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We aimed to develop a machine learning (ML) classifier to detect and compare

major psychiatric disorders using electroencephalography (EEG). We retrospectively

collected data from medical records, intelligence quotient (IQ) scores from psychological

assessments, and quantitative EEG (QEEG) at resting-state assessments from 945

subjects [850 patients with major psychiatric disorders (six large-categorical and nine

specific disorders) and 95 healthy controls (HCs)]. A combination of QEEG parameters

including power spectrum density (PSD) and functional connectivity (FC) at frequency

bands was used to establish models for the binary classification between patients

with each disorder and HCs. The support vector machine, random forest, and elastic

net ML methods were applied, and prediction performances were compared. The

elastic net model with IQ adjustment showed the highest accuracy. The best feature

combinations and classification accuracies for discrimination between patients and HCs

with adjusted IQ were as follows: schizophrenia = alpha PSD, 93.83%; trauma and

stress-related disorders = beta FC, 91.21%; anxiety disorders = whole band PSD,

91.03%; mood disorders= theta FC, 89.26%; addictive disorders= theta PSD, 85.66%;

and obsessive–compulsive disorder = gamma FC, 74.52%. Our findings suggest that

ML in EEG may predict major psychiatric disorders and provide an objective index of

psychiatric disorders.

Keywords: classification, electroencephalography, machine learning, psychiatric disorder, resting-state brain

function, power spectrum density, functional connectivity

INTRODUCTION

As the standard of clinical practice, the establishment of psychiatric diagnoses is categorically
and phenomenologically based. According to the International Classification of Disorders (ICD)
and the Diagnostic and Statistical Manual for Mental Disorders (DSM) (1, 2), clinicians interpret
explicit and observable signs and symptoms and provide categorical diagnoses based on which
those symptoms fall into. This descriptive nosology enhances the simplicity of communication;
however, it is limited by potentially insufficient objectivity as it relies on observation by the
clinician and/or the presenting complaints reported by the patient or informant. In addition,
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the current system does not encompass psychopathology, in that
symptom heterogeneity in the same category of disorder, or
homogeneity among other disorders often is present. Research
has found that symptom-focused diagnosis limits the focus
of treatment to symptom relief only; therefore, data-driven
approaches to study neural/biological mechanisms, such as the
Research Domain Criteria project by the National Institute of
Mental Health, have recently been used as a diagnostic aid (3, 4).

In mental healthcare, advances in data and computational
science are rapidly changing. With respect to neural mechanisms
and objective markers, the extent of evidence that we can
measure has broadened. Additionally, use of machine learning
(ML), such as artificial intelligence, has increased. Using out-of-
sample estimates, ML can prospectively assess the performance
of predictions on unseen data (test data) not used prior to
model fitting (training data), thereby providing individualized
information and yielding results with a potentially high level
of clinical translation (5). This approach is contrary to classical
inference based on null hypothesis tests (e.g., t-test, analysis of
variance), which retrospectively focuses on in-sample estimates
and group differences and thus lacks personalized explanation
(6). ML is expected to help or possibly replace clinician decisions
such as diagnosis, prediction, and prognosis or treatment
outcomes (7).

The majority of current neuroimaging research (i.e., using
functional magnetic resonance imaging) has applied supervised
ML for diagnostic classification between patients and healthy
controls (HCs). Studies have predominantly focused on
Alzheimer’s disease, schizophrenia, and depression (8–10) but
have more recently expanded to other diagnostic topics (11).
The literature suggests that ML can be used to discriminate
psychiatric disorders using brain data with over 75% accuracy
(12). A recent review (13) that used a support vector machine
(SVM), a common ML method, to assess imaging data found
that it is possible to distinguish patients with schizophrenia
from HCs as follows: 17 of 22 studies found over 80% accuracy
for the classification of validation data and top approaches,
respectively (14).

Many imaging studies have compared HCs with subjects with
one or several disorders, but few have comprehensively compared
many disorders. This may be because acquiring imaging
data is associated with high costs, especially when including
sufficient patients for each group, a prerequisite for applying any
supervised ML algorithm. Another alternative that can measure
brain activity is electroencephalography (EEG), which delivers
information about voltage measured through electrodes placed
on the scalp. EEG is non-invasive, cost-effective, and suitable for
measuring resting-state brain activity in natural settings, allowing
easy acquisition of large amounts of data. In addition, as the
acquisition technology is simplified and the calculationmethod is
advanced, EEG is gaining attention as a core technology of brain–
computer interface (BCI). One recent EEG study suggested that
EEG spectra ML, using linear discriminant analysis learning
method, can discriminate patients with schizophrenia from HCs
with an accuracy of 80.66% (15); however, the main trend has
been to differentiate between patients with single disorders [e.g.,
schizophrenia, depression, addiction, and post-traumatic stress
disorder (PTSD), and dementia] and HCs (16–19). Notably,

EEG features used for classification have differed from study to
study; however, EEG studies that include a variety of psychiatric
disorders are beginning to emerge (20).

