Duality of Quasilocal Gravitational Energy and Charges with Non-orthogonal Boundaries

Sung-Won Kima*, Won Tae Kimb†, John J. Ohb‡, and Ki Hyuk Yeeb§

a Department of Science Education, Ewha Women’s University, Seoul 120-750, Korea
b Department of Physics and Basic Science Research Institute, Sogang University, C.P.O. Box 1142, Seoul 100-611, Korea

Abstract

We study the duality of quasilocal energy and charges with non-orthogonal boundaries in the (2+1)-dimensional low-energy string theory. Quasilocal quantities shown in the previous work and some new variables arisen from considering the non-orthogonal boundaries as well are presented, and the boost relations between those quantities are discussed. Moreover, we show that the dual properties of quasilocal variables such as quasilocal energy density, momentum densities, surface stress densities, dilaton pressure densities, and Neuve-Schwarz(NS) charge density, are still valid in the moving observer’s frame.

PACS : 04.20.-q, 04.90.+e

*electronic address:sungwon@mm.ewha.ac.kr
†electronic address:wtkim@ccs.sogang.ac.kr
‡electronic address:john5@string.sogang.ac.kr
§electronic address:quicksilver@string.sogang.ac.kr
I. INTRODUCTION

The study of a gravitational system with finite boundaries gives some advantages rather than that with the asymptotic fall-off behavior such as asymptotic flatness. First, generically, treating a gravitational system with a bounded and finite spatial region should be independent of the asymptotic behavior of the gravitational field. Therefore, this kind of study is considerably useful for developing a theoretical formulation which is irrelevant to the specific asymptotic properties of the system such as an asymptotic flatness. Second, if one constructs a gravitational partition function without any inconsistencies by assuming finite boundaries, then the construction of the gravitational partition function is only possible when the system with a finite size is stable. For example, the heat capacity for the Schwarzschild black hole is negative if the temperature at asymptotic region is fixed and the partition function for the black hole is not consistent. However, if we consider the fixed temperature at a finite spatial boundary, the heat capacity is positive and the partition function is well-defined. Third, from the physical viewpoint, one can define thermodynamics which is appropriate to observers placed at a finite region from black holes. In these respects, it is meaningful to define thermodynamic quantities appropriately at a finite boundary.

Some years ago, Brown and York have studied the quasilocal quantities such as the quasilocal energy, angular momentum, and spatial stress through the Hamilton-Jacobi analysis of a gravitational system [1]. Those quantities are closely related to the first law of black hole thermodynamics through the path integral formulation of gravitational system [2]. This formalism was extended to include the most general case of gauge fields coupled to the dilaton gravity in the context of string theories [3], and the temperature, energy, and heat capacity of AdS black holes have been studied by use of this formulation in Ref. [4]. The Hamiltonian and entropy in asymptotically flat spacetimes(AFS) and anti-de Sitter(AdS) have been studied in Ref. [5], and the relevant issues for the two-dimensional black hole [6] and the quasilocal thermodynamics of Kerr-AdS(K-AdS) and Kerr-de Sitter(K-dS) [7] were also intensively investigated.
However, Brown and York’s quasilocal formulation is based on the assumption that the spacetime foliation is orthogonal to the timelike boundary, which describes the quasilocal quantities seen by static observers in a weak gravitational field, and it seems to be a somewhat strong restriction. When one takes into account finite spatial boundaries in a strong gravitational field, gravitational force acts on each spatial boundary with a different extent. Therefore, in general, the unit normal defined on the hypersurface at a certain time is not orthogonal to the unit normal defined on the finite spatial boundary, and it is too difficult to calculate the quasilocal quantities seen by observers who are falling into a black hole through the quasilocal formulation with orthogonal boundaries. To generalize the formulation and overcome this difficulty, Booth and Mann reformulated the quasilocal analysis in the presence of non-orthogonal boundaries [8], and the related works appear in Ref. [9].

On the other hand, in the context of string theory, duality is considered as a symmetry which relates a certain solution to another one. In the (2+1)-dimensional low-energy string theory, this duality is more meaningful in that the dual solution of the Bañados-Teitelboim-Zanelli (BTZ) [10] black hole is known as the (2+1)-dimensional charged black string [11]. And the duality of the quasilocal quantities between these dual solutions and quasilocal thermodynamics of the dilatonic gravitational system with orthogonal boundaries was studied in Ref. [12]. The quasilocal energy density and its dual are invariant under the dual transformation while the quasilocal angular momentum density and its dual are interchanged with the quasilocal Neuve-Schwarz (NS) charge and its dual. In addition, the dual invariance between the surface spatial stress density and the dilaton pressure density appears in the combination of both quantities as $E = E^d$, $J_\phi = -(Q^d)_\phi$, $(Q)_\phi = -J^d_\phi$, $S^{ab} \delta \sigma_{ab} + \Upsilon \delta \Phi = S^d_{ab} \delta \sigma^d_{ab} + \Upsilon_d \delta \Phi$, where E, J, Q, S^{ab}, Υ, σ_{ab}, and Φ are the quasilocal surface energy density, the quasilocal momentum density, the quasilocal NS charge density, the quasilocal spatial stress density, the quasilocal pressure density, the surface spatial stress tensor, and the dilaton field, respectively.

In this paper, we shall study the dual properties of quasilocal quantities for the (2+1)-dimensional dilatonic gravity with non-orthogonal boundaries. In Sec. II, the notations and
the setup for the double-foliation of quasilocal formalism with non-orthogonal boundaries are presented. The unit vectors normal to both spatial and temporal boundaries are defined and splittings of extrinsic curvatures on the spacelike hypersurface and spatial boundary are obtained by the definitions of the induced metrics and the extrinsic curvatures. The quasilocal variables with non-orthogonal boundaries and their boost relations, and dual properties between those variables are given in Sec. III. In Sec. IV, some concluding remarks and discussions on our results follow.

