
Bae et al. Boundary Value Problems        (2019) 2019:125 
https://doi.org/10.1186/s13661-019-1237-6

R E S E A R C H Open Access

Existence of nontrivial weak solutions for
p-biharmonic Kirchhoff-type equations
Jung-Hyun Bae1, Jae-Myoung Kim2, Jongrak Lee3* and Kisoeb Park4

*Correspondence:
jrlee0124@ewha.ac.kr
3Institute of Mathematical Sciences,
Ewha Womans University, Seoul,
Republic of Korea
Full list of author information is
available at the end of the article

Abstract
We are concerned with the following p-biharmonic equations:

�2
pu +M

(∫

RN
Φ0(x,∇u)dx

)
div(ϕ(x,∇u)) + V(x)|u|p–2u = λf (x,u) in R

N ,

where 2 < 2p < N, �2
pu =�(|�u|p–2�u), the function ϕ(x, v) is of type |v|p–2v,

ϕ(x, v) = d
dvΦ0(x, v), the potential function V :RN → (0,∞) is continuous, and

f :RN ×R → R satisfies the Carathéodory condition. We study the existence of weak
solutions for the problem above via mountain pass and fountain theorems.
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1 Introduction
We are concerned with the following p-biharmonic equations:

�2
pu + M

(∫

RN
Φ0(x,∇u) dx

)
div

(
ϕ(x,∇u)

)
+ V (x)|u|p–2u = λf (x, u) in R

N , (P)

where 2 < 2p < N , 1 < p < p∗ := Np
N–2p , �2

pu = �(|�u|p–2�u) is a p-biharmonic operator,
the function ϕ(x, v) is of type |v|p–2v, ϕ(x, v) = d

dvΦ0(x, v), the potential function V : RN →
(0,∞) is continuous, and f : RN ×R →R satisfies the Carathéodory condition.

The fourth-order differential equations arise in the study of deflections of elastic beams
on nonlinear elastic foundations. Thus, they become very significant in engineering and
physics. Many authors considered this type of equation in recent years, and we refer to
[9, 13, 27] and the references therein. For this reason, the existence of solutions of p-
biharmonic equations has been studied by several authors; see [6, 8, 12, 15, 21, 24, 30,
31, 34]. To obtain the existence and multiplicity results for the p-Laplace type operators,
which generalize the usual p-Laplacian, the authors in [10, 28] considered the following
condition:

d|v|p ≤ ϕ(x, v) · v ≤ pΦ0(x, v)
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for all x ∈ R
N and v ∈ R

N , and for some positive constant d; see also [14]. On the other
hand, Kirchhoff in [20] initially proposed the following equation:

ρ
∂2u
∂t2 –

(
ρ0

h
+

E
2L

∫ L

0

∣∣∣∣
∂u
∂x

∣∣∣∣dx
)

∂2u
∂x2 = 0,

which is a generalization of the classical D’Alembert’s wave equation. Also, Woinowsky
and Krieger [33] in the 1950s considered a stationary analogue of the evolution equation
of Kirchhoff type, namely

utt + �2u – M
(‖∇u‖2)�u = f (x, u),

as a model for the deflection of an extensible beam on nonlinear foundations. Here, u
denotes the displacement, f is the force that the foundations exert on the beam, and M
models the effects of the small changes in the length of the beam (see, e.g., [3–5, 7] for
the physics viewpoint model). In view of mathematics, many researchers have extensively
studied the existence of weak solutions for the elliptic problem of Kirchhoff type in recent
years (see, e.g., [11, 16, 18]). Based on these references, we consider the generalized elliptic
equation (P) involving the p-biharmonic and generalized p-Laplacian of Kirchhoff type.

Since the seminal paper of Ambrosetti and Rabinowitz in [2], the existence of solutions
for the elliptic problem has been studied by many researchers. A common feature of these
works is that the following condition, which is originally due to Ambrosetti and Rabi-
nowitz, is imposed on the nonlinearity f :

(AR) There exist positive constants m and ζ such that ζ > p and

0 < ζF(x, t) ≤ f (x, t)t for x ∈ Ω and |t| ≥ m,

where F(x, t) =
∫ t

0 f (x, s) ds, and Ω is a bounded domain in R
N .

The (AR) condition above is somewhat natural and important to guarantee the bound-
edness of Palais–Smale sequence of Euler–Lagrange functional for an elliptic equation,
however, this condition is very restrictive and eliminates many nonlinearities. Thus, many
researchers have tried to drop the (AR) condition for elliptic equations associated with the
p-Laplacian; see, e.g., [1, 23, 25, 26, 29].

The purpose of this paper is to study the existence of weak solutions for problem (P)
without assuming the (AR) condition, but imposing various assumptions for the diver-
gence part ϕ and nonlinear term f . In particular, as observed by Remark 1.8 in [23], there
are many examples which do not fulfill the condition of the nonlinear term f given in [1, 25,
26]. On the other hand, in case of the whole space R

N , the main difficulty of this problem
is the lack of compactness for the Sobolev theorem. In that sense, our study is to pursue
two goals. First, we show the existence of nontrivial weak solutions for the problem above
using the mountain pass theorem. To be precise, we prove the existence of weak solutions
for problem (P) under Cerami condition, as a weak version of the Palais–Smale condition.
Also, we try to do analysis using the properties of Kirchhoff function M and function ϕ.
Second, we show the multiplicity of weak solutions to problem (P) via the fountain theo-
rem. To the best of our knowledge, there were no such existence results for our problem
in this situation.
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2 Preliminaries
In this section, we briefly describe the framework for our problem. We assume that the
potential V ∈ C(RN ) is a continuous function with

(V) infx∈RN V (x) > 0, and meas{x ∈R
N : V (x) ≤ K} < +∞ for all K ∈R.