Here, we aimed to establish novel classifiers for discriminating
patients with major psychiatric disorders from HCs. We
retrospectively collected EEG data of patients with six main
categories of psychiatric disorders (i.e., schizophrenia, mood
disorders, anxiety disorders, obsessive–compulsive disorders,
addictive disorders, and trauma and stress-related disorders) and
their specific diagnoses (i.e., depressive and bipolar disorders),
excluding neurodevelopmental disorders. To increase the utility
of our results, classification models were constructed using
spectral power and functional connectivity (FC) features, which
are commonly used EEG parameters in clinical settings (21, 22).
Selected from ML methods, SVM and random forest (RF) were
applied, which have been widely used in various fields of disease
diagnosis; however, they struggled to explain the results of the
model. Hence, we also performed a penalized logistic regression
method, elastic net (EN) (23), to explain the results from the
multivariate EEG parameters and facilitate a comparison of
major discriminant features between disorders.

MATERIALS AND METHODS

Experimental Subjects
Data were collected retrospectively from medical records,
psychological assessment batteries, and quantitative EEG
(QEEG) at resting-state assessments from January 2011 to
December 2018 from the Seoul Metropolitan Government-Seoul
National University (SMG-SNU) Boramae Medical Center
in Seoul, South Korea. The original diagnostic decision for
clinical patients who visited the medical center was made by
a psychiatrist based on DSM-IV or DSM-5 criteria and was
also assessed using the Mini-International Neuropsychiatric
Interview during psychological assessments. Final clinical
confirmation of the primary diagnosis was established by
two psychiatrists and two psychologists from March 2019
to August 2019, who reviewed both the original diagnoses
in electrical medical records and psychological assessments
that had been completed 1 month before and after QEEG.
Concurrently, we included a HC sample (n = 95), which
was selected from the studies performed at the SMG-SNU
Boramae Medical Center. The final analyses included 945
subjects. The inclusion criteria were as follows: age from 18
to 70 years; diagnosis of the following primary diagnoses,
which fall into six large-category diagnoses and nine specific
diagnoses: schizophrenia (n = 117), mood disorders [(n =

266); depressive disorder (n = 119) and bipolar disorders (n
= 67)], anxiety disorders [(n = 107); panic disorder (n = 59)
and social anxiety disorders (n = 48)], obsessive–compulsive
disorder (n = 46), addictive disorders [(n = 186); alcohol use
disorder (n = 93) and behavioral addiction including gambling
and Internet gaming disorders (n = 93)], and trauma and
stress-related disorders [(n = 128); PTSD (n = 52), acute stress
disorder (n = 38), and adjustment disorder (n = 38)]; and
no difficulty in reading, listening, writing, or understanding
Hangeul (Korean language). The exclusion criteria were as
follows: lifetime and current medical history of a neurological
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disorder or brain injury, neurodevelopmental disorder [i.e.,
intellectual disability [intelligence quotient (IQ) < 70] or
borderline intellectual functioning (70 < IQ < 80), tic disorder,
or attention deficit hyperactivity disorder), or any neurocognitive
disorder. Ethical Approval.

This study was approved by the institutional review board
(20-2019-16). In accordance with the retrospective study design,
participant consent was waived.

EEG Settings and Parameters
EEG data included 5min eyes-closed resting-state with 19 or
64 channels acquired with 500–1,000Hz sampling rate and
0.1–100 on-line filters via Neuroscan (Scan 4.5; Compumedics
NeuroScan, Victoria, Australia). Electrode impedances were
kept below 5 k� by application of an abrasive and electrically
conductive gel. In the analysis, the EEG data were down-
sampled to 128Hz, and 19 channels were selected based on
the international 10–20 system in conjunction with a mastoid
reference electrode as follows: FP1, FP2, F7, F3, Fz, F4, F8, T7,
C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, and O2. The ground
channel was located between the FPz and Fz electrodes. Using
the Neuroguide system (NGDeluxe 3.0.5; Applied Neuroscience,
Inc., Largo, FL, USA), continuous EEG data were converted
into the frequency domain using the fast Fourier transformation
(FFT) with the following parameters: epoch = 2 s, sample rate
= 128 samples/s (256 digital time points), frequency range =

