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Abstract: We study Born-Infeld type tachyonic effective action of unstable D2-brane

with a runaway potential and find rich structure of static regular solitonic solutions. There

exists only periodic array of tachyon kink-antikinks in pure tachyonic theory, however, in

the presence of electromagnetic fields, solutions include periodic arrays, topological tachyon

kinks, half kink, and bounces. Computed tension of each kink or single unit of the periodic

array has T1 =
√
2πT2 or that with a multiplicative factor depending on electric field.

When both electric and magnetic fields are turned on, fundamental string charge density

has a confined component in addition to a constant piece. These evidences imply that

the obtained codimension-1 objects are likely to be interpreted as D1-brane (and D1F1)

or array of D1D̄1 (and D1F1-D̄1F1) as was the case without the electromagnetic fields.

Generalization to unstable Dp-branes is straightforward.
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1. Introduction

Physics of an unstable D-brane or a system of DD̄ is manifested through the existence of

tachyonic mode. The dynamics of decay of such unstable branes is described by tachyon

condensation in the effective theory [1]. An efficient language to describe the decay and

creation of unstable Dp-brane is to study S(pacelike)-brane [2, 3, 4]. Specific examples

are the rolling tachyon [5, 6] and its family carrying electromagnetic fields [7, 8, 9]. Since

they are time-dependent but spatially homogeneous classical configurations in open string

theory, they are mainly used for application to various cosmological issues including in-

flation, dark matter, and reheating [10]. Actual decay process, however, should involve

spatial inhomogeneity [11, 12] and most of the approaches attempted dynamical formation

of topological kink which is a candidate of D-brane of codimension one [13]. An obstacle

to generate such topological kink is so-called caustics that kink solution meets unavoid-

able singularity at a finite time irrespective of initial conditions, e.g., an ordinary kink, a

periodic sinusoidal array.

If we want to understand the whole dynamical decay process of an unstable Dp-brane,

a relevant question at the moment is to understand viable form of states after the tachyon

is condensed. They cannot be perturbative excitations like tachyons or electromagnetic

waves [5, 14] since all the perturbative degrees of freedom living on the unstable Dp-brane

cannot survive any more once the Dp-brane decays away. In the context of open string

theory, they should include D(p− 1)-branes, fundamental strings (F1’s), and their hybrids

with various codimensions [15]–[21] and small fluctuations on them [7, 9].

In case of D(p − 1)-brane, it is described by the topological kink [17]–[21] in the

effective theory of tachyon field [22, 17, 23, 24, 25, 26]. Recent observation on this kind

of kink [21] is noteworthy. Static topological kink in the Born-Infeld type tachyon action

with a runaway potential is singular but has finite energy and tension. The world-volume

theory of massless modes on this kink is again the Born-Infeld type action without any

higher derivative corrections. Inclusion of fermions to this world-volume action leads to

restoration of supersymmetry and κ-symmetry so that the obtained kink is identified by a

BPS D(p− 1)-brane.
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In this paper we will address an indispensable question related with the aforementioned

kink [21]: can we obtain a static kink solution without singularity, which reproduces prop-

erly its singular limit? In the pure tachyonic theory of Born-Infeld type effective action

with a runaway potential, the unique static regular solution is periodic array of tachyon

kink-anitkinks. In the limit of vanishing pressure, it goes to that of singular topological

tachyon kink-antikinks. Once Born-Infeld electromagnetism is turned on, the spectrum of

regular solutions becomes rich. In addition to periodic array, there exist single topolog-

ical tachyon kinks, tachyon half-kink connecting stable and unstable vacua, and tachyon

bounces specified by the values of electromagnetic fields and pressure orthogonal to the

soliton direction. Without or with electric field less than critical value orthogonal to the

kink direction, tension of a topological kink or single unit of the periodic array has ex-

pected value, T1 =
√
2πT2 for superstring theory. When the electric field orthogonal to

the kink direction is larger than the critical value or its transverse component is turned

on, there is an additional multiplicative factor given as a function of the electric field. In

the presence of the longitudinal component of the electric field, F1 charge density has a

confined component and its functional form is exactly the same as those of energy density

and transverse component of pressure. Proper singular limit is always taken since the en-

ergy density of them is given by a δ-function or sum of δ-functions in the singular limit of

those objects. Particularly, for the regular topological tachyon kink with critical value of

electromagnetic fields, all the nice analytic properties claimed in approximate form only

for the singular tachyon kink [21] are saturated without any approximation. The obtained

periodic array of kink-anitkinks and topological tachyon kink can be interpreted as can-

didates of array of D1D̄1 (D1F1-D̄1F1) and D1-brane (D1F1), however interpretation of

half-kink and tachyon bounces are not clear, yet. Direct string computation is also lacked

at the present stage.