Also, we set Dp(RN ) = {u ∈ Lp∗ (RN )|�u ∈ Lp(RN )}. Thus, we define the function space as
follows:

X =
{

u ∈ Dp(
R

N)
:
∫

RN

(|�u|p + |∇u|p + V (x)|u|p)dx < +∞
}

equipped with the norm

‖u‖p
X = ‖�u‖p

Lp(RN ) + ‖∇u‖p
Lp(RN ) +

∥∥V 1/pu
∥∥p

Lp(RN ).

For our problem, we first assume that M : R+ →R
+ satisfies the following conditions:

(M1) M ∈ C(R+) satisfies inft∈R+ M(t) ≥ m0 > 0, where m0 is a constant.
(M2) There exists θ ∈ [1, N

N–p ) such that θM(t) = θ
∫ t

0 M(τ ) dτ ≥ M(t)t for any t ≥ 0.
A typical example for M is given by M(t) = b0 + b1tn with n > 0, b0 > 0, and b1 ≥ 0.

Next, we assume that ϕ : RN ×R
N → R

N is a continuous function with the continuous
derivative with respect to v of the mapping Φ0 : RN × R

N → R, Φ0 = Φ0(x, v), that is,
ϕ(x, v) = d

dvΦ0(x, v). Suppose that ϕ and Φ0 satisfy the following assumptions:
(J1) The equality

Φ0(x, 0) = 0

holds for almost all x ∈R
N .

(J2) There are a nonnegative function a ∈ Lp′ (RN ) and a nonnegative constant b such
that

∣∣ϕ(x, v)
∣∣ ≤ a(x) + b|v|p–1

holds for almost all x ∈R
N and for all v ∈R

N . Here, p′ is a conjugate number of p.
(J3) The relations

d|v|p ≤ ϕ(x, v) · v and d|v|p ≤ pΦ0(x, v)

hold for all x ∈R
N and v ∈ R

N , where d is a positive constant.
(J4) Φ0(x, ·) is strictly convex in R

N for all x ∈R
N .

(J5) The relation

pΦ0(x, v) – ϕ(x, v) · v ≥ 0

holds for all x ∈ R
N and all v ∈R

N .
Let us define the functional Φ : X →R by

Φ(u) =
1
p

∫

RN
|�u|p dx + M

(∫

RN
Φ0(x,∇u) dx

)
+

1
p

∫

RN
V (x)|u|p dx.
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It is not difficult to prove that the functional Φ ∈ C1(X,R), and its Fréchet derivative is
given by

〈
Φ ′(u), v

〉
=

∫

RN
|�u|p–2�u�v dx + M

(∫

RN
Φ0(x,∇u) dx

)∫

RN
ϕ(x,∇u) · ∇v dx

+
∫

RN
V (x)|u|p–2uv dx.

We give some examples satisfying assumptions (J1)–(J5).

Example 2.1
(1) Let us consider the following functions:

ϕ(x, v) = |v|p–2v and Φ0(x, v) =
|v|p
p

for v ∈R
N and x ∈R

N . Then it is obvious that assumptions (J1)–(J5) hold.
(2) Suppose that a ∈ L2p′ (RN ), and there is a positive constant a0 such that a(x) ≥ a0 for

almost all x ∈ R
N . We consider

ϕ(x, t) =
(
a(x) + t2) p–2

2 t and Φ0(x, t) =
1
p
[(

a(x) + t2) p
2 – a(x)

p
2
]

for t ∈ R, where p ≥ 2 for all x ∈R
N . Then assumptions (J1)–(J5) hold.

By analogous arguments as in [19, 22], the following lemma is easily checked, and thus
we omit the proof. That is, the operator Φ ′ is a mapping of type (S+).

Lemma 2.2 Assume that (V), (M1), (M2), and (J1)–(J4) hold. Then the functional Φ :
X → R is convex and weakly lower semicontinuous on X. Moreover, the operator Φ ′ is a
mapping of type (S+), i.e., if un ⇀ u in X and lim supn→∞〈Φ ′(un) – Φ ′(u), un – u〉 ≤ 0, then
un → u in X as n → ∞.

Denoting F(x, t) =
∫ t

0 f (x, s) ds, for the number θ given in (M2), we assume that
(F1) f : RN ×R →R satisfies the Carathéodory condition in the sense that f (·, t) is

measurable for all t ∈ R and f (x, ·) is continuous for almost all x ∈R
N .

(F2) There exist nonnegative functions ρ ∈ Lq′ (RN ) ∩ L∞(RN ) and σ ∈ L∞(RN ) such
that

∣∣f (x, t)
∣∣ ≤ ρ(x) + σ (x)|t|q–1, q ∈ (θp, p∗)

for all (x, t) ∈ R
N ×R.

(F3) There exists δ > 0 such that

F(x, t) ≤ 0 for x ∈R
N and |t| < δ.

