, and isoleucine into the systemic
circulation [46]. In our study, amino acids except for glutamine were significantly higher in
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HTN progressors than non-progressors, indicating a decline in kidney function in progres-
sive HTN. In addition, the observed upward trends of alpha-AAA and N-acetylornithine
in HTN progressors also suggest that deficiencies in renal energy sources like glutamine
and accumulation of amino acid are biomarkers of HTN progression.

PKD is the most prevalent inherited kidney disease and is characterized by grad-
ual enlargement of multiple cysts in the kidneys along with loss of renal function over
decades [13]. The distinct metabolic patterns found in progressive PKD probably com-
pared with DMN and HTN are likely due to different underlying pathologies. Our data
confirmed this; phosphatidylcholines and acylcarnitines decreased significantly in the
DMN and HTN groups but showed an increasing trend in PKD subjects. One of the most
important indicators of renal function decline in PKD patients is mutation of the PKD1
and PKD2 genes. Patients with PKD1 mutations present with more aggressive kidney
disease than those with PKD2 mutations, so renal replacement therapy is performed at a
younger age in patients with PKD1 gene mutations [47–49]. Another key factor that can
reflect the deterioration of renal function in PKD patients is height-adjusted total kidney
volume (htTKV). In the Consortium for Radiologic Imaging observational Study (CRISP
study), a baseline htTKV of 600 cc/m predicted the risk of reaching CKD stage 3 within
8 years [50]. Pathophysiological similarities between PKD and malignancy—both of which
are related to rapid abnormal cell proliferation [51]—have been reported, and it has been
suggested that there may be a common pathway between PKD and cancer [52]. Therefore,
different metabolite patterns in PKD patients are observed not only because of common
mechanisms of CKD progression shared with DMN and HTN, but also genetic factors and
rapidly increasing kidney volumes as a result of excessive cell proliferation.

Our study had several limitations. Firstly, we were not able to validate our findings
in a replication cohort due to the limited sample size. It may result in worse performance
and credibility in our diagnostic models. To avoid this problem, we introduced a 5-fold
cross-validation method into our diagnosis models for internal validation. The multiple
random train-test splits make it possible to control the randomness for the reproducibility of
our results. Secondly, proteinuria levels of CKD progressors and non-progressors, which is
one of the important risk factors for CKD progression, were not matched in our study. This
may be the reason why the clinical indicators in the DMN group showed good predictive
power on CKD progression. Lastly, since the KNOW-CKD cohort recruited clinical data
and samples from Korean patients, the results of this study may be not applicable to people
in other regions. Although results from a larger population from diverse regions are better
for obtaining accurate and usually applicable results, we still consider our study valuable
because it can provide ideas and clues for follow-up research.

5. Conclusions

In conclusion, the novel biomarkers described in this study can help identify high-risk
CKD patients who may benefit from more aggressive medical treatment and help to distin-
guish therapy responders from non-responders for more effective patient management.
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