We have now many static regular solutions. Although some of themmay presumably be

unstable, it is still worthwhile to study the precise nature of these configurations. Another

intriguing question is on the small fluctuations on stable objects, i.e., the study of the

worldvolume action of zero modes and possible existence of supersymmetry. Our approach

is based on effective field theory so the obtained results should be understood in terms of

string (field) theory [27, 28, 29]. Finally it would be quite interesting to investigate the

role of our solutions in understanding dynamical process of D-brane decays. More realistic

picture in this direction should also contain closed string degrees, e.g, gravitational field

and tower of massive closed string modes [30]–[34].

The rest of the paper is organized as follows. In section 2, we consider Born-Infeld

type action of a tachyon with 1/ cosh(T/T0) potential and show that a periodic array of

kink-antikinks is the unique static regular solution. In section 3, we turn on electric field

orthogonal to the kink and find a regular topological kink in addition to a periodic array.

The tension of the kink of codimension one is computed. In section 4, general form of

electromagnetic fields are added to unstable D2-brane case. The obtained configurations

constitute D1F1 in the form of a periodic array, kinks, half-kink, and bounces. Confinement

of string charge density along the kink is achieved. We conclude with a summary of the

obtained results in section 5.
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2. Array of tachyon kink

In this section we consider static solutions [17]–[21] in pure tachyon model described by

the following Born-Infeld type effective action [22, 17, 5, 24]

S = −Tp
∫

dp+1x V (T )
√

−det(ηµν + ∂µT∂νT ) , (2.1)

where Tp is the tension of the Dp-brane. Here we use a runaway tachyon potential

V (T ) =
1

cosh(T/T0)
, (2.2)

which is derived from open string theory [24] and was originally introduced in ref. [9, 35,

33, 34]. In the context of string field theory, form of the action and the potential is different

from our choice [23], which is also allowed due to scheme dependence. T0 in the tachyon

potential has 2 for the bosonic string and
√
2 for the non-BPS D-brane in the superstring.

To obtain static extended objects of codimension one, we assume that the tachyon field

depends only on x = x1 coordinate such as T = T (x). Then, the system is governed by

the only nontrivial x-component of energy-momentum conservation

T ′11(≡ ∂1T11) = 0 , (2.3)

where nonvanishing components are

T11 = −Tp
V (T )√
1 + T ′2

< 0 , (2.4)

Tab = −TpV (T )
√

1 + T ′2 ηab , (diag(ηab) = (−1, 1, 1, . . . , 1), a, b = 0, 2, 3, . . . , p) . (2.5)

Since eq. (2.3) forces constant negative pressure p1 = T11 along x-direction, we can

summarize our system as

− 1

2
=

1

2
T ′2 − 1

2

[

TpV (T )

−T11

]2

. (2.6)

Suppose that we identify eq. (2.6) as conservation of mechanical energy E of a hypothetical

newtonian particle in one-dimensional motion. Then this hypothetical particle has me-

chanical energy E = −1/2, unit mass m = 1, position T at time x, and is influenced by

conservative force from potential U(T ) = −(TpV/T11)2/2. Therefore possible motions are

classified by the value of −T11/Tp which changes shape (particularly minimum value) of

the potential U(T ): (i) When −T11/Tp > 1, no motion is allowed (see solid curve of U(T )

in figure 1). (ii) When −T11/Tp = 1, the hypothetical particle stops at T = 0 eternally

(see dashed curve of U(T ) in figure 1). (iii) When −T11/Tp < 1, it oscillates between

T+ = T0 arccosh(Tp/T11) and T− = −T0 arccosh(Tp/T11) (see dotted curve of U(T ) in fig-

ure 1). (iv) In the limit of −T11/Tp → 0+ with keeping all other quantities, T± approaches

positive or negative infinity, respectively.

The obtained configurations are interpreted as follows:

(ii) When the negative pressure −T11 reaches a critical value Tp, tachyon configuration

has a constant value T = 0 at the unstable vacuum (see dashed line in figure 2).

– 3 –
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Figure 1: Shapes of U(T ) = − T 2

p
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) for various values of −T11/Tp.
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Figure 2: Profiles of tachyon field T (x) for various −T11/Tp.