(F4) lim|t|→∞ F(x,t)
|t|θp = ∞ uniformly for almost all x ∈ R

N .
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(F5) There exist c0 ≥ 0, r0 ≥ 0, and κ > N
p such that

∣∣F(x, t)
∣∣κ ≤ c0|t|κp

F(x, t)

for all (x, t) ∈ R
N ×R and |t| ≥ r0, where F(x, t) = 1

θp f (x, t)t – F(x, t) ≥ 0.
(F6) There exist μ > θp and � > 0 such that

μF(x, t) ≤ tf (x, t) + �tp

for all (x, t) ∈ R
N ×R.

Next, we give some examples with respect to assumptions (F1)–(F6).
Since assumption (F5) is weaker than the following assumption, namely that

f (x, t)
|t|θ–2t

is increasing for t > 0 and decreasing for t < 0 (2.1)

for any x ∈ R
N , we check that the following example satisfies assumption (F5) by applying

condition (2.1).

Example 2.3 Let us consider

f (x, t) = |t|q–2t log
(
1 + |t|)

for all t ∈R. It is clear that function f satisfies assumptions (F1)–(F4). Since the following
ratio, namely

f (x, t)
|t|p–2t

=
|t|q–2t log (1 + |t|)

|t|p–2t
= |t|q–p log

(
1 + |t|),

is increasing for t > 0 and decreasing for t < 0 if q > p = θ , it follows that assumption (F5)
holds.

The following example can be found in [23] for the case of p-Laplace operator.

Example 2.4 Consider the following function:

f (x, t) = |t|p–2t
(
4|t|3 + 2t sin t – 4 cos t

)
.

Then this function satisfies conditions (F2), (F6), but not the (AR) condition.

Define the functional Ψ : X →R by

Ψ (u) =
∫

RN
F(x, u) dx.

Then it is easy to check that Ψ ∈ C1(X,R) and its Fréchet derivative is

〈
Ψ ′(u), v

〉
=

∫

RN
f (x, u)v dx
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for any u, v ∈ X. Next we define the functional Iλ : X →R by

Iλ(u) = Φ(u) – λΨ (u).

Then it follows that the functional Iλ ∈ C1(X,R) and its Fréchet derivative is

〈
I ′
λ(u), v

〉
=

∫

RN
|�u|p–2�u�v dx + M

(∫

RN
Φ0(x,∇u) dx

)∫

RN
ϕ(x,∇u) · ∇v dx

+
∫

RN
V (x)|u|p–2uv dx – λ

∫

RN
f (x, u)v dx

for any u, v ∈ X.
In our setting, first of all, we need the following lemma. Using a similar argument as in

[17, Lemma 3.2], we can see that the functionals Ψ and Ψ ′ are weakly strongly continuous
on X. We give a detailed proof for the convenience of the reader.

Lemma 2.5 Assume that (V) and (F1)–(F2) hold. Then Ψ and Ψ ′ are weakly strongly
continuous on X.

Proof See Appendix. �

3 Existence of weak solutions
Definition 3.1 We say that u ∈ X is a weak solution of problem (P) if

∫

RN
|�u|p–2�u · �v dx + M

(∫

RN
Φ0(x,∇u) dx

)∫

RN
ϕ(x,∇u) · ∇v dx

+
∫

RN
V (x)|u|p–2uv dx – λ

∫

RN
f (x, u)v dx = 0

for any v ∈ X.

The following result is used to show that the energy functional Iλ satisfies the geometric
conditions of the mountain pass theorem.

Lemma 3.2 Assume that (V), (M1), (M2), (J1)–(J3), and (F1)–(F4) hold. Then the geomet-
ric conditions in the mountain pass theorem hold, i.e.,

(1) u = 0 is a strict local minimum for Iλ(u),
(2) Iλ(u) is unbounded from below on X .

Proof By assumption (F3), u = 0 is a strict local minimum for Iλ(u). Next we claim that
condition (2) holds. Assumption (F4) implies that for any K0 > 0, there exists a constant
δ > 0 such that

F(x, t) ≥ K0|t|θp (3.1)
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for |t| > δ and for almost all x ∈ R
N . Note that for t > 1, we can easily check that M(t) ≤

M(1)t. For any v ∈ X \ {0}, from assumptions (J2), (J3) and relation (3.1), we have

Iλ(tv) =
1
p

∫

RN
|t�v|p dx + M

(∫

RN
Φ0(x, t∇v) dx

)

+
1
p

∫

RN
V (x)|t|p|v|p dx – λ

∫

RN
F(x, tv) dx

≤ 1
p

∫

RN
|t�v|p dx + M(1)

(∫

RN
Φ0(x, t∇v) dx

)θ

+
1
p

∫

RN
V (x)|t|p|v|p dx – λ

∫

RN
F(x, tv) dx

≤ 1
p
|t|p‖v‖p

X + M(1)
(∫

RN
a(x)|t∇v| +

b
p
|t∇v|p dx

)θ

– λ

∫

RN
F(x, tv) dx

≤ |t|θp
(

1
p
‖v‖p

X + M(1)
(∫

RN
a(x)|∇v| +

b
p
|∇v|p dx

)θ

– λK0

∫

RN
|v|θp dx

)

for sufficiently large t > 1. If K0 is large enough, then we assert that Iλ(tv) → –∞ as t → ∞.
Hence we conclude that the functional Iλ is unbounded from below. This completes the
proof. �

With the aid of Lemmas 2.2 and 2.5, we prove that the energy functional Iλ satisfies the
Cerami condition (C)c condition, for short, i.e., for c ∈R, any sequence {un} ⊂ X such that

Iλ(un) → c and
∥∥I ′

λ(un)
∥∥

X∗
(
1 + ‖un‖X

) → 0 as n → ∞

has a convergent subsequence. This plays a key role in obtaining the existence of a non-
trivial weak solution for the given problem.