0.5–40Hz, and a resolution of 0.5Hz with a cosine taper window
to minimize leakage. Due to the mathematics of the FFT, a
single epoch of time will be noisy; we used at least 60 s length of
time. Details for EEG pre-processing and artifact rejection are
described in a previous study (24) and are also provided in the
online supplement. In the current study, power spectral density
(PSD; µV2/Hz) and FC were included as EEG parameters. Each
EEG parameter was calculated in the following frequency bands:
delta (1–4Hz), theta (4–8Hz), alpha (8–12Hz), beta (12–25Hz),
high beta (25–30Hz), and gamma (30–40Hz). PSD is the actual
spectral power measured at the sensor level, and the absolute
power value in each frequency band was included. FC was
represented by coherence value, a measure of synchronization
between two signals based on phase consistency (25, 26). To
minimize the effects of windowing in the FFT (27), an EEG
sliding average of the 256-point FFT cross-spectral matrix
was computed for each subject. The EEG data were edited by
advancing in 64-point steps (75% overlap), recomputing the
FFT, and continuing with the 64-point sliding window of the
256-point FFT cross-spectrum for the entire edited EEG record.
The mean, variance, standard deviation, sum of squares, and
squared sum of the real (cosine) and imaginary (sine) coefficients
of the cross-spectral matrix were computed across the sliding
average of the edited EEG for all 19 channels for a total number
of 81 and 1,539 log-transformed elements for each participant.
The following equation was used to calculate coherence (28):

coherence (f ) =
(
∑

N (a(x)u(y)+ b(x)v(y)))2 + (
∑

N (a(x)v(y)+ b(x)u(y)))2

∑
N (a(x)2 + b(x)2)

∑
N (u(y)2 + v(y)2)

and

a(x) = cosine coefficient for the frequency (f ) for channel x;
b(x) = sine coefficient for the frequency (f ) for channel x;
u(y) = cosine coefficient for the frequency (f ) for channel y;
and v(y) = sine coefficient for the frequency (f ) for channel
y. Supplementary Figures 1–4 provide linked-ear topographic
maps for PSD and FC.

Data Analysis
Statistical Analysis
Descriptive statistics were used to examine the overall
distribution of the demographic characteristics for each
participant (Table 1). To test the difference of demographic
variables between each clinical subject and HC, t-tests and
chi-squared tests were performed for continuous and binary
variables, respectively. The patterns of these variables were
different between clinical participants, age, sex, and/or years of
education; therefore, their effects were included in the model
for adjustment in further analyses. Furthermore, IQ is a major
psychological variable that can be associated with QEEG (29)
and can be considered a result of psychiatric symptoms (i.e.,
psychomotor retardation). Therefore, subsequent analyses
compared models with adjusted and unadjusted IQ. Statistical
analyses were conducted using R (version 3.6.3; https://www.r-
project.org).

Classification of Psychiatric Disorders
Based on QEEG
Feature Combination
For QEEG, feature combinations that were computed in
classification models were a mixture of the following conditions:
QEEG parameters including PSD (number of features = 19), FC
(number of features = 171), and PSD + FC (number of features
= 190); QEEG parameters in each frequency band including
delta, theta, alpha, beta, high beta, gamma, and all six bands; and
adjusting for age, sex, education, and IQ. The number of features
computed in the ML model ranged from 22 (i.e., 19 channel PSD
in the delta band + age + sex + education) to 1,144 [i.e., (19
channel PSD + 171 pair FC) × all six bands + age + sex +

education+ IQ; Figure 1].

Classification Model
We considered three ML methods for classifying psychiatric
disorders: SVM, RF, and logistic regression with EN penalty.

SVM

SVM is one of the most frequently used ML methods in
binary classification. The main idea of SVM is to find a linear
separating hyperplane that maximizes the margin—that is, the
largest distance gap between the two group’s data points (30).
In general, most data cannot be linearly divided, so original
data are mapped to a linearly separable high-dimensional space
through the so-called kernel trick. The main hyperparameter of
SVM is the regularization amount related with the size of the
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TABLE 1 | Demographic characteristics of samples.