(iii) When the negative pressure −T11 is smaller than the critical value Tp, spatial

inhomogeneity is turned on along the x-direction in a form of a kink, which is expressed by

x = ±
∫ T

0

dT
√

(
Tp
T11

)2sech2(T/T0)− 1
, (2.7)

which gives

T (x) = T0 arcsinh





√

(

− Tp
T11

)2

− 1 sin

(

x

T0

)



 . (2.8)
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Figure 3: Profiles of energy density ρ(x) and −T22 = −T33 = · · · = −Tpp.

The corresponding energy density is given by

ρ ≡ T00 = TpV (T )
√

1 + T ′2

=
−T 2p /T11

1 +
[

(
Tp
T11

)2 − 1
]

sin2(x/T0)
. (2.9)

The solution shows oscillating behavior between T+ and T− with period 2πT0 which is inde-

pendent of T11 (see dotted curves in figure 2 and 3). Though it may be presumably unstable

under a small perturbation, it is still remarkable that static nonsingular inhomogeneous

solution does exist in the pure tachyon theory.

One may attempt to identify this solution as an array of kinks and antikinks. Then

by integrating the energy density over a half period of the solution, we find the energy of

a kink,

Tp−1 ≡
∫ π

2
T0

−π
2
T0

dxT00 = πT0Tp , (2.10)

which can be obtained either by using the expression (2.9) directly or by replacing T ′ in ρ

with the help of eq. (2.6),

Tp−1 = −
T 2p
T11

∫ T+

T
−

dT
V 2

√

(−TpV/T11)2 − 1
. (2.11)

Note that eq. (2.10) is independent of the values of T± with the form of the potential

V (T ) = 1/ cosh(T/T0). In fact, it is nothing but the tension of the BPS kink identified as

D(p − 1)-brane [21]. Therefore this solution may be interpreted as representing an array

of D(p− 1) D̄(p− 1)’s.

(iv) In the limit of vanishing pressure −T11/Tp → 0+, the period of the static tachyon

configuration remains to be the same constant 2πT0 but profile of T (x) in eq. (2.8) changes

abruptly at kink or antikink sites. Accordingly, the energy density ρ(x) and all other

– 5 –
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pressure components orthogonal to x-direction are more sharply localized. They have a

peak value at site of the kink, T00(0) = −T22(0) = −T33(0) = · · · = −Tpp(0) = −Tp/T11,
and decreases to zero exponentially (see dashed, dotted, dotted-dashed lines in figure 3

which correspond to the cases (ii), (iii), and (iv), respectively). Eventually, the solution

forms an array of step functions

T (x) ' T0 arcsinh

[

− Tp
T0T11

sin

(

x

T0

)]

(2.12)

with an infinite gap

T+ − T− ' lim
−T11/Tp→0

2T0 ln

(

− Tp
T0T11

)

→∞ . (2.13)

The energy density (2.9) then becomes

ρ(x) ' πT0Tp

∞
∑

n=−∞
δ(x− nπT0) . (2.14)

In this limit, the kinks become topological [17, 18, 19, 20, 21], and develops a singularity of

step function with infinite gap at each site of kink or antikink. Note also that the formula

of the tension (2.11) can be approximated as

Tp−1 ' Tp

∫ ∞

−∞
dT V (T ) , (2.15)

which coincides with that obtained in ref. [21] for a single tachyon kink with singularity.

In this section we showed that the only static regular configuration is a periodic array

configuration of kink-antikinks. In its singular limit, each kink (or antikink) becomes topo-

logical, of which energy density is given by a δ-function, however its tension Tp−1 remains

to be a constant. In the previous approaches [13], time dependent kink configurations

have been taken into account mostly by using initial configurations like ordinary kink or

a periodic sinusoidal array for both implication to cosmological perturbation or obtaining

rolling tachyons with inhomogeneity. Those solutions seem to be suffered by encountering

of unavoidable singularity at a finite time so-called caustics. Probably it is intriguing to

study the instability of aforementioned array configuration (2.8) under a small perturba-

tion during time evolution where −T11 is an adjustable parameter for preparation of an

initial configuration.

3. Regular kink with electric field

In this section, we demonstrate that there exists a static, regular, tachyon kink solution

when the electric field is larger than or equal to the critical value.

As the simplest case, here we will only examine the case of unstable D2-brane of which

Born-Infeld type action of a tachyon T and an abelian gauge field Aµ is

S = −T2
∫

d3x V (T )
√

−det(ηµν + ∂µT∂νT + Fµν) , (3.1)

where T2 is tension confined on the D2-brane. The generalization to higher dimensions

should be straightforward.