Lemma 3.3 Assume that (V), (M1), (M2), (J1)–(J5), and (F1)–(F5) hold. Then the func-
tional Iλ satisfies the (C)c condition for any λ > 0.

Proof For c ∈R, let {un} be a (C)c-sequence in X, that is,

Iλ(un) → c and
∥∥I ′

λ(un)
∥∥

X∗
(
1 + ‖un‖X

) → 0 as n → ∞. (3.2)

This says that

c = Iλ(un) + o(1) and
〈
I ′
λ(un), un

〉
= o(1), (3.3)

where o(1) → 0 as n → ∞. It follows from Lemmas 2.2 and 2.5 that Φ ′ and Ψ ′ are map-
pings of type (S+). Since I ′

λ is of type (S+) and X is reflexive, it suffices to prove that the
sequence {un} is bounded in X. We argue by contradiction. Suppose that the sequence
{un} is unbounded in X. Then we may assume that ‖un‖X > 1 and ‖un‖X → ∞ as n → ∞.
Define a sequence {wn} by wn = un/‖un‖X . It is clear that {wn} ⊂ X and ‖wn‖X = 1. Hence,
up to a subsequence still denoted by {wn}, we obtain wn ⇀ w in X as n → ∞ and note that

wn(x) → w(x) a.e. in R
N and wn → w in Ls(

R
N)

as n → ∞ (3.4)
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for 1 < s < p∗. According to assumptions (M1), (M2), (J3), and relation (3.3), we obtain that

c = Iλ(un) + o(1)

=
1
p

∫

RN
|�un|p dx + M

(∫

RN
Φ0(x,∇un) dx

)

+
1
p

∫

RN
V (x)|un|p dx – λ

∫

RN
F(x, un) dx + o(1)

≥ 1
p

∫

RN
|�un|p dx +

1
θ

M
(∫

RN
Φ0(x,∇un) dx

)∫

RN
Φ0(x,∇un) dx

+
1
p

∫

RN
V (x)|un|p dx – λ

∫

RN
F(x, un) dx + o(1)

≥ 1
p

∫

RN
|�un|p dx +

dm0

θp

∫

RN
|∇un|p dx

+
1
p

∫

RN
V (x)|un|p dx – λ

∫

RN
F(x, un) dx + o(1)

≥ min{1, dm0}
θp

‖un‖p
X – λ

∫

RN
F(x, un) dx + o(1). (3.5)

Since ‖un‖X → ∞ as n → ∞, we have
∫

RN
F(x, un) dx ≥ min{1, dm0}

θpλ
‖un‖p

X –
c
λ

+
o(1)
λ

→ ∞ as n → ∞. (3.6)

In addition, we assert that

Iλ(un) =
1
p

∫

RN
|�un|p dx + M

(∫

RN
Φ0(x,∇un) dx

)

+
1
p

∫

RN
V (x)|un|p dx – λ

∫

RN
F(x, un) dx

≤ 1
p
‖un‖p

X + M
(∫

RN
Φ0(x,∇un) dx

)
– λ

∫

RN
F(x, un) dx.

Combining this with relation (3.3), we obtain that

1
p
‖un‖p

X + M
(∫

RN
Φ0(x,∇un) dx

)
≥ λ

∫

RN
F(x, un) dx + c – o(1)

for sufficiently large n. Assumption (F4) implies that there exists t0 > 1 such that F(x, t) >
|t|θp for all x ∈ R

N and |t| > t0. From assumptions (F1) and (F2), there exists C > 0 such
that |F(x, t)| ≤ C for all (x, t) ∈ R

N × [–t0, t0]. Therefore we can choose a real number C0

such that F(x, t) ≥ C0 for all (x, t) ∈R
N ×R, and thus

F(x, un) – C0
1
p‖un‖p

X + M(
∫
RN Φ0(x,∇un) dx)

≥ 0, (3.7)

for all x ∈ R
N and for all n ∈ N. Set Ω1 = {x ∈ R

N : w(x) �= 0}. By the convergence in (3.4),
we know that

∣∣un(x)
∣∣ =

∣∣wn(x)
∣∣‖un‖X → ∞ as n → ∞
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for all x ∈ Ω1. So then, it follows from assumptions (M2), (J2), (F4), and Hölder’s inequality
that, for all x ∈ Ω1, we have

lim
n→∞

F(x, un)
1
p‖un‖p

X + M(
∫
RN Φ0(x,∇un) dx)

≥ lim
n→∞

F(x, un)
1
p‖un‖p

X + M(1)(1 + (
∫
RN Φ0(x,∇un) dx)θ )

≥ lim
n→∞

F(x, un)
1
p‖un‖p

X + M(1)(1 + (
∫
RN a(x)|∇un| + b

p |∇un|p dx)θ )