Main/specific Age Sex Education IQ

Mean (SD) t Counts (proportions) χ
2 Mean (SD) t Mean (SD)

Healthy control

(n = 95)

25.72 (4.55) Male: 60 (63.2%)

Female: 35 (36.8%)

14.91 (2.06) 116.24 (10.94)

Schizophrenia

(n = 117)

31.73 (12.10) 4.58*** Male: 65 (55.6%)

Female: 52 (44.4%)

1.25 12.84 (2.95) −5.76*** 89.62 (17.51)

Mood disorder

(n = 266)

30.87 (12.70) 3.86*** Male: 151 (56.8%)

Female: 115 (43.2%)

1.17 13.31 (2.48) −5.59*** 101.58 (15.70)

Depressive disorder

(n = 199)

31.26 (13.23) 3.96*** Male: 109 (54.8%)

Female: 90 (45.2%)

1.84 13.05 (2.51) −6.25*** 101.85 (15.28)

Bipolar disorder

(n = 67)

29.71 (11.01) 3.17** Male: 42 (62.7%)

Female: 25 (37.3%)

0.00 14.11 (2.21) −2.36* 100.81 (16.98)

Anxiety disorder

(n = 107)

29.01 (10.56) 2.81** Male: 79 (73.8%)

Female: 28 (26.2%)

2,67 13.14 (2.42) −5.52*** 98.31 (16.31)

Panic disorder

(n = 59)

31.05 (11.30) 4.10*** Male: 38 (64.4%)

Female: 21 (35.6%)

0.25 13.45 (2.91) −3.62*** 100.31 (14.77)

Social anxiety disorder

(n = 48)

26.51 (9.09) 0.69 Male: 41 (85.4%)

Female: 7 (14.6%)

7.61** 12.78 (1.60) −6.28*** 95.85 (17.89)

Obsessive–compulsive disorder

(n = 46)

28.48 (9.83) 2.28* Male: 38 (82.6%)

Female: 8 (17.4%)

5.53* 13.93 (2.33) −2.45* 107.80 (15.24)

Addictive disorder

(n = 186)

29.63 (10.89) 3.34*** Male: 164 (88.2%)

Female: 22 (11.8%)

24.33*** 13.23 (2.53) −5.55*** 103.88 (16.19)

Alcohol use disorder

(n = 93)

34.16 (11.88) 6.45*** Male: 75 (80.6%)

Female: 18 (19.4%)

7.09** 13.29 (3.07) −4.22*** 103.38 (13.61)

Behavioral addiction disorder

(n = 93)

25.09 (7.48) −0.70 Male: 89 (95.7%)

Female: 4 (4.3%)

30.26*** 13.16 (1.89) −6.02*** 104.38 (18.49)

Trauma and stress-related disorder

(n = 128)

36.09 (13.82) 7.03*** Male: 44 (34.4%)

Female: 84 (65.6%)

18.15*** 13.57 (2.45) −4.28*** 98.89 (15.86)

Post-traumatic stress disorder

(n = 52)

42.74 (13.0) 11.55*** Male: 14 (26.9%)

Female: 38 (73.1%)

17.65*** 13.37 (2.54) −3.95*** 98.90 (15.69)

Acute stress disorder

(n = 38)

28.90 (9.05) 2.69** Male: 3 (7.9%)

Female: 35 (92.1%)

33.25*** 14.26 (2.27) −1.59 104.06 (15.43)

Adjustment disorder

(n = 38)

34.19 (14.90) 5.01*** Male: 27 (75.0%)

Female: 11 (25.0%)

0.74 13.26 (2.41) −4.21*** 94.24 (15.41)

*p < 0.05, **p < 0.01, ***p < 0.001. Statistical values are results from comparison between each psychiatric disorder and healthy controls. IQ, Intelligence Quotient.

margin. It prevents the model from overfitting and improves the
predictability of new data. We determined this hyperparameter
with a grid search method, which finds the optimal parameter
value in candidates from a grid of parameter values. The range
of candidate values was set to (0.1, 0.5, 1, 5, 10). For SVM
fitting, we used the R-package rminer, which provides various
classification and regression methods, including SVM, under the
same coherent function structure. In addition, it also allows us to
tune the hyperparameters of the models.