– 6 –
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Let us introduce a few notations η̄µν = ηµν + ∂µT∂νT , η̄ ≡ det(η̄µν), and F̄µν = Fµν .

Define Xµν ≡ η̄µν + F̄µν and X ≡ det(Xµν). From the definition, X is simplified to

X = η̄

(

1 +
1

2
F̄µν F̄

µν

)

, (3.2)

where the transformation rule of a contravariant barred field strength tensor F̄ µν is

F̄ µν = η̄µαη̄νβFαβ , η̄µν = ηµν − ∂µT∂νT

1 + ∂ρT∂ρT
. (3.3)

Equations of motion derived from the action (3.1) are

∂µ

(

V√
−X

Cµν
S ∂νT

)

+
√
−XdV

dT
= 0 , (3.4)

∂µ

(

V√
−X

Cµν
A

)

= 0 . (3.5)

Here Cµν
S and Cµν

A are symmetric and antisymmetric parts of the cofactor, respectively

Cµν = η̄(η̄µν − F̄ ∗µF̄ ∗ν + F̄ µν) = Cµν
S + Cµν

A , (3.6)

where barred dual field strength tensor of 1-form F̄ ∗µ is

F̄ ∗µ =
ε̄µνρ

2
F̄νρ

(

ε̄µνρ =
εµνρ√−η̄ , ε

012 = −1
)

. (3.7)

Energy-momentum tensor is

Tµν = −T2
V (T )√
−X

[

−ηµνX +
1

2

(

Cµρ(∂νT∂
ρT + F ρ

ν ) + Cνρ(∂µT∂
ρT + F ρ

µ )
)

]

, (3.8)

where Cµν = ηµαηνβC
αβ.

Suppose all fields are static. Since our final goal is to obtain a straight kink config-

uration, we assume that the tachyon field depends only on the x-direction T = T (x). In

this section, for simplicity, we will also consider only the case E = E(x)x̂ and B = 0.

General case will be considered in the next section. Then Bianchi identity ∂µF ∗µ = 0 which

is nothing but three-dimensional analogue of Faraday’s law

∂B

∂t
= ε0ij∂iEj ,

(

Ei = F0i, B =
ε0ijFij

2

)

(3.9)

implies E = E(x). The equations for the gauge field (3.5) result in constancy of conjugate

momentum Π

Π′ = 0 , (3.10)

where Π and X (3.2) are

Π

E
= T2

V√
−X

≥ 0 , (3.11)

−X = 1−E2 + T ′2 ≥ 0 . (3.12)

– 7 –
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Figure 4: Shape of UE(T ).

Conservation of the energy-momentum tensor ∂µT
µν = 0 reduces to constant pressure along

x-direction, −T ′11 = (Π/E)′ = 0, so that the electric field E itself is a constant. It means

that the solutions are classified by two independent parameters, (Π, E) or equivalently

(−T11, E). In the context of string theory, the existence of the constant background electric

field E and its conjugate momentum density Π is interpreted as that of a string fluid

consisting of straight F1’s along x-axis [7, 8, 9]. Here we assume positive E, Π, and −T11
for convenience without loss of generality. Therefore, from eqs. (3.11)–(3.12), we obtain a

first-order differential equation for T , consistent with the tachyon equation (3.4),

EE =
1

2
T ′2 + UE(T ) , (3.13)

where

EE = −1

2
(1−E2) , (3.14)

UE(T ) = −T 22E
2

2Π2
V (T )2 = −T 22E

2

2Π2
1

cosh2(T/T0)
. (3.15)

(See figure 4 for a schematic shape of U(T ).) Note that for static configurations the energy

density (3.8) becomes

ρ ≡ T00 = T2
V√
−X

(1 + T ′2) = ΠE +
E

Π
[T2V (T )]2 , (3.16)

and pressure T22 orthogonal to the configuration is

p2 ≡ T22 = −
Π

E
(1−E2 + T ′2) = −E

Π
[T2V (T )]2 ≤ 0 . (3.17)

Non-constant piece of the energy density (3.16) coincides with y-component of the pres-

sure (3.17) with opposite signature. Constant piece of the energy density (3.16) is pro-

portional to Π but the second term given by square of the tachyon potential is inversely

proportional to Π so that constant piece dominates in large Π limit and vice versa in small

Π limit. For the latter, the pressure orthogonal to the configuration also becomes large.