≥ lim
n→∞

F(x, un)
1
p‖un‖p

X + M(1)(1 + (‖a‖Lp′ (RN )‖∇un‖Lp(RN ) + b
p‖∇un‖p

Lp(RN ))
θ )

≥ lim
n→∞

F(x, un)
( 1

p + M(1)(1 + (‖a‖Lp′ (RN ) + b
p )θ ))‖un‖θp

X

= lim
n→∞

F(x, un)
( 1

p + M(1)(1 + (‖a‖Lp′ (RN ) + b
p )θ ))|un(x)|θp

∣∣wn(x)
∣∣θp

= ∞, (3.8)

where we have used the inequality M(t) ≤ M(1)(1 + tθ ) for all t ∈ R
+, since if 0 ≤ t < 1,

then M(t) =
∫ t

0 M(τ ) dτ ≤ M(1) and if t > 1, then M(t) ≤ M(1)tθ . Hence we get that
meas(Ω1) = 0. Indeed, if meas(Ω1) �= 0, according to (3.6)–(3.8) and Fatou’s lemma, we
would obtain

1
λ

= lim inf
n→∞

∫
RN F(x, un) dx

λ
∫
RN F(x, un) dx + c – o(1)

≥ lim inf
n→∞

∫

RN

F(x, un)
1
p‖un‖p

X + M(
∫
RN Φ0(x,∇un) dx)

dx

≥ lim inf
n→∞

∫

Ω1

F(x, un)
1
p‖un‖p

X + M(
∫
RN Φ0(x,∇un) dx)

dx

– lim sup
n→∞

∫

Ω1

C0
1
p‖un‖p

X + M(
∫
RN Φ0(x,∇un) dx)

dx

= lim inf
n→∞

∫

Ω1

F(x, un) – C0
1
p‖un‖p

X + M(
∫
RN Φ0(x,∇un) dx)

dx

≥
∫

Ω1

lim inf
n→∞

F(x, un) – C0
1
p‖un‖p

X + M(
∫
RN Φ0(x,∇un) dx)

dx

≥
∫

Ω1

lim inf
n→∞

F(x, un)
1
p‖un‖p

X + M(
∫
RN Φ0(x,∇un) dx)

dx

–
∫

Ω1

lim sup
n→∞

C0
1
p‖un‖p

X + M(
∫
RN Φ0(x,∇un) dx)

dx

= ∞, (3.9)
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which is a contradiction. Thus w(x) = 0 for almost all x ∈ R
N . Using assumptions (M1)–

(M2) and (J5), we get

c + 1 ≥ Iλ(un) –
1
θp

〈
I ′
λ(un), un

〉

=
1
p

∫

RN
|�un|p dx + M

(∫

RN
Φ0(x,∇un) dx

)

+
1
p

∫

RN
V (x)|un|p dx – λ

∫

RN
F(x, un) dx

–
1
θp

∫

RN
|�un|p dx –

1
θp

M
(∫

RN
Φ0(x,∇un) dx

)∫

RN
ϕ(x,∇un) · ∇un dx

–
1
θp

∫

RN
V (x)|un|p dx +

1
θp

λ

∫

RN
f (x, un)un dx

≥ 1
θ

M
(∫

RN
Φ0(x,∇un) dx

)∫

RN
Φ0(x,∇un) dx – λ

∫

RN
F(x, un) dx

–
1
θp

M
(∫

RN
Φ0(x,∇un) dx

)∫

RN
ϕ(x,∇un) · ∇un dx +

1
θp

λ

∫

RN
f (x, un)un dx

=
1
θ

M
(∫

RN
Φ0(x,∇un) dx

)(∫

RN
Φ0(x,∇un) dx –

1
p

∫

RN
ϕ(x,∇un) · ∇un dx

)

+ λ

∫

RN
F(x, un) dx

≥ λ

∫

RN
F(x, un) dx (3.10)

for n large enough. Let us define Ωn(a, b) := {x ∈ R
N : a ≤ |un(x)| < b} for a ≥ 0. The con-

vergence in (3.4) means that

wn → 0 in Lr(
R

N)
and wn(x) → 0 a.e. in R

N as n → ∞ (3.11)

for 1 < r < p∗. Hence by using (3.5) we get

0 <
min{1, dm0}

λθp
≤ lim sup

n→∞

∫

RN

|F(x, un)|
‖un‖p

X
dx. (3.12)

On the other hand, from assumption (F2) and relation (3.11), it follows that

∫

Ωn(0,r0)

F(x, un)
‖un‖p

X
dx

≤
∫

Ωn(0,r0)

ρ(x)|un(x)| + σ (x)
q |un(x)|q

‖un‖p
X

dx

≤ C1

‖un‖p
X

‖ρ‖Lq′ (RN )‖un‖Lq(RN )

+
‖σ‖L∞(RN )

q

∫

Ωn(0,r0)

∣∣un(x)
∣∣q–p∣∣wn(x)