RF

RF (31) is based on an ensemble technique that makes
better predictions by combining multiple decision trees. The
performance of a single decision tree is unstable since the
generated decision trees differ according to the training dataset.
To handle this problem, RF uses a bagging technique that builds
many trees that randomly extract only some features and averages
them. RF generally has a high level of performance by reducing
the variance of prediction compared to that of a singlemodel. The

main hyperparameter of RF is the number of features randomly
extracted when building a tree. Following Hastie et al. (32) we
used the default value for the classification problem: the squared
root of the total number of features. We used the R-package
random Forest, which allows to fit RF by performing classification
based on a forest of trees using random inputs and can examine
the importance of each variable in the created model.

EN

When applying logistic classification with high-dimensional
features, penalized logistic classification is commonly used for
avoiding the ill-posed problem. Among the various penalty
terms, the EN introduced by Zou and Hastie (23) works well
when the input features are strongly correlated. Because the
EN penalty is a compromise of the ridge and lasso penalty, it
can effectively select the relevant variables and encourage highly
correlated variables to be averaged. EN has a hyperparameter
that indicates the amount of penalty used in the model. The
optimal value of λ was selected by K-fold cross-validation.
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FIGURE 1 | Overview of the study. EEG, electroencephalography; QEEG, quantitative EEG; PSD, power spectrum density; FC, functional connectivity; and FFT, fast

Fourier transformation.

The R-package glmnet was used for fitting EN. glmnet is
a package that fits classification or regression models via
penalized maximum likelihood. It can handle lasso, EN, and
ridge penalty through the regularization parameter λ; it provides
the fast automatic search algorithm for finding the optimal
value of λ.

Cross-Validation and Feature Extraction. The performance
of all models was compared based using 10-fold cross-
validation, which partitions the original sample into 10 disjointed
subsets, using nine of those subsets in the training process,
and then making predictions about the remaining subset.
Furthermore, for each fold, EN extracts the relevant features,
which have non-zero estimates of regression coefficients. If
the estimates of a feature were not zero more than seven
times among 10-fold groups, we considered the feature to
have “survived.”

Permutation Test. We conducted a permutation test to assess the
significance of each of the best EN models. We generated 1,000
random permutations and constructed the null distribution of
the area under curve (AUC) (33, 34). p-values were obtained by
calculating the number of cases that exceeded the AUC of the best
EN model.

RESULTS

Comparison of Models
To select the model, we compared the performance of SVM, RF,
and EN in terms of AUC. Regardless of adjusting for IQ, the
accuracies of SVM, RF, and EN were each above the level of
chance. With respect to the prediction of distinguishing patients
with main-categorical psychiatric disorders from the HCs, EN
showed the highest accuracy, in that the mean AUC for all
disorders adjusted for IQ was 87.59 ± 7.92% (SVM = 86.02
± 8.89% and RF = 87.18 ± 8.08%). EN also demonstrated
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TABLE 2 | Comparison of elastic net models in predicting outcomes in patients with psychiatric disorders distinguished from healthy controls in major category diagnoses.

Feature AUC Sens Spec Feature AUC Sens Spec p-value

(best)
(Entire) Mean (SD) (best) Mean (SD)

Schizophrenia Entire 87.08 85.11 85.30 Alpha PSD 93.83 91.44 92.42 <0.001

(5.48) (10.57) (12.15) (5.74) (9.88) (10.73)

Mood disorder Entire 84.98 85.44 78.91 Theta FC 89.26 89.33 80.85 <0.001

(5.04) (11.25) (13.38) (6.20) (11.50) (12.19)

Anxiety disorder Entire 88.95 82.00 91.33 Whole PSD 91.03 83.18 91.78 <0.001

(6.47) (13.30) (10.17) (5.29) (11.99) (6.42)

Obsessive–compulsive disorder Entire 65.00 59.78 85.00 Gamma FC 74.52 65.33 90.00 0.005

(17.40) (17.91) (19.44) (18.43) (22.10) (21.60)

Addictive disorder Entire 76.70 70.58 83.67 Theta PSD 85.66 71.61 94.89 <0.001

(10.04) (17.25) (19.84) (5.22) (12.45) (5.40)

Trauma and stress-related disorder Entire 86.52 87.67 81.99 Beta FC 91.21 86.44 90.64 <0.001

(10.09) (15.45) (11.21) (5.30) (9.58) (6.04)

Age, sex, education, and IQ were included in the model. Permutation test was conducted in order to assess the significance of each of the best EN models. EN, elastic net; PSD, power

spectrum density; FC, functional connectivity; IQ, intelligence quotient.

the highest mean AUC performance for specific disorders (EN
= 87.76 ± 8.42%, SVM = 82.83 ± 7.62%, and RF = 86.16
± 8.97%). Therefore, EN was selected as the final method for
further analyses. Supplementary Tables 1, 2 show results for the
comparisons of SVM, RF, and EN in detail.