– 8 –
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Tachyon configurations determined by eqs. (3.13)–(3.15) are classified by the value of

EE. When EE < U(0), (E2 > 1/[1 + (T2/Π)2]), no real tachyon configuration is allowed.

When E = U(0), (i.e., E2 = 1/[1 + (T2/Π)2]; see dotted-dashed line in figure 4), we have

the ontop solution T (x) = 0 with the corresponding energy density ρ = ΠE
[

1 + (T2/Π)2
]

(the dotted-dashed lines in figures 5 and 6). For UE(0) < E < 0, (1/[1 + T 22 /Π
2] < E2 < 1;

solid line in figure 4), we obtain spatially periodic inhomogeneous configuration similar to

that (2.7) in the previous section,

x =

∫ T

0

dT
√

E2[1 + T 22 /Π
2 cosh2(T/T0)]− 1

, (3.18)

which gives

T (x) = T0 arcsinh

[

√

E2T 22
Π2(1−E2)

− 1 sin

(√
1−E2

T0
x

)]

. (3.19)

The tachyon field oscillates between the “turning points” in figure 4, T ±i =

±T0 arccosh
(

T2E
Π
√
1−E2

)

with period 2πζ = 2πT0/
√
1−E2. This solution is the generaliza-

tion of the array of kinks found in section 2 in the presence of electric field in the transverse

direction of kinks. Comparing eq. (3.19) with E = 0 case (2.8), we find that turning on

the electric field increases the period and also the effective tension T2 → T2/
√
1−E2. This

kind of phenomenon was expected from the beginning through a rescaling of x-coordinate

in the effective action (3.1)

S = −T2
∫

dt dx dy V (T )

√

1−E2 +

(

dT

dx

)2

= −T2
∫

dt d(
√

1−E2x) dy V (T )

√

1 +

[

dT

d(
√
1−E2x)

]2

. (3.20)

Substituting the solution (3.19) into eq. (3.16), we have

ρ−ΠE = −p2 =
E

Π

T 22

1 +
[

E2T 2
2

Π2(1−E2) − 1
]

sin2 (x/ζ)
. (3.21)

The tachyon profile T = T (x) and the energy density ρ = ρ(x) for this periodic solution

are represented as the solid lines in figure 5 and 6.

As in section 2 we integrate the energy density of the kink, i.e. the localized piece of

ρ(x), over the half period to get its tension (p = 2 in the present case)

Tp−1 =
ET 22
Π

∫ π
2
ζ

−π
2
ζ
dxV 2(T (x))

= πT0Tp . (3.22)

It is exactly the same value as the tension Tp−1 without electric field (2.10) and again

independent of the “turning points” T±i . Moreover it is independent of the electric field E

– 9 –
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Figure 5: Profiles of tachyon field T (x).
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Figure 6: Profiles of energy density ρ(x).

or F1 charge density Π in the transverse direction. In the limit of Π → 0 with fixed E,

which corresponds to −T11 → 0, both the energy density (3.16) and the pressure (3.17) are

given by sums of δ-functions

ρ(x) ' Tp−1

∞
∑

n=−∞
δ(x− nπT0/

√

1−E2) ' −p2 . (3.23)

As E approaches 0−, i.e., when E2 approaches 1 (the dashed line in figure 4), T ±i
stretches to infinity and we obtain new types of solutions, which do not exist in the limit

– 10 –
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of vanishing electric field. In fact the solution becomes a regular static single-kink config-

uration with T ′(±∞) = 0 (the dashed line in figure 5),

T (x) = T0 arcsinh

(

T2
ΠT0

x

)

. (3.24)

This regularity can also be understood through localization of the action (3.1) as follows

S = −Tp
∫

dt dx dp−1y V (T )
√

1−E2 + T ′2

E=±1
= −(±)Tp

∫

dt dx dp−1y V (T )T ′ (3.25)

= −
∫

dt dp−1y Tp

∫ ∞

−∞
dT V (T ) , (3.26)

where + (−) in the second line (3.25) corresponds to the kink (the antikink). The exact

integral formula for the tachyon field in the third line (3.26) is nothing but that of the

tension Tp−1 (2.15) obtained through rather complicated manipulation only for the singular

kink [21]. In this case, the energy density ρ is given in a particularly simple form,

ρ−Π = −p2 = πT0T2 ·
ξ/π

x2 + ξ2
, (3.27)

where ξ ≡ ΠT0/T2 represents the width of the kink. Note that as Π goes to zero the

localized energy density approaches a δ-function with energy Tp−1 = πT0Tp, while large Π

broadens the width.