II. PRELIMINARY: NOTATIONS AND SETUP

In this section, we present a double-foliation for Arnowitt-Deser-Misner (ADM) splitting of the metric and the corresponding some kinematics. Then we shall discuss the notations and extrinsic curvature splittings for quasilocal formalism with non-orthogonal boundaries.

Generically, when we take into account a finite spatial boundary on manifold \(M \) in a strong gravitational field such as an adjacent region of black hole horizon, each boundary is exposed to a different gravitational force. This fact enhances the motivation of the generalized quasilocal formalism, which can be possible by considering non-orthogonal boundaries.

Let us consider a double-foliation of spacetime manifold \(M \) with spatial and temporal boundaries as shown in FIG. 1. Then we can take \(t = \text{const} \) and \(s = \text{const} \) surfaces on boundaries \(\Sigma \) and \(\bar{T} \), and the unit normal vectors are defined as \(u_{\mu} = -N \nabla_{\mu} t \) on \(\Sigma \) and \(\bar{n}_{\mu} = M \nabla_{\mu} s \) on \(\bar{T} \), where \(N \) and \(M \) are normalization functions determined by satisfying \(u \cdot u = -1 \) and \(\bar{n} \cdot \bar{n} = 1 \). On boundaries of \(\Sigma \) and \(\bar{T} \), the induced metrics \(h_{\mu\nu}, \bar{\gamma}_{\mu\nu} \) and the corresponding extrinsic curvatures \(K_{\mu\nu}, \bar{\Theta}_{\mu\nu} \) can be defined as

\[
h_{\mu\nu} = g_{\mu\nu} + u_{\mu}u_{\nu} \quad (\text{on } \Sigma),
\]

\[
\bar{\gamma}_{\mu\nu} = g_{\mu\nu} - \bar{n}_{\mu}\bar{n}_{\nu} \quad (\text{on } \bar{T}),
\]

and

\[
K_{\mu\nu} = -h_{\mu}^{\alpha}\nabla_{\alpha}u_{\nu} \quad (\text{on } \Sigma),
\]
FIG. 1. Spacetimes foliation: The spacetime manifold \(\mathcal{M} \) which is topologically \(\Sigma \times \bar{T} \) can be foliated by spatial and temporal boundaries denoted by \(\bar{T} \) and \(\Sigma \), respectively. On each boundary, the unit normal vector, induced metric, and extrinsic curvature are defined.

\[
\bar{\Theta}_{\mu\nu} = -\bar{\gamma}^\alpha_{\mu} \nabla_\alpha \bar{n}_\nu \quad \text{(on } \bar{T})\,.
\]

And we can define new unit vectors \(n_\mu \) and \(\bar{u}_\mu \) as \(n_\mu = MD_\mu s = \gamma^{-1}h^\nu_\mu \bar{n}_\nu \) and \(\bar{u}_\mu = -\bar{N}D_\mu t = \gamma^{-1}\bar{\gamma}^\nu_{\mu} u_\nu \), where \(D_\mu \) and \(D_\mu \) are covariant derivatives projected into \(\Sigma \) and \(\bar{T} \) surfaces, and the boost factor \(\gamma = (1 - v^2)^{-1/2} = M/\bar{M} = N/\bar{N} \), where \(v \) is a proper radial velocity. From these relations, the relations between unit normal vectors seen by “barred” frame and “unbarred frame” are obtained as

\[
\bar{u}_\mu = \gamma u_\mu + \gamma v n_\mu; \\
\bar{n}_\mu = \gamma n_\mu + \gamma v u_\mu. \tag{5}
\]

On the boundary \(B \), the induced metric is given in two ways as \(\sigma_{\mu\nu} = g_{\mu\nu} + u_\mu u_\nu - n_\mu n_\nu = g_{\mu\nu} + \bar{u}_\mu \bar{u}_\nu - \bar{n}_\mu \bar{n}_\nu \) and the extrinsic curvatures are also defined as \(k_{\mu\nu} = -\sigma^\alpha_{\mu} \sigma^\beta_\nu \nabla_\alpha n_\beta \) and \(\ell_{\mu\nu} = -\sigma^\alpha_{\mu} \sigma^\beta_\nu \nabla_\alpha u_\beta \). Note that the notations used in this paper for the foliation of spacetimes are summarized in TABLE. I.
TABLE I. Notations for foliation of spacetimes \mathcal{M}

<table>
<thead>
<tr>
<th>contents</th>
<th>metric</th>
<th>covariant derivative</th>
<th>unit normal</th>
<th>intrinsic curvature</th>
<th>extrinsic curvature</th>
<th>momentum</th>
</tr>
</thead>
<tbody>
<tr>
<td>spacetimes \mathcal{M}</td>
<td>$g_{\mu\nu}$</td>
<td>∇_{μ}</td>
<td>$R_{\mu\nu\kappa\lambda}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>spacelike hypersurface Σ</td>
<td>h_{ij}</td>
<td>D_i</td>
<td>u_μ</td>
<td>\mathcal{R}_{ijkl}</td>
<td>K_{ij}</td>
<td>P_{ij}</td>
</tr>
<tr>
<td>timelike hypersurface \bar{T}</td>
<td>$\bar{\gamma}_{ij}$</td>
<td>\bar{D}_i</td>
<td>\bar{n}_μ</td>
<td>$\bar{\Theta}_{ij}$</td>
<td>$\bar{\Pi}_{ij}$</td>
<td></td>
</tr>
<tr>
<td>boundary $B = \Sigma \cap \bar{T}$</td>
<td>σ_{ab}</td>
<td></td>
<td></td>
<td></td>
<td>k_{ab}, ℓ_{ab}</td>
<td></td>
</tr>
</tbody>
</table>