Tables 1, 2 show the EN results of the discrimination model
and feature combinations for each type of disorder. Compared to
all features, PSD+ FC in all bands were added to the models and
select features showed superior classification accuracy (Tables 1,
2). In addition, adjusting IQ enhanced the performance of
discrimination models compared to leaving IQ unadjusted
(Supplementary Figure 5).

Best Feature Combinations
All best models for each disorder from EN significantly
distinguished between patients with psychiatric disorders and
HCs (p < 0.05). The best feature combinations and classification
accuracies for discrimination between patients with each large-
category of diagnosis and HCs with adjusted IQ were as follows
(Table 2): schizophrenia = alpha PSD, 93.83 ± 5.74%; trauma
and stress-related disorders = beta FC, 91.21 ± 5.30%; anxiety
disorders = whole band PSD, 91.03 ± 5.29; mood disorders
= theta FC; 89.26 ± 6.20; addictive disorders = theta PSD,
85.66 ± 5.22; and obsessive–compulsive disorder = gamma FC,
74.52 ± 18.43. Higher accuracies of best models were found for
specific diagnoses, compared to the large diagnostic category.
Particularly, the maximum accuracy reached a fairly good level
in that the accuracy for PTSD was 95.38± 4.90%.

Moreover, the best feature appeared differently based on
specific diagnosis, even for those in the same category. The best
accuracies for specific disorders after adjusting for IQ were as
follows (Table 3): PTSD = beta PSD, 95.38 ± 4.90; adjustment
disorder = alpha FC, 93.75 ± 7.31; acute stress disorder = beta
PSD+ FC, 92.00± 6.63; alcohol use disorder=whole band PSD,
93.21 ± 6.31; behavioral addiction = delta PSD, 84.78 ± 8.85;
bipolar disorder = delta PSD + FC, 92.13 ± 3.01; depressive

disorder = delta FC, 87.92 ± 5.67; social anxiety disorder =

theta FC, 90.63 ± 8.51; and panic disorder = whole band PSD,
90.07± 5.32.

Furthermore, Figures 2, 3 provide region-wise predictors
in the best EN model that were at a survival rate above
70% during the cross-validation (for more details, see
Supplementary Tables 3, 4).

DISCUSSION

Our current study offers the following clinical insights:
higher severity disorders increase the accuracy of the ML
discrimination (e.g., classification of schizophrenia demonstrated
the best accuracy); classifications for specific diagnoses (e.g.,
PTSD and acute stress disorder) provide higher accuracy
than grouping large categories (e.g., trauma and stress-related
disorders); and each disorder classificationmodel shows different
EEG characteristics.

First, consistent with our findings, previous imaging studies
have found higher diagnostic accuracy for schizophrenia (92%)
than bipolar disorder (79%) (35); however, the authors suggest
that this may be due to the fact that although both disorders
are associated with altered brain activity in several overlapping
regions, the magnitude of dysfunction was more pronounced
in schizophrenia. Moreover, in the present study, trauma- and
stress-related disorders ranked second for accuracy with an AUC
of 91.21% among large-category disorders and PTSD ranked first
with an AUC of 95.38% among specific diagnoses. Similarly,
one study found higher accuracy for PTSD-HC (80.00%) than
for major depression-HC (67.92%) discrimination (36). While
it is difficult to determine the severity of the disorder by the
accuracy alone, it is plausible that functional brain alterations
in specific disorders, such as schizophrenia, representative
psychiatric disorders, and PTSD with an explicit traumatic event,
are more pronounced than that of other psychiatric disorders.

Frontiers in Psychiatry | www.frontiersin.org 6 August 2021 | Volume 12 | Article 707581

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Park et al. Identifying Psychiatric Disorders Using Machine-Learning

TABLE 3 | Comparison of models in predicting outcomes in patients with psychiatric disorders distinguished from healthy controls in specific diagnoses.