Finally, when EE > 0, (E2 > 1; see the dotted line in figure 4), the solution is given by

T (x) = T0 arcsinh

[

√

1 +
E2T 22

Π2(E2 − 1)
sinh

(√
E2 − 1

T0
x

)]

, (3.28)

which has a finite asymptotic slope T ′(±∞) 6= 0. The energy density (3.16) for this solution

also has a constant and a localized piece which coincides with the pressure p2 with opposite

signature

ρ(x)−ΠE = −p2 =
ET 22
Π

1

1 +
[

1 +
E2T 2

2

Π2(E2−1)

]

sinh2
(√

E2−1
T0

x
) . (3.29)

Similar to the previous case, we obtain

Tp−1 =
ET 2p
Π

∫ ∞

−∞
dxV 2(T (x))

= 2T0Tp arctan

(

ET2

Π
√
E2 − 1

)

(3.30)

which is no longer a constant and is less than πT0Tp. Of course, E → 1+ limit with fixed

Π reproduces trivially the previous case of topological kink (3.24) and thereby its tension

Tp−1 approaches πT0Tp. The profiles of T (x) and the energy density ρ(x) are plotted as

dotted lines in figure 5 and figure 6. As E → 0+, the slope at spatial infinity T ′(±∞) goes

to zero as expected. For huge electric field limit E →∞, the tachyon kink becomes sharply

peaked, T ′(±∞)→ ±∞, with keeping finite tension.
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All the array and kinks are specified by two independent constants, x-component of

electric field E and conjugate momentum Π for a given D2-brane. In synthesis for fixed Π,

as the electric field E increases, irregularity is induced in both energy density and transverse

component of the pressure and becomes sharply peaked, and its pattern changes from an

array to single kink.

4. Confined F1 charge along the tachyon kink

In this section we consider the most general configuration of the static electromagnetic

fields with x-dependence alone

E = E1(x)x̂+E2(x)ŷ, B = B(x) . (4.1)

Since the system of our interest is still unstable D2-brane, we can use the formulas in

eqs. (3.1)–(3.8). If we insert eq. (4.1) into the Faraday’s law (3.9), it forces constancy of

y-component of the electric field E2. Conjugate momenta Πi of the gauge fields are

Π1 = T2
V (T )√
−X

E1 , (4.2)

Π2 = T2
V (T )√
−X

(1 + T ′2)E2 . (4.3)

From time-component of the gauge equations (3.5), we see that Π1 should be a constant,

while Π2 need not be. Note that Π2 is nonzero only when the parallel component of the

electric field E2 is turned on. Now the y-component of the energy-momentum conservation

∂1T
12 = 0 is automatically satisfied and the x-component, ∂1T

11 = 0, gives

Π1
E1

= T2
V (T )√
−X

= a positive constant, (4.4)

so that x-component of the electric field E1 is also a constant. The y-component of the

gauge equations (3.5) dictates constancy of the magnetic field B. Therefore, all the electro-

magnetic fields (E, B) are actually independent of x. Then the remaining time-component

of the energy-momentum conservation is also satisfied automatically: ∂1[(T2V/
√
−X)(E2+

E1B)B] = 0.

Eliminating non-constant Π2 in the remaining two equations (4.2)–(4.3), we can again

summarize dynamics of our system by a single first-order equation as done in the previous

sections

EEM =
1

2
T ′2 + UEM(T ) , (4.5)

where

EEM = −1−E2 +B2

2(1−E22)
, (4.6)

UEM(T ) = − T 22E
2
1

2Π21(1−E22)
V (T )2 = − T 22E

2
1

2Π21(1−E22)

1

cosh2(T/T0)
. (4.7)
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In the limit of E2 → 0 and B → 0, it is consistent with eqs. (3.13)–(3.15). Therefore, all the

solutions are classified by a set of four parameters, i.e., (Π1, E1, E2, B) or (T11, E1, E2, B)

where

−T11 =
Π1
E1

(1−E22) , (4.8)

which has sign flip at the critical value of E2 = ±1.
In this setup, some components of the energy-momentum tensor are nonvanishing

constants,

T0i = −Π1
E1

ε0ijEjB ,

T12 = −Π1
E1

E1E2 . (4.9)

The other components of the the energy-momentum tensor have nontrivial x-dependence:

ρ ≡ T00 = T2
V√
−X

(1 + T ′2 +B2)

=
Π1(E

2
1 −B2E22)