On the other hand, the extrinsic curvature on \bar{T} boundary, $\bar{\Theta}_{\mu\nu}$, can be split into the extrinsic curvatures on B boundary, $k_{\mu\nu}$ and $\ell_{\mu\nu}$ as,

$$\bar{\Theta}_{\mu\nu} = \gamma k_{\mu\nu} + \gamma v \ell_{\mu\nu} + (\bar{n} \cdot \bar{a}) \bar{u}_\mu \bar{u}_\nu + 2\sigma^\alpha_{(\mu} \bar{u}_{\nu)} (n^\lambda K_{\alpha\lambda} - \gamma^2 \nabla_\alpha v),$$

(6)

where $\bar{a}_\mu = \bar{u}^\alpha \nabla_\alpha \bar{u}^\mu$ is the acceleration of \bar{u}_μ. Similarly, the splitting of the extrinsic curvature on the Σ boundary $K_{\mu\nu}$, is obtained as

$$K_{\mu\nu} = \ell_{\mu\nu} + (u \cdot b)n_\mu n_\nu + 2\sigma^\alpha_{(\mu} n_{\nu)} K_{\alpha\lambda} n^\lambda,$$

(7)

by use of the extrinsic curvature on B boundary $\ell_{\mu\nu}$ and the acceleration $b^\mu = n^\alpha \nabla_\alpha n^\mu$ of n^μ.

III. DUALITY OF QUASILOCAL QUANTITIES WITH ORTHOGONAL AND NON-ORTHOGONAL BOUNDARIES

A. Static observers and duality of quasilocal quantities

The dilatonic action coupled with NS-NS field strength in $(2+1)$-dimensions is given as

$$S = \frac{1}{2\pi} \int_{\mathcal{M}} d^3x \sqrt{-g} \Phi \left[R + \Phi^{-2}(\nabla \Phi)^2 + \frac{4}{l^2} - \frac{1}{12} H^2 \right]$$

$$+ \frac{1}{\pi} \int_{\Sigma} d^2x \sqrt{h} \Phi K - \frac{1}{\pi} \int_{\bar{T}} d^2x \sqrt{-\gamma} \Phi \Theta,$$

(8)

where $-1/2 \ln \Phi$ is a dilaton field, H is a three-form field strength of the anti-symmetric two-form field B with $H = dB$, and $l^{-2} = -\Lambda$ is a negative cosmological constant.
The variation of action (8),

\[
\delta S = \int_{\mathcal{M}} d^3x \sqrt{-g} \left[(\Xi_G)_{\mu\nu} \delta g^{\mu\nu} + (\Xi_{\text{dil}}) \delta \Phi + (\Xi_{\text{NS}})^{\mu\nu} \delta B_{\mu\nu} \right] \\
+ \int_{\Sigma} d^2x \left[P^{ij} \delta h_{ij} + P_{\text{dil}} \delta \Phi + P_{\text{NS}}^{ij} \delta B_{ij} \right] \\
+ \int_{T} d^2x \left[\Pi^{ij} \delta \gamma_{ij} + \Pi_{\text{dil}} \delta \Phi + \Pi_{\text{NS}}^{ij} \delta B_{ij} \right],
\]

(9)
gives the equations of motion,

\[
2\pi (\Xi_G)_{\mu\nu} = \Phi G_{\mu\nu} + \nabla_\mu \nabla_\nu \Phi - g_{\mu\nu} \Box \Phi - \frac{1}{2} g_{\mu\nu} \Phi^{-1} (\nabla \Phi)^2 - \frac{2}{l^2} g_{\mu\nu} \Phi \\
- \frac{1}{24} g_{\mu\nu} \Phi H^2 + \frac{1}{4} \Phi H_{\mu\lambda\sigma} H^{\lambda\sigma},
\]

\[
2\pi (\Xi_{\text{dil}}) = R + \Phi^{-2} (\nabla \Phi)^2 - 2 \Phi^{-1} \Box \Phi + \frac{4}{l^2} - \frac{1}{12} H^2,
\]

\[
4\pi (\Xi_{\text{NS}})^{\mu\nu} = \nabla_\lambda (\Phi H^{\mu\nu\lambda}),
\]

(10)
where \(G_{\mu\nu} = R_{\mu\nu} - 1/2 g_{\mu\nu} R \) is the Einstein tensor. The conjugate momenta on \(\Sigma \) and \(T \) boundaries are given as

\[
P^{ij} = -\frac{\sqrt{h}}{2\pi} \left[\Phi (K^{ij} - h^{ij} K) + h^{ij} u^\alpha \nabla_\alpha \Phi \right],
\]

\[
P_{\text{dil}} = -\frac{\sqrt{h}}{\pi} \left[\Phi^{-1} u^\alpha \nabla_\alpha \Phi - K \right],
\]

\[
P_{\text{NS}}^{ij} = \frac{\sqrt{h}}{4\pi} \Phi u^\alpha H^{ij}_\alpha
\]

(11)
and

\[
\Pi^{ij} = \frac{\sqrt{-\gamma}}{2\pi} \left[\Phi (\Theta^{ij} - \gamma^{ij} \Theta) + \gamma^{ij} n^\alpha \nabla_\alpha \Phi \right],
\]

\[
\Pi_{\text{dil}} = \frac{\sqrt{-\gamma}}{\pi} (\Phi^{-1} n^\alpha \nabla_\alpha \Phi - \Theta),
\]

\[
\Pi_{\text{NS}}^{ij} = -\frac{\sqrt{-\gamma}}{4\pi} \Phi n^a H^{ij}_a
\]

(12)
respectively. Especially, the momenta on \(T \) boundary are closely related to the quasilocal quantities within this boundary. To specify these quantities, it is useful to decompose the induced metric \(\gamma_{ij} \) into some projections normal and onto foliation as follows,

\[
\delta \gamma_{ij} = -\frac{2}{N} u_i u_j \delta N - \frac{2}{N} u_{(i} n_{j)a} \delta V^a + \sigma^a_{(i} \sigma^b_{j)} \delta \sigma_{ab},
\]