Feature AUC Sens Spec Feature AUC Sens Spec p-value

(best)
(Entire) Mean (SD) (Best) Mean (SD)

Depressive disorder Entire 83.52 68.32 94.89 Delta FC 87.92 80.82 91.44 <0.001

(10.02) (16.05) (8.58) (5.67) (15.10) (12.35)

Bipolar disorder Entire 88.3 92.62 79.22 Delta PSD+FC 92.13 90.71 85 <0.001

(7.62) (12.32) (11.93) (3.01) (11.25) (10.76)

Panic disorder Entire 88.8 92.78 81 Whole PSD 90.07 89.44 88 <0.001

(6.85) (8.34) (13.34) (5.32) (11.04) (11.46)

Social anxiety disorder Entire 84.76 84.11 87.5 Theta FC 90.63 91.56 88 <0.001

(11.99) (10.53) (19.61) (8.51) (6.5) (13.98)

Alcohol use disorder Entire 84.04 84.67 82.22 Whole PSD 93.21 92.33 88.44 <0.001

(9.63) (20.48) (13.71) (6.31) (7.45) (13.62)

Behavioral addiction disorder Entire 69.6 67.56 79.33 Delta PSD 84.78 81.33 83.67 <0.001

(10.88) (19.26) (25.76) (8.85) (13.87) (14.34)

Post-traumatic stress disorder Entire 86.24 79.22 92.33 Beta PSD 95.38 95.88 92 <0.001

(10.18) (18.36) (13.7) (4.9) (7.1) (10.32)

Acute stress disorder Entire 87.18 96.66 80.77 Beta PSD+FC 92 95 89.44 <0.001

(16.04) (10.54) (24.56) (6.63) (10.54) (11.27)

Adjustment disorder Entire 86.4 92.5 82 Alpha FC 93.75 95 91.66 <0.001

(10.16) (16.87) (11.76) (7.31) (10.54) (13.42)

Age, sex, education, and IQ were included in the model. Permutation test was conducted in order to assess the significance of each of the best EN models. EN, elastic netl; PSD, power

spectrum density; FC, functional connectivity; IQ, intelligence quotient.

Alternatively, the homogeneity of neurodynamical states of intra-
diagnostic disorders might influence the accuracy.

Second, we obtained higher accuracy in the specific categories
than in the large grouping categories. In particular, in addictive
disorders, when alcohol use disorder (93.21%) and behavioral
addiction (84.78%) were classified rather than assessed as a large
categorical diagnosis (85.78%), the accuracies were much higher.
Results of repeated studies of that behavioral addiction, including
Internet gaming disorder, have distinguished functional brain
features from those in substance abuse disorders (37). With
respect to bipolar and depressive disorders, the two were divided
into different categories in DSM-5, but in the previous version of
DSM and the current version of ICD, they were classified into
one (i.e., mood or affective disorder). Compared to the group
of mood disorders (89.26%), bipolar disorder showed higher
accuracy (92.13%) when classified alone, but the accuracy of
depressive disorder (87.92%) was relatively low. These findings
may supplement attempts to discriminate mood disorders (38,
39). However, it should be avoided to interpret it as a more
serious disease because the accuracy of bipolar disorder was
higher than that of depressive disorder. This is because, as
mentioned above, neurodynamical state heterogeneity can exist
even within the same category. In addition, since several complex
factors such as duration of disorder, recurrence, comorbidity,
severity of symptoms, and psychotropic medication can affect
brain function and EEG (40, 41), the results of this study are
not considered to be more discriminatory than HC or inter-
disease severity. It is not appropriate to interpret the results of
this study by simplifying as that such disease category is better

discriminated than the healthy individuals or that there is a
hierarchical hierarchy of diseases.

Third, each classification model provides different best
predictive features; different EEG patterns may imply the
likelihood of diagnosis of distinguished psychiatric disorders.
For instance, schizophrenia is best distinguished from HCs
by abnormal alpha band power spectra; however, anxiety
disorders are best distinguished from HCs by abnormal
whole band power spectra. Several key features including beta
power abnormalities in trauma and stress-related disorder,
theta connectivity abnormalities in social anxiety disorder,
and prefrontal connectivity abnormalities in fast frequency
in obsessive–compulsive disorder are consistent with previous
studies using group difference statistics (21, 42–44). In addition,
dysfunctional connectivity in slow frequency bands in depressive
disorder has been confirmed by a previous ML study (17). These
differences in EEG patterns were also present within the same
category (e.g., panic disorder vs. social anxiety disorder; PTSD
vs. acute stress disorder). This implies that there is heterogeneity
between disorders classified into the same category. In fact, not
all patients with acute stress disorder develop PTSD. In this
context, one study suggested that fear inhibition was different
between acute stress disorder and PTSD groups (45). The key
EEG features of each disorder suggested in the present study can
provide useful information for diagnostic decisions of individuals
in clinical settings. Nevertheless, cautious interpretation of the
findings should be implemented, in that key features are not
to be considered as directly reflecting the brain mechanisms of
the disorder.
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FIGURE 2 | Region-wise predictions for main categories of psychiatric disorders distinguished from healthy controls. Dots and lines represent region-wise survived

predictors in the best EN model, which emerged significant above 7 times during 10 times of cross-validation. Dots mean channel-level PSD (absolute power) as