E1(1−E22)
+

E1
Π1(1−E22)

[T2V (T )]2

≡ ρc + ρl , (4.10)

p2 ≡ T22 = −T2
V√
−X

(1 + T ′2 −E21)

= −Π1(E
2
1E

2
2 −B2)

E1(1−E22)
− E1

Π1(1−E22)
[T2V (T )]2

≡ p2c + p2l . (4.11)

Note also that the string charge density Π2 in the y-direction has essentially the same

x-dependence,

Π2 =
Π1E2(E

2
1 −B2)

E1(1−E22)
+

E1E2
Π1(1−E22)

[T2V (T )]2

≡ Π2c +Π2l . (4.12)

These three inhomogeneous quantities, namely energy density (4.10), pressure (4.11), and

string charge density (4.12) in y-direction share a few properties which may be related to

confinement of D1F1: (i) They are composed of a constant and a common x-dependent

part, Π2l(x) = E2ρl(x) = −E2p2l(x). (ii) The constant term is proportional to Π1 but the

localized piece is inversely proportional to Π1. (iii) They have an overall multiplicative

factor 1/(1 −E22) so that they flip signature at the critical value E2 = ±1.
Now let us study solution spectra of eqs. (4.5)–(4.7) in what follows. First, note that

the coefficient of the potential term in eq. (4.7) changes the sign at E22 = 1. Therefore we

will separately examine the system according to the value of E2 (we assume E2 ≥ 0 with

no loss of generality): 0 ≤ E2 < 1, E2 = 1 and E2 > 1.

When E2 is smaller than one, there is not much to do since eq. (4.5) is essentially

identical to that in the previous section. With some trivial replacements of parameters, we

obtain the following result. (See figures 5 and 6 for the possible types of solutions.)
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(i) When E2 < 1 and 1−E2 +B2 > T 22E
2
1/Π

2
1, no solution exists.

(ii) When E2 < 1 and 1 − E2 + B2 = T 22E
2
1/Π

2
1, there is only a constant solution

T (x) = 0.

(iii) When E2 < 1 and 0 < 1 − E2 + B2 < T 22E
2
1/Π

2
1, we have the solution of kink-

antikink array,

T (x) = T0 arcsinh

[

√

u2 − 1 sin

(

x

ζB

)]

, (4.13)

where u and ζB are defined by

u2 =
E21T

2
2

Π21|1−E2 +B2| , (4.14)

ζB =
T0

√

2|EEM|
=

√

∣

∣

∣

∣

1−E22
1−E2 +B2

∣

∣

∣

∣

T0 . (4.15)

Then the square of the tachyon potential V (T )2, to which the localized pieces of ρ, p2 and

Π2 are proportional, is given by

V 2(T (x)) =
1

1 + (u2 − 1) sin2(x/ζB)
. (4.16)

From integration of the localized part of the energy density ρ(x) along x-axis, we obtain

the tension T1 of codimension one object

T1 =
πT0T2
√

1−E22
, (4.17)

which is larger than the previous case (3.22) by a multiplicative factor 1/
√

1−E22 . This is

expected since the energy density of a Born-Infeld theory increases precisely by this factor

when a constant electric field is turned on on the world volume.

In the limit of E2 → 1, T1 diverges and oscillation becomes rapid ζB → 0 with infinite

peak of the energy density. Let us take another limit Π1 → 0 which leads to u → ∞ but

ζB remains finite. Then V (T )2 is written by a sum of δ-functions so that we have

ρ(x) ' πT0T2
√

1−E22

∞
∑

n=−∞
δ(x− 2πζB) , (4.18)

Π2 '
πT0T2E2
√

1−E22

∞
∑

n=−∞
δ(x− 2πζB) . (4.19)

We can read the tension of each kink (or antikink) πT0T2/
√

1−E22 from eq. (4.18) and

string charge density of each kink πT0T2E2/
√

1−E22 from eq. (4.19).