(13)
where N is a lapse function and V^a is a shift vector on T boundary. As for the NS field B_{ij}, this potential on the boundary T can be written as $B_{ij} = 2u_i \sigma^a_j C_a + \sigma^a_i \sigma^b_j D_{ab}$, where $C_a = \sigma^a_i B_{ij} u^j$ and $D_{ab} = \sigma^a_i \sigma^b_j B_{ij}$ on B boundary [3], and the variation of B_{ij} produces

$$
\delta B_{ij} = \frac{2}{N} u_i \sigma^a_j \delta (NC_a) - \frac{2}{N} u_i \sigma^a_j D_{ab} \delta V^b + \sigma^a_i \sigma^b_j \delta D_{ab}.
$$

Putting Eqs. (13) and (14) into the T boundary term in Eq. (9) leads us to obtain the surface energy density \mathcal{E}, the surface momentum density \mathcal{J}^a, the spatial stress S^{ab}, the surface NS charge density Q_{NS}^a, the surface NS momentum density \mathcal{J}_{NS}^b, and the surface NS current density \mathcal{I}_{NS}^{ab} as

$$
\mathcal{E} \equiv -\frac{\delta S_T}{\delta N} = \frac{\sqrt{\sigma}}{2\pi} (\Phi k - n^a \nabla \Phi),
$$

$$
\mathcal{J}^a \equiv \frac{\delta S_T}{\delta V^a} = \frac{\sqrt{\sigma}}{2\pi} \Phi \sigma^i K_{ij} n^j,
$$

$$
S^{ab} \equiv \frac{\delta S_T}{N \delta \sigma_{ab}} = \frac{\sqrt{\sigma}}{2\pi} [\Phi (\delta^{ab} - \sigma^{ab} k + \sigma^{ab} (n \cdot a)) + \sigma^{ab} n^a \nabla \Phi],
$$

$$
(Q_{NS})^a \equiv -\frac{\delta S_T}{\delta (NC_a)} = \frac{\sqrt{\sigma}}{2\pi} \Phi n_i \mathbb{E}^i a,
$$

$$
(\mathcal{J}_{NS})_a \equiv \frac{\delta S_T}{\delta V^a} = (Q_{NS})^b D_{ba},
$$

$$
(\mathcal{I}_{NS})^{ab} \equiv \frac{\delta S_T}{N \delta D_{ab}} = \frac{\sqrt{\sigma}}{4\pi} \Phi u^\alpha H_{ab}^{\alpha},
$$

where $\mathbb{E}_{ij} = u^\lambda h^a_i h^a_j H_{\mu\nu\lambda}$ is the “electric” piece of the three-form field strength.

On the other hand, equations of motion (10) yields a BTZ black hole solution, which is given by

$$
(ds)_{BTZ}^2 = -N^2(r) d^2 t + f^{-2}(r) d^2 r + r^2 (d\phi + N^\phi(r) dt)^2,
$$

$$
\Phi = \Phi(r), \quad B_{\phi t} = B_{\phi t}(r),
$$

where the lapse function $N^2(r) = (r^2/l^2 - M)$, the shift vector $(N^\phi)^2 = J/2r^2$, the dilaton field $\Phi(r) = 1$, and the NS two-form field potential $B_{\phi t}(r) = r^2/l$. Duality is a symmetry of string theory, which maps a solution of the low-energy effective string equations with a translational symmetry to another solution [11]. Therefore, this symmetry yields a dual solution of Eq. (21)
\begin{equation}
(ds)^2 = -N^2(r)d^2 t + f^{-2}(r)d^2 r \frac{1}{r^2}(d\phi + B_{\phi t}(r) dt)^2,
\end{equation}
\begin{equation}
\Phi^d = r^2 \Phi, \quad B^d_{\phi t} = N^\phi (r),
\end{equation}
by applying the dual transformation
\begin{align*}
g^d_{xx} &= g^{-1}_{xx}, \quad g^d_{x\alpha} = B_{\alpha x}/g_{xx}, \\
g^d_{\alpha \beta} &= g_{\alpha \beta} - (g_{x\alpha} g_{x\beta} - B_{x\alpha} B_{x\beta})/g_{xx}, \\
B^d_{x\alpha} &= g_{x\alpha}/g_{xx}, \quad B^d_{\alpha \beta} = B_{\alpha \beta} - 2g_{x[\alpha} B_{\beta]x}/g_{xx}, \\
\Phi^d &= g_{xx} \Phi,
\end{align*}
where x is a direction of translational symmetry (ϕ in our case) and the superscript d denotes a dual variable. From Eqs. (21) and (22), the dual properties of the quasilocal energy density, momentum density, and NS charge density are obtained by the straightforward calculation of Eqs. (15), (16), and (18),
\begin{equation}
E = E^d = -\frac{f}{\pi} \partial_t (r \Phi),
\end{equation}
\begin{equation}
J_\phi = -(Q_{NS}^d)^\phi = -\frac{r^3 f}{2\pi N} \Phi \partial_r N^\phi,
\end{equation}
\begin{equation}
(Q_{NS})^\phi = -J^d_\phi = \frac{f \Phi}{2\pi r N} \partial_r B_{\phi t}.
\end{equation}
Furthermore, the dual invariance between quasilocal stress density and dilaton pressure density is satisfied with the combination of both quantities as
\begin{equation}
S^{ab}\delta \sigma_{ab} + \Upsilon \delta \Phi = S^d_{ab}\delta \sigma^d_{ab} + \Upsilon_d \delta \Phi^d = \frac{f \partial_r N}{2\pi r N} \Phi \delta \sigma_{ab} + \frac{f}{\pi} \left(1 + \frac{r \partial_r N}{N}\right) \delta \Phi,
\end{equation}
where the dilaton pressure density is defined as $\Upsilon \equiv N^{-1} \Pi_{dil}$.