QEEG parameter and lines mean channel-level FC (coherence) as QEEG parameter. Features colored in red represent higher probabilities for the psychiatric disorder

when more increase. Features colored in blue represent higher probabilities for the psychiatric disorder when more decrease. Age, sex, the year of education, and the

IQ score were computed in the models. EN, Elastic Net; PSD, Power Spectrum Density; FC, Functional Connectivity; QEEG, Quantitative Electroencephalography;

and IQ, Intelligence Quotient.

This study focused on classification between patients with
each mental disorder and HCs. We additionally performed
analyses using EN ML between several psychiatric disorders. As
in the previous analysis, the effects of demographic data and IQ
were treated as covariates. The best EEG feature combination
and AUC for each disease discrimination emerged as follows
(see Supplementary Table 5 for more details): schizophrenia
vs. bipolar disorder = alpha PSD + FC, 67.84 ± 13.67%;
schizophrenia vs. mood disorder = alpha PSD, 68.08 ± 7.23%,
schizophrenia vs. depressive disorder = theta FC, 68.70 ±

12.67%; bipolar disorder vs. depressive disorder = alpha PSD +

FC, 67.84± 13.67%; and panic disorder vs. social anxiety disorder
= alpha PSD + FC, 70.47 ± 20.91%. Although the results had
lower AUC than the comparison between patients with each
disorder and HCs, all permutation results showed a higher level
of discrimination than chance (ps < 0.05). In other words, EEG

ML might be helpful for diagnostic decision between psychiatric
disorders and HC and also between disorders. Multi-class ML
method approach attempts in future studies would enhance the
usability of EEG ML.

There is a wide variety of methods for extracting features
including time series domain and frequency domain, and
methods are still being developed. Extracting relevant features
for modeling is crucial for ML to perform dimensional
reduction and increase prediction accuracy (46). The current
study used channel-level resting-state EEG absolute power as a
representative PSD and coherence as the index of FC. These two
parameters are where bandwidth field knowledge and research
results have been accumulated for several decades (21, 47,
48). Our results can be extended to diagnostic information
and help individualized treatment choices. Previous research
has reported promising outcomes for predicting treatment
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FIGURE 3 | Region-wise predictions for specific psychiatric disorders. Dots and lines represent region-wise survived predictors in the best EN model, which emerged

significant above 7 times during 10 times of cross-validation. Dots mean channel-level PSD (absolute power) as QEEG parameter and lines mean channel-level FC

(coherence) as QEEG parameter. Features colored in red represent higher probabilities for the psychiatric disorder when more increase. Features colored in blue

represent higher probabilities for the psychiatric disorder when more decrease. Age, sex, the year of education, and the IQ score were computed in the models. EN,

Elastic Net; PSD, Power Spectrum Density; FC, Functional Connectivity; QEEG, Quantitative Electroencephalography; and IQ, Intelligence Quotient.

responses, including medication and transcranial direct current
stimulation, with ML using pre-treatment resting-state EEG
(49, 50). In addition, the task-free and resting-state method

during acquisition of EEG involves less measurement time than
the paradigm using experimental stimulation; thus, it has high
accessibility and scalability.
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The current study has several limitations. First, the effects
of medication, comorbidity, and severity of disorder were not
controlled. Second, diagnoses were made near the time EEGs
were measured, and we therefore cannot rule out the possibility
of mixed results of patients who were subsequently diagnosed
with different disorders. Third, the sample is from one center and
the race and nationality are limited to Asian and Korean. Finally,
our design is retrospective, and we did not prospectively verify
the modeling. Moreover, external validation was not performed
on other samples. Therefore, for generalization, it is necessary to
verify the results with additional samples.

In conclusion, we found that an ML approach using EEG
could predict major psychiatric disorders with differing degrees
of accuracy according to diagnosis. Each disorder classification
model demonstrated different characteristics of EEG features.
EEG ML is a promising approach for the classification of
psychiatric disorders and has the potential to augment
evidence-based clinical decisions and provide objectively
measurable biomarkers. It would be advantageous to provide
the automated diagnostic tools in future medical healthcare
using BCI.
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