∣∣p dx

≤ C1

‖un‖p
X

‖ρ‖Lq′ (RN )‖un‖Lq(RN ) +
‖σ‖L∞(RN )

q
rq–p

0

∫

RN

∣∣wn(x)
∣∣p dx
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≤ C2

‖un‖p
X

‖ρ‖Lq′ (RN )‖un‖X +
‖σ‖L∞(RN )

q
rq–p

0

∫

RN

∣∣wn(x)
∣∣p dx

≤ C3

‖un‖p–1
X

+
‖σ‖L∞(RN )

q
rq–p

0

∫

RN

∣∣wn(x)
∣∣p dx → 0 as n → ∞ (3.13)

for some positive constants Ci (i = 1, 2, 3). Set κ ′ = κ/(κ – 1). Since κ > N/p, we get 1 < κ ′p <
p∗. Hence, it follows from (F5), (3.10), and (3.11) that

∫

Ωn(r0,∞)

|F(x, un)|
‖un‖p

X
dx ≤

∫

Ωn(r0,∞)

|F(x, un)|
|un(x)|p

∣∣wn(x)
∣∣p dx

≤
{∫

Ωn(r0,∞)

( |F(x, un)|
|un(x)|p

)κ

dx
} 1

κ
{∫

Ω(r0,∞)

∣∣wn(x)
∣∣κ ′p

} 1
κ′

≤ c
1
κ
0

{∫

Ωn(r0,∞)
F(x, un) dx

} 1
κ
{∫

RN

∣∣wn(x)
∣∣κ ′p

} 1
κ′

≤ c
1
κ
0

(
c + 1

λ

) 1
κ
{∫

RN

∣∣wn(x)
∣∣κ ′p

} 1
κ′

→ 0 as n → ∞. (3.14)

Combining the estimates in (3.13) with (3.14), we have

∫

RN

|F(x, un)|
‖un‖p

X
dx =

∫

Ωn(0,r0)

|F(x, un)|
‖un‖p

X
dx +

∫

Ωn(r0,∞)

|F(x, un)|
‖un‖p

X
dx → 0 as n → ∞,

which contradicts (3.12). This completes the proof. �

Using Lemma 3.3, we prove the existence of a nontrivial weak solution for our problem
under the considered assumptions.

Theorem 3.4 Assume that (V), (M1), (M2), (J1)–(J5), and (F1)–(F5) hold. Then problem
(P) has a nontrivial weak solution for all λ > 0.

Proof Note that Iλ(0) = 0. In view of Lemma 3.2, the geometric conditions in the moun-
tain pass theorem are fulfilled. And also Iλ satisfies the (C)c condition for any λ > 0 by
Lemma 3.3. Hence, problem (P) has a nontrivial weak solution for all λ > 0. This com-
pletes the proof. �

Next, under assumption (F6) instead of (F5), we show that Iλ satisfies the Cerami con-
dition.

Lemma 3.5 Assume that (V), (M1), (M2), (J1)–(J5), (F1)–(F4), and (F6) hold. Then the
functional Iλ satisfies the (C)c condition for any λ > 0.

Proof For c ∈ R, let {un} be a (C)c-sequence in X satisfying (3.2). Following the proof of
Lemma 3.3, we only prove that {un} is bounded in X. To this end, arguing by contradiction,
suppose that ‖un‖X → ∞ as n → ∞. Let vn = un/‖un‖X . Then ‖vn‖X = 1. Passing to a
subsequence, we may assume that vn ⇀ v as n → ∞ in X. Thus by an embedding theorem,
for 1 < s < p∗, we have

vn → v in Ls(
R

N)
and vn(x) → v(x) a.e. in R

N as n → ∞.
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From (M1), (M2), (J5), and (F6), it follows that

c + 1 ≥ Iλ(un) –
1
μ

〈
I ′
λ(un), un

〉

=
1
p

∫

RN
|�un|p dx + M

(∫

RN
Φ0(x,∇un) dx

)

+
1
p

∫

RN
V (x)|un|p dx – λ

∫

RN
F(x, un) dx

–
1
μ

∫

RN
|�un|p dx –

1
μ

M
(∫

RN
Φ0(x,∇un) dx

)∫

RN
ϕ(x,∇un) · ∇un dx

–
1
μ

∫

RN
V (x)|un|p dx +

λ

μ

∫

RN
f (x, un)un dx

≥
(

1
p

–
1
μ

)∫

RN
|�un|p dx + m0

(
1
θp

–
1
μ

)∫

RN
ϕ(x,∇un) · ∇un dx

+
(

1
p

–
1
μ

)∫

RN
V (x)|un|p dx –

λ�

μ

∫

RN
|un|p dx

≥ min{dm0, 1}
(

1
θp

–
1
μ

)(∫

RN
|�un|p dx +

∫

RN
|∇un|p dx +

∫

RN
V (x)|un|p dx

)

–
λ�

μ

∫

RN
|un|p dx

≥ min{dm0, 1}
(

1
θp

–
1
μ

)
‖un‖p

X –
λ�

μ

∫

RN
|un|p dx for large n ∈N.

This implies

1 ≤ λ�θp
min{dm0, 1}(μ – θp)

lim sup
n→∞

‖vn‖p
Lp(RN ) =

λ�θp
min{dm0, 1}(μ – θp)

‖v‖p
Lp(RN ). (3.15)

Hence, due to (3.15), we see that v �= 0. From the same argument as in Lemma 3.3, we can
show that the relations (3.6), (3.7), and (3.8) hold, and hence we conclude that relation
(3.9) is true. Therefore we get a contradiction. Thus {un} is bounded in X. This completes
the proof. �

Next, applying the fountain theorem in [32, Theorem 3.6] with the oddity of f , we
demonstrate infinitely many weak solutions for problem (P). To do this, let W be a re-
flexive and separable Banach space. Then there are {en} ⊆ W and {f ∗

n } ⊆ W ∗ such that

W = span{en : n = 1, 2, . . . }, W ∗ = span
{

f ∗
n : n = 1, 2, . . .