\textbf{B. Moving observers and quasilocal quantities}

An extension to the most general case of the quasilocal formalism can be easily established by assuming that the gravitational system has non-orthogonal boundaries as shown in FIG. 1. It amounts to replacing the spatial boundary term T in the starting action (8) by
The variation of this action is written as the similar expression of Eq. (9) just replaced by “barred” expression in \bar{T} boundary term, and the boost term $-1/2\pi \int \sigma \Phi 2\delta \theta$ is added, where the boost parameter $\tanh \theta = v$. The conjugate momenta on \bar{T} boundary are also given as the “barred” variables,

$$\Pi^{ij} = \frac{\sqrt{-\gamma}}{2\pi} \left[\Phi (\bar{\Theta}^{ij} - \gamma^{ij} \bar{\Theta}) + \gamma^{ij} \bar{n}^a \nabla_a \Phi \right],$$

$$\Pi_{\text{dil}} = \frac{\sqrt{-\gamma}}{\pi} (\Phi^{-1} \bar{n}^a \nabla_a \Phi - \bar{\Theta}),$$

$$\Pi^{ij}_{\text{NS}} = -\frac{\sqrt{-\gamma}}{4\pi} \Phi \bar{n}^a H^{ij}_a.$$ \hspace{1cm} (27)

The ADM splitting of the induced metric on \bar{T} boundary is given by the “barred” expression of Eq. (13) while the induced metric h_{ij} on Σ boundary is splitted by

$$\delta h_{ij} = \frac{2}{M} n_i n_j \delta M + \frac{2}{M} \sigma_{a(i} n_{j)} \delta W^a + \sigma_{i}^{a} \sigma_{j}^{b} \delta \sigma_{ab},$$ \hspace{1cm} (28)

where M is a lapse function and W^a is a shift vector on Σ boundary. Putting these splittings of metrics into the boundary actions of Eq. (9) yields

$$\int_{\bar{T}} d^2 x \Pi^{ij} \delta \bar{\gamma}_{ij} = -\frac{1}{\pi} \int_{\bar{T}} d^2 x \sqrt{\bar{\sigma}} \left[(\Phi (\gamma k + \gamma v \ell) - \bar{n}^a \nabla_a \Phi) \delta \bar{N} - \Phi (\sigma^i \bar{K}_{ij} n^j - \partial_a \theta) \delta \bar{V}^a - \frac{\bar{N}}{2} \left\{ \gamma (k^{ab} - k \sigma^{ab}) + \gamma v (\ell^{ab} - \ell \sigma^{ab}) + (\bar{n} \cdot \bar{a}) \sigma^{ab} \right\} + \bar{n}^a \nabla_a \Phi \sigma^{ab} \right] \delta \sigma_{ab},$$ \hspace{1cm} (29)

and

$$\int_{\Sigma} d^2 x P^{ij} \delta h_{ij} = \frac{1}{\pi} \int_{\Sigma} d^2 x \sqrt{\sigma} \left[(\Phi \ell - u^a \nabla_a \Phi) \delta M - \sigma^i_a \Phi K_{ij} n^j \delta W^a - \frac{M}{2} \left(\Phi (\ell^{ab} - \ell \sigma^{ab} - (u \cdot b) \sigma^{ab}) + u^a \nabla_a \Phi \sigma^{ab} \right) \delta \sigma_{ab} \right].$$ \hspace{1cm} (30)

Here we define the quasilocal energy density, the tangential momentum density, and the spatial stress seen by moving observers in the “barred” frame as

$$\bar{E} = -\frac{\delta S_{\bar{T}}}{\delta \bar{N}} = \frac{\sqrt{\sigma}}{\pi} \left[\Phi (\gamma k + \gamma v \ell) - \bar{n}^a \nabla_a \Phi \right],$$

$$\bar{J}_a = \frac{\delta S_{\bar{T}}}{\delta \bar{V}^a} = \frac{\sqrt{\sigma}}{\pi} \Phi \left(\sigma^i_a \bar{K}_{ij} n^j - \partial_a \theta \right),$$

$$\bar{S}^{ab} = \frac{\delta S_{\bar{T}}}{\bar{N} \delta \sigma_{ab}} = \frac{\sqrt{\sigma}}{2\pi} \left[\Phi \left\{ \gamma (k^{ab} - k \sigma^{ab}) + \gamma v (\ell^{ab} - \ell \sigma^{ab}) + (\bar{n} \cdot \bar{a}) \sigma^{ab} \right\} + \sigma^{ab} \bar{n}^a \nabla_a \Phi \right].$$ \hspace{1cm} (31)
and the quasilocal normal momentum density, the tangential momentum density, and the
temporal stress seen by static observers in the “unbarred” frame as
\[
J_r = -\frac{\delta S_{\Sigma}}{\delta M} = -\frac{\sqrt{\sigma}}{\pi} [\Phi \ell - u^a \nabla_a \Phi],
\]
\[
J_a = -\frac{\delta S_{\Sigma}}{\delta W^a} = \frac{\sqrt{\sigma}}{\pi} \Phi \sigma^i_a K_{ij} n^j,
\]
\[
\Delta^{ab} = \frac{\delta S_{\Sigma}}{M \delta \sigma^{ab}} = -\frac{\sqrt{\sigma}}{2\pi} \left[\Phi \left(\ell^{ab} - \ell \sigma^{ab} - (u \cdot b) \sigma^{ab} \right) + \sigma^{ab} u^a \nabla_a \Phi \right].
\] (32)

In addition, the dilaton pressure scalar densities on \(\bar{T} \) and \(\Sigma \) boundaries are calculated as
\[
\bar{\Upsilon} = \bar{N}^{-1} \Pi_{\text{dil}} = \frac{\sqrt{\sigma}}{\pi} \left(\Phi^{-1} \bar{n}^a \nabla_a \Phi - \gamma k - \gamma v \ell + (\bar{n} \cdot \bar{u}) \right),
\]
\[
\bar{Z} = M^{-1} P_{\text{dil}} = -\frac{\sqrt{\sigma}}{\pi} \left(\Phi^{-1} u^a \nabla_a \Phi - \ell - (u \cdot b) \right).
\] (33)

As for the NS charge part, we have the variation of action for a NS three-form field
strength \(H_{\mu \nu \rho} \),
\[
\delta S_{\text{NS}} = \int_M d^3 x \sqrt{-g} \left(\Xi_{\text{NS}} \right)^{\mu \nu} \delta B_{\mu \nu} + \int_{\Sigma} d^2 x P_{\text{NS}}^{ij} \delta B_{ij} + \int_{\bar{T}} d^2 x \bar{\Pi}_{\text{NS}}^{ij} \delta \bar{B}_{ij},
\] (34)
where the equation of motion \((\Xi_{\text{NS}})^{\mu \nu} \) and the canonical momenta \(P_{\text{NS}}^{ij} \) and \(\bar{\Pi}_{\text{NS}}^{ij} \) on both boundaries are given by Eqs. (10), (11), and (27), respectively. Note that the three-form field strength \(H_{\mu \nu \rho} \) is usually decomposed into “electric” and “magnetic” components on a spacelike hypersurface, \(E_{ij} = h_i^\mu h_j^\nu H_{\mu \nu \rho} u^\rho \) and \(B = -\epsilon^{\mu \nu \rho \lambda} H_{\mu \nu \rho} u_\lambda / 6 \), respectively, and it can be shown that \(H^2 = 6B^2 - 3E_{ij}E^{ij} \). As shown in Eq. (14), the two-form field potential \(B_{ij} \) can be decomposed on the \(\Sigma \) boundary into
\[
\delta B_{ij} = -\frac{2}{M} n_a[i] \sigma_j^a \delta (M E_a) - \frac{2}{M} n_a[i] \sigma_j^a \delta W^b + \sigma_a[i] \sigma_j^b \delta \bar{D}_{ij},
\] (35)
where \(B_{ij} = -2n_a[i] \sigma_j^a E_a + \sigma_a[i] \sigma_j^b D_{ab} \) and \(E_a = \sigma_a[i] B_{ij} n^j \), and the field decomposition on \(\bar{T} \) boundary is written as a similar form of Eq. (14)
\[
\delta B_{ij} = \frac{2}{\bar{N}} \bar{u}_a[i] \sigma_j^a \delta (\bar{N} \bar{C}_a) - \frac{2}{\bar{N}} \bar{u}_a[i] \sigma_j^a \delta \bar{V}^b + \sigma_a[i] \sigma_j^b \delta \bar{D}_{ab},
\] (36)
where \(\bar{C}_{ab} = \sigma_a[i] B_{ij} \bar{u}^j \). Hereafter, substituting Eqs. (35) and (36) into Eq. (34) and imposing the equations of motion gives
TABLE II. Notations for quasilocal quantities in boosted and unboosted frames

| Quantities in “barred” frame | \(\mathcal{E} \) | \(\tilde{\mathcal{J}}_\alpha \) | \((\mathcal{J}_{NS})_\alpha \) | \(S^{ab} \) | \(\Delta^{ab} \) | \((\mathcal{Q}_{NS})^a \) | \((\mathcal{T}_{NS})^{ab} \) |
| Quantities in “unbarred” frame | \(\mathcal{E} \) | \(J_\alpha \) | \((\mathcal{J}_{NS})_\alpha \) | \(S^{ab} \) | \(\Delta^{ab} \) | \((\mathcal{Q}_{NS})^a \) | \((\mathcal{T}_{NS})^{ab} \) |

\[
\delta S_{NS} = \int_{\Sigma} d^2x \left[-(\mathcal{J}_{NS})_a \delta W^a - (\mathcal{Q}_{NS})^a \delta (ME_a) + M(\mathcal{T}_{NS})^{ab} \delta D_{ab} \right]
+ \int_T d^2x \left[(\mathcal{J}_{NS})_a \delta \tilde{V}^a - (\mathcal{Q}_{NS})^a \delta (\tilde{N}\tilde{C}_a) - \tilde{N}(\mathcal{T}_{NS})^{ab} \delta D_{ab} \right], \quad (37)
\]

where the surface NS charge density, the surface NS momentum density, and the surface NS current density seen by static (“unbarred”) and moving (“barred”) observers are

\[
(\mathcal{Q}_{NS})^a = \sqrt{\sigma} / 2\pi \Phi n_\alpha E^\alpha, \quad (\mathcal{J}_{NS})_a = (\mathcal{Q}_{NS})^b D_{ba}, \quad (\mathcal{T}_{NS})^{ab} = \sqrt{\sigma} / 4\pi \Phi u^\alpha H_{ab}^\alpha, \quad (38)
\]

and

\[
(\tilde{\mathcal{Q}}_{NS})^a = \sqrt{\sigma} / 2\pi \Phi n_\alpha \bar{E}^\alpha, \quad (\tilde{\mathcal{J}}_{NS})_a = (\tilde{\mathcal{Q}}_{NS})^b D_{ba}, \quad (\tilde{T}_{NS})^{ab} = \sqrt{\sigma} / 4\pi \Phi \bar{n}^\alpha H_{ab}^\alpha, \quad (39)
\]

respectively. Note that the surface NS charge density and the surface NS momentum density in the boosted and unboosted frames are obtained from the each boundary term, but the surface NS current densities are divided by two terms projected with respect to the unit normal vectors \(u^\mu \) and \(\bar{n}^\mu \) in Eqs. (38) and (39). The notations of quasilocal quantities used in this paper in the boosted and unboosted frames are summarized in TABLE II.