}
,

and

〈
f ∗
i , ej

〉
=

⎧⎨
⎩

1 if i = j,

0 if i �= j.

Let us denote Wn = span{en}, Yk =
⊕k

n=1 Wn, and Zk =
⊕∞

n=k Wn. In order to establish
the existence result, we use the following Fountain theorem.
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Lemma 3.6 ([1, 32]) Let X be a real reflexive Banach space, I ∈ C1(X,R) satisfies the (C)c

condition for any c > 0 and I is even. If for each sufficiently large k ∈N, there exist ρk > δk > 0
such that the following conditions hold:

(1) bk := inf{I(u) : u ∈ Zk ,‖u‖X = δk} → ∞ as k → ∞;
(2) ak := max{I(u) : u ∈ Yk ,‖u‖X = ρk} ≤ 0.

Then the functional I has an unbounded sequence of critical values, i.e., there exists a se-
quence {un} ⊂ X such that I ′(un) = 0 and I(un) → +∞ as n → +∞.

Theorem 3.7 Assume that (V), (M1), (M2), (J1)–(J5), and (F1)–(F5) hold. If Φ0(x, –v) =
Φ0(x, v) holds for all (x, v) ∈ R

N × R
N and f (x, –t) = –f (x, t) holds for all (x, t) ∈ R

N ×
R, then for any λ > 0, problem (P) possesses an unbounded sequence of nontrivial weak
solutions {un} in X such that Iλ(un) → ∞ as n → ∞.

Proof It is obvious that Iλ is an even functional and satisfies the (C)c condition. It suffices
to show that there exist ρk > δk > 0 such that

(1) bk := inf{Iλ(u) : u ∈ Zk ,‖u‖X = δk} → ∞ as n → ∞;
(2) ak := max{Iλ(u) : u ∈ Yk ,‖u‖X = ρk} ≤ 0,

for k large enough. Denote

αk := sup
u∈Zk ,‖u‖X =1

‖u‖Lq(RN ).

Then we have αk → 0 as k → ∞. In fact, assume to the contrary that there exist ε0 > 0 and
a sequence {uk} in Zk such that

‖uk‖X = 1 and ‖uk‖Lq(RN ) ≥ ε0

for all k ≥ k0. By the boundedness of the sequence {uk} in X, we can find an element u ∈ X
such that uk ⇀ u in X as n → ∞ and

〈
f ∗
j , u

〉
= lim

k→∞
〈
f ∗
j , uk

〉
= 0

for j = 1, 2, . . . . Thus we deduce u = 0. However, we see that

ε0 ≤ lim
k→∞

‖uk‖Lq(RN ) = ‖u‖Lq(RN ) = 0,

which is a contradiction.
For any u ∈ Zk , we may suppose that ‖u‖X > 1. According to assumptions (M1), (M2),

(J3), and (F2), we obtain that

Iλ(u) =
1
p

∫

RN
|�u|p dx + M

(∫

RN
Φ0(x,∇u) dx

)

+
1
p

∫

RN
V (x)|u|p dx – λ

∫

RN
F(x, u) dx

≥ 1
p

∫

RN
|�u|p dx +

1
θ

M
(∫

RN
Φ0(x,∇u) dx

)∫

RN
Φ0(x,∇u) dx

+
1
p

∫

RN
V (x)|u|p dx – λ

∫

RN

∣∣ρ(x)
∣∣|u|dx – λ

∫

RN

|σ (x)|
q

|u|q dx
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≥ min{1, dm0}
θp

(∫

RN
|�u|p dx +

∫

RN
|∇u|p dx +

∫

RN
V (x)|u|p dx

)

– λ

∫

RN

∣∣ρ(x)
∣∣|u|dx – λ

∫

RN

|σ (x)|
q

|u|q dx

≥ min{1, dm0}
θp

‖u‖p
X – 2λ‖ρ‖Lq′ (RN )‖u‖Lq(RN ) –

2λ

q
‖σ‖L∞(RN )

∫

RN
|u|q dx

≥ min{1, dm0}
θp

‖u‖p
X – 2λC4‖u‖X –

2λ

q
α

q
k C5‖u‖q

X ,

where C4 and C5 are positive constants. If we take

δk =
(

2λC5α
q
k

min{1, dm0}
)1/(p–q)

,

then δk → ∞ as k → ∞ because θp < q and αk → 0 as k → ∞. Hence, if u ∈ Zk and
‖u‖X = δk , then we conclude that

Iλ(u) ≥ min{1, dm0}
(

1
θp

–
1
q

)
δ

p
k – 2λC4δk → ∞ as k → ∞.