C. Boost relations and duality of quasilocal variables

The quasilocal quantities seen by moving observers are connected by those seen by static observers through the boost relations. We have quasilocal quantities in “unbarred” frame as follows

\[
\mathcal{E} = \sqrt{\frac{\sigma}{\pi}} [\Phi k - n^\alpha \nabla_\alpha \Phi],
\]
\[J_r = -\frac{\sqrt{\sigma}}{\pi} [\Phi \ell - u^a \nabla_a \Phi], \]
\[J_a = \frac{\sqrt{\sigma}}{\pi} \Phi \sigma_i^j K_{ij} n^j, \]
\[S^{ab} = \frac{\sqrt{\sigma}}{2\pi} \left[\Phi (k^{ab} - \sigma^{ab} k + (n \cdot a) \sigma^{ab}) + \sigma^{ab} n^a \nabla_a \Phi \right], \]
\[\Delta^{ab} = -\frac{\sqrt{\sigma}}{2\pi} \left[\Phi (\ell^{ab} - \ell \sigma^{ab} - (u \cdot b) \sigma^{ab}) + \sigma^{ab} u^a \nabla_a \Phi \right], \quad (40) \]

and these are simply converted into the quasilocal quantities seen in “barred” frame as
\[\bar{E} = \frac{\pi}{\sqrt{\sigma}} \left(\Phi k - \bar{n}^a \nabla_a \Phi \right) = \Phi (\gamma k + \gamma v \ell) - \bar{n}^a \nabla_a \Phi, \]
\[\bar{J}_r = -\Phi \ell + \bar{u}^a \nabla_a \Phi = -\gamma (\Phi \ell - u^a \nabla_a \Phi) - \gamma v (\Phi k - n^a \nabla_a \Phi), \]
\[\bar{J}_a = \Phi \sigma_i^j \bar{K}_{ij} \bar{n}^j = \Phi (\sigma_i^i K_{ij} n^j - \partial_a \theta), \quad (41) \]

using the relations of unit normal vectors in Eq. (5). The spatial and temporal stress tensors are given as
\[\frac{2\pi}{\sqrt{\sigma}} \bar{S}^{ab} = \Phi (k^{ab} - \sigma^{ab} k + (\bar{n} \cdot \bar{a}) \sigma^{ab}) + \sigma^{ab} \bar{n}^a \nabla_a \Phi \]
\[= \gamma \Phi \left\{ k^{ab} - \sigma^{ab} k + (n \cdot a) \sigma^{ab} \right\} + \sigma^{ab} \bar{n}^a \nabla_a \Phi \]
\[+ \gamma v \left[\Phi \left\{ \ell^{ab} - \ell \sigma^{ab} - (u \cdot b) \sigma^{ab} \right\} + \sigma^{ab} u^a \nabla_a \Phi \right] + \Phi (\bar{u} \cdot \nabla \theta) \sigma^{ab}, \]
\[\frac{2\pi}{\sqrt{\sigma}} \bar{\Delta}^{ab} = -\Phi (\ell^{ab} - \ell \sigma^{ab} - (\bar{u} \cdot \bar{b}) \sigma^{ab}) - \sigma^{ab} \bar{u}^a \nabla_a \Phi \]
\[= \gamma \left[-\Phi \left\{ \ell^{ab} - \ell \sigma^{ab} - (u \cdot b) \sigma^{ab} \right\} - \sigma^{ab} \bar{u}^a \nabla_a \Phi \right] \]
\[+ \gamma v \left[-\Phi \left\{ k^{ab} - k \sigma^{ab} + (n \cdot a) \sigma^{ab} \right\} - \sigma^{ab} \bar{n}^a \nabla_a \Phi \right] + \Phi (\bar{n} \cdot \nabla \theta) \sigma^{ab}, \quad (42) \]

by using Eq. (5), and \((\bar{n} \cdot \bar{a}) = \gamma (n \cdot a) - \gamma v (u \cdot b) + \bar{u} \cdot \nabla \theta\) and \((\bar{u} \cdot \bar{b}) = \gamma (u \cdot b) - \gamma v (n \cdot a) - \bar{n} \cdot \nabla \theta\).

Therefore, the boost relations between the surface energy density, the tangential momentum density, the normal momentum density, the spatial stress, and the temporal stress in the boosted and unboosted frames are obtained as
\[\bar{E} = \gamma E - \gamma v J_r, \]
\[\bar{J}_r = \gamma J_r - \gamma v \bar{E}, \]
\[\bar{J}_a = J_a - \frac{1}{\pi} \Phi \partial_a \theta, \]
\[
S^{ab} = \gamma S^{ab} - \gamma v \Delta^{ab} + \frac{\sqrt{\sigma}}{2\pi} \Phi(\vec{u} \cdot \nabla \theta) \sigma^{ab},
\]

\[
\bar{\Delta}^{ab} = \gamma \Delta^{ab} - \gamma v S^{ab} + \frac{\sqrt{\sigma}}{2\pi} \Phi(\vec{n} \cdot \nabla \theta) \sigma^{ab},
\]

(43)

by using Eqs. (40), (41), and (42), and the boost relations for the quasilocal NS charge densities, NS momentum densities, and NS current densities are simply given as

\[
(\bar{Q}^{NS})^a = \gamma^2 (Q^{NS})^a + 2\gamma^2 v^2 n_\mu (I^{NS})_{\mu a},
\]

\[
(\bar{J}^{NS})_b = \gamma^2 (J^{NS})_b + 2\gamma^2 v^2 n_\mu (I^{NS})^{\mu a} D_{ab},
\]

\[
(\bar{I}^{NS})^{ab} = \gamma (I^{NS})^{ab} + \gamma v (I^{NS})^{\mu a} D_{ab},
\]

(44)

by means of Eqs. (38) and (39). Note that the boost invariance of the tangential momentum density in Eq. (43) and NS charge density in Eq. (44) are straightforwardly calculated for the metric (21) as \((\bar{Q}^{NS})^\phi = (Q^{NS})^\phi\) and \(\bar{J}^\phi = J^\phi\), respectively, which are expected results since the only motion in our case is perpendicular to the angular direction.