This implies that condition (1) holds.
The proof of condition (2) proceeds analogously as in the proof of [1, Theorem 1.3]. For

the reader’s convenience, we give the proof. Assume that condition (2) is not true. Then
for some k there exists a sequence {un} in Yk such that

‖un‖X → ∞ as n → ∞ and Iλ(un) ≥ 0. (3.16)

Set wn = un/‖un‖X . Note that ‖wn‖X = 1. Since dim Yk < ∞, there exists w ∈ Yk \ {0} such
that, up to a subsequence,

‖wn – w‖X → 0 and wn(x) → w(x)

for almost all x ∈ R
N as n → ∞. If w(x) �= 0, then |un(x)| → ∞ for all x ∈ R

N as n → ∞.
Hence we obtain by assumption (F4) that

lim
n→∞

F(x, un(x))
‖un‖θp

X

= lim
n→∞

F(x, un(x))
|un(x)|θp

∣∣wn(x)
∣∣θp = ∞

for all x ∈ Ω2 := {x ∈ R
N : w(x) �= 0}. As in the proof of Lemma 3.3, we have

∫

Ω2

F(x, un(x))
‖un‖θp

X

dx → ∞ as n → ∞.

Therefore, we conclude that

Iλ(un) ≤ 1
p
‖un‖p

X + M
(∫

RN
Φ0(x,∇un) dx

)
– λ

∫

RN
F(x, un) dx

≤ 1
p
‖un‖θp

X + M(1)
(

1 +
(

‖a‖Lp′ (RN ) +
b
p

)θ)
‖un‖θp

X – λ

∫

RN
F(x, un) dx
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≤ ‖un‖θp
X

(
1
p

+ M(1)
(

1 +
(

‖a‖Lp′ (RN ) +
b
p

)θ)
– λ

∫

Ω2

F(x, un(x))
‖un‖p

X
dx

)

→ –∞ as n → ∞,

which contradicts (3.16). This completes the proof. �

Remark 3.8 Although we replace (F5) with (F6) in the assumptions of Theorem 3.7, we can
show that problem (P) possesses an unbounded sequence of nontrivial weak solutions {un}
in X such that Iλ(un) → ∞ as n → ∞.

Appendix: Proof of Lemma 2.5
In this section, we give a proof of Lemma 2.5 for the reader’s convenience. In fact, we
consider that it is a well-known fact to researchers in this area.

Proof Let {un} be a sequence in X such that un ⇀ u in X as n → ∞. Then {un} is bounded
in X, and we know the embeddings X ↪→ Lp(RN ) and X ↪→ Lq(RN ) are compact for p <
q < p∗. So we know that

un → u in Lp(
R

N)
and un → u in Lq(

R
N)

as n → ∞.

First we prove that Ψ is weakly strongly continuous in X. Let un → u in Lp(RN )∩Lq(RN ) as
n → ∞. By the convergence principle, there exist a subsequence {unk } such that unk (x) →
u(x) as k → ∞ for almost all x ∈ R

N and a function u0 ∈ Lp(RN ) ∩ Lq(RN ) such that
|unk (x)| ≤ u0(x) for all k ∈N and for almost all x ∈R

N . Therefore from (F2), we deduce

∫

RN

∣∣F(x, unk )
∣∣dx ≤

∫

RN
ρ(x)

∣∣unk (x)
∣∣ +

σ (x)
q

∣∣unk (x)
∣∣q dx

≤ ‖ρ‖Lq′ (RN )‖u0‖Lq(RN ) + ‖σ‖L∞(RN )‖u0‖q
Lq(RN ).

Since function f satisfies the Carathéodory condition by (F1), we obtain that F(x, unk ) →
F(x, u) as k → ∞ for almost all x ∈ R

N . Therefore, the Lebesgue convergence theorem
tells us that

∫

RN
F(x, unk ) dx →

∫

RN
F(x, u) dx

as k → ∞, which says Ψ (unk ) → Ψ (u) as k → ∞. Thus Ψ is weakly strongly continuous
in X.

Next, we show that Ψ ′ is weakly strongly continuous on X. By (F2) and Hölder’s inequal-
ity, we obtain

∫

RN

∣∣f (x, un) – f (x, u)
∣∣q′

dx ≤ C6

∫

RN

∣∣f (x, un)
∣∣q′

+
∣∣f (x, u)

∣∣q′
dx

≤ C7

∫

RN

∣∣ρ(x)
∣∣q′

+
∥∥|σ |q′∥∥

L∞(RN )

(|un|q + |u|q)dx (A.1)

for some positive constants C6, C7, which implies that |f (x, un) – f (x, u)|q′ ≤ g(x) for almost
all x ∈ R

N and for some g ∈ L1(RN ). Since un → u in Lp(RN ) ∩ Lq(RN ) and almost all in
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R
N , it follows from (A.1) and the convergence principle that f (x, un) → f (x, u) for almost

all x ∈R
N . Combining this with the Lebesgue convergence theorem, we have

∥∥Ψ ′(un) – Ψ ′(u)
∥∥

X∗ = sup
‖v‖X≤1

∣∣〈Ψ ′(un) – Ψ ′(u), v
〉∣∣

= sup
‖v‖X≤1

∫

RN

∣∣f (x, un) – f (x, u)
∣∣|v|dx

≤
(∫

RN

∣∣f (x, un) – f (x, u)
∣∣q′

dx
) 1

q′
→ 0 as n → ∞.

Therefore, we derive that Ψ ′(un) → Ψ ′(u) in X. This completes the proof. �
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