Let us now show the duality relations between the surface energy densities \(\bar{E}\) and \(\bar{E}^d\), the tangential momentum densities \(\bar{J}_t\) and \(\bar{J}_t^d\), the normal momentum densities \(\bar{J}_\phi\) and \(\bar{J}_\phi^d\), and the NS charge densities \((\bar{Q}^{NS})^\phi\) and \((\bar{Q}^{NS}_d)^\phi\). Using the boost relations in Eqs. (43) and (44), the dual relations are given as

\[
\bar{E} = \bar{E}^d,
\]

\[
\bar{J}_t = \bar{J}_t^d,
\]

\[
\bar{J}_\phi = -(\bar{Q}^{NS}_d)^\phi,
\]

\[
(\bar{Q}^{NS})^\phi = -\bar{J}_\phi^d,
\]

(45)

and note that these relations are exactly same forms with those of the orthogonal boundary case. Notice that Eq. (45) shows that the dual properties between the quasilocal variables are still valid regardless of observers who measure the quasilocal variables in their own frames.

Next let us focus on the dual invariance of the spatial and temporal stress densities and dilaton pressure densities. Basically, the quantity \((n \cdot a)\) has a dual invariance for the
metrics (21) and (22), and it yields \((\bar{n} \cdot \bar{a}) = \gamma(n \cdot a) = (\bar{n} \cdot \bar{a})_d\). In the “barred” frame, the combination of spatial stress and dilaton pressure density satisfies the dual invariance, which is given by

\[
S^{ab}\delta\sigma_{ab} + \Upsilon\delta\Phi = \gamma(S^{ab}\delta\sigma_{ab} + \Upsilon\delta\Phi + \frac{\gamma v}{2\pi} \frac{f}{r}\Phi\delta\sigma_{ab} + 2rf\delta\Phi)
\]

\[
= \gamma(S^a_d\delta\sigma_{ab}^d + \Upsilon_d\delta\Phi^d) + \frac{\gamma v}{2\pi} \frac{r^3 f}{\gamma} \frac{\Phi}{r}\delta\sigma_{ab}^d + \frac{2f}{r}\delta\Phi^d
\]

\[
= S^a_d\delta\sigma_{ab}^d + \Upsilon_d\delta\Phi^d,
\]
and the additional dual relation for the temporal stress density \(\Delta^{ab}\) and the dilaton scalar density \(Z\) is obtained by a simple calculation,

\[
\Delta^{ab}\delta\sigma_{ab} + Z\delta\Phi = \Delta^a_d\delta\sigma_{ab}^d + Z_d\delta\Phi^d = 0.
\]

As a result, the whole quasilocal quantities are reformulated by the double-foliation of quasilocal analysis with non-orthogonal boundaries, and the relevant boost relations are presented. Furthermore, the dual properties for quasilocal variables are still valid even in the moving observer’s frame.

IV. DISCUSSIONS

We have studied the duality of quasilocal energy and charges for the \((2+1)\)-dimensional dilatonic gravitational system with non-orthogonal boundaries by use of the double-foliation of spacetime manifold \(M\). The quasilocal variables including the surface energy density, momentum densities, spatial and temporal stresses, and the quantities related to the NS three-form field strength have been presented and the dual relations between those quantities have been proposed. In this approach, the boosting is confined to the radial direction, so the angular momentum densities and NS charge density are independent of the boost factor \(\gamma\) while the energy density is mixed with the tangential momentum density \(J_e\). In other words, those quantities are naturally expected to have a general covariance under Lorentz-type transformations.
On the other hand, for a non-compact spacetime, quasilocal quantities are not well defined in the limit that a finite boundary R goes to infinity. This unexpected inconsistency can be removed by introducing reference background spacetimes with an action S_0 and the physical action can be defined as $S_{\text{phys.}} = S - S_0$. However, this reference background spacetime action does not guarantee to preserve the covariance of quasilocal quantities since those variables in the reference background spacetimes will transform with a different velocity comparing with the velocity of the quasilocal surface in the given spacetimes. Nevertheless, the reference background spacetimes action does not alter the dual properties of quasilocal quantities. In fact, the action (8) is reduced to the effective action $S_{\text{eff}} = 1/2\pi \int d^3x \sqrt{-g}(R + 2/l^2)$ by imposing solution of the dilaton field and NS three-form field strength [13]. It evidently describes an AdS$_3$ spacetimes and the gravitational counter term for AdS$_3$ spacetimes can be considered as a reference background spacetime action. For an AdS spacetime, the counter term action can be constructed by algorithmic procedure and it is uniquely determined [14]. The counter term action of Eq. (8) is written as $S_{\text{ct}} = -1/\pi l \int d^2x \sqrt{-\gamma} \Phi$, where $\Phi(r) = 1$ for the BTZ black hole, which is compatible with the action shown in Refs. [14,15], and it is invariant under the dual transformation (23). More precisely, the reference background action gives the reference energy density, the reference spatial stress, and the reference dilaton pressure density as $\bar{\mathcal{E}}_0 = \sqrt{\sigma} \Phi / \pi l$, $\bar{\mathcal{S}}_{ab} = -\sqrt{\sigma} \sigma_{ab} \Phi / 2\pi l$, and $\bar{\Upsilon}_0 = -\sqrt{\sigma} / \pi l$, respectively. A short glance of $\bar{\mathcal{E}}_0$ shows that it is invariant under boosting and dual transformation, i.e., $\bar{\mathcal{E}}_0 = \mathcal{E}_0$ and $\bar{\mathcal{E}}_0 = \mathcal{E}_0^d$. In addition, the combination of $\bar{S}_{ab} \delta \sigma_{ab} + \bar{\Upsilon}_0 \delta \Phi$ is also invariant under the dual transformation (23). Therefore, the physical quasilocal quantities by subtracting the values of the reference background spacetimes inevitably satisfies the usual properties of dual transformations to any observers whether they are moving or not.
ACKNOWLEDGMENTS

J. J. Oh would like to thank to J. Ho and G. Kang for useful discussions and K. H. Yee is grateful to P. P. Jung for helpful comments. This work was supported by the grant No. 2000-2-11100-002-5 from the Basic Research Program of the Korea Science and Engineering Foundation.
REFERENCES