(iv) When 1−E2+B2 → 0, both u and ζB diverge with finite ratio ζB/u = Π1T0

E1T2

√

1−E22 .
Since V (T )2 takes a lorentzian shape

V 2(T )→ π
ζB
u

ζB/πu

x2 + (ζB/u)2
, (4.20)
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Figure 7: Shape of UEM(T ) when |E2| > 1.

so do the localized pieces of energy density (4.10), transverse pressure (4.11), and string

charge density (4.12). This case corresponds to a single-kink solution as in the previous

section. The configuration of tachyon kink is given by

T (x) = T0 arcsinh

(

ux

ζB

)

. (4.21)

In this limit, the action (3.1) is rewritten again in a localized form

S = −Tp
∫

dt dx dy V (T )
√

1−E2 +B2 + (1−E22)T
′2

1−E
2+B2=0
= −(±)

√

1−E22 Tp

∫

dt dx dy V (T )T ′ (4.22)

= −
∫

dt dy
√

1−E22 Tp

∫ ∞

−∞
dT V (T ) , (4.23)

where + (−) in the second line (4.22) corresponds to the kink (the antikink). In the third

line (4.23) we obtain the same formula of tension (2.15) with the aforementioned overall

factor
√

1−E22 .

(v) Finally, when E2 < 1 and 1 − E2 = B2 < 0, we obtain the solution similar to

eq. (3.28). The details are omitted.

Now we consider the case E2 = 1. In this case the solution is trivial since T ′ disappears,

for example, in eq. (4.5) or in the tachyon equation of motion (3.4). Then the only remaining

equation is dV/dT = 0. Therefore there are only homogeneous solutions T = 0 or T = ±∞.

As mentioned before, once the magnitude of E2 is larger than 1, the property of

our system changes drastically because of the sign flip of the potential UEM(T ) as shown

in figure 7. Similar to the analysis of the previous solutions, tachyon configurations are

classified by the value of EEM (4.6). In fact, the solution configurations should be analogous

to rolling tachyon solutions in unstable D2-brane with electromagnetic fields when 1−E2+
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B2 ≥ 0. From eq. (3.1) the action of our system is rewritten as

S = −T2
∫

dt dx dy V (T )

√

1−E2 +B2 − (E22 − 1)

(

dT

dx

)2

= −T2
√

E22 − 1

∫

dt d

(

T0x

ζB

)

dyV (T )

√

1−
[

dT

d(T0x/ζB)

]2

. (4.24)

Note that the signature of x-direction flips when E2 > 1. This action is actually exactly

the same as that of rolling tachyon which is given by

S = −T2
∫

dt dx dy V (T )

√

1−E2 +B2 − (1 +B2)

(

dT

dt

)2

= −T2
√

1 +B2
∫

d

(

T0t

ξ

)

dx dyV (T )

√

1−
[

dT

d(T0t/ξ)

]2

, (4.25)

where

ξ =

√

1 +B2

1−E2 +B2
T0 . (4.26)

Thus, there exists a one-to-one correspondence between a kink solution with spatial dis-

tribution and the time evolution of a homogeneous rolling tachyon solution. With this

identification, the pressure −T11, in our system corresponds to the hamiltonian density H,

in the rolling tachyon system.

Now we describe the solutions in detail when E2 > 1.

(i) As EEM → 0+, (i.e, E2 − B2 → 1; see the dot-dashed lines in figures 7–9), static

constant vacuum solution is allowed at T (x) = ±∞. Since the tachyon potential vanishes

for T = ±∞, the localized terms in ρ(x), p2(x), and Π2(x) are all zero.

(ii) When the energy EEM is larger than zero but smaller than the top of tachyon

potential (i.e., 1 − (T2E1/Π1)
2 < E2 − B2 < 1; see the solid line in figure 7), there is a

turning point Tmin such that

|T |(x) ≥ Tmin = T0 arccosh(u) . (4.27)

As shown by the solid curves in the figure 8, configuration is convex up (or convex down)

so we will call this solution a tachyon bounce. Explicit form of the solution is given by

T (x) = T0 arcsinh

[

√

u2 − 1 cosh

(

x

ζB

)]

, (4.28)

where u and ζB are given in eqs. (4.14) and (4.15), respectively. Its asymptotic slopes are

T ′(±∞) = ±T0
ζB

, (4.29)

which are shown by the two solid straight lines in figure 8. Note that, since E2 > 1, the

localized parts of ρ(x), p2(x), and Π2(x) all flip their signs. For example, the energy density
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Figure 8: Profiles of tachyon kink and bounce T (x).
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Figure 9: Profiles of energy density ρ(x).

has positive constant term and a negative localized contribution near the origin (see the

solid line in figure 9)

ρ =
Π1(B

2E22 −E21)

E1(E
2
2 − 1)

− E1T
2
2

Π1(E
2
2 − 1)

1

1 + (u2 − 1) cosh2(x/ζB)
. (4.30)

Also it means that the transverse component of pressure p2 is positive and the string charge

density Π2 is negative.

(iii) When the “energy” EEM is the same as the maximum of the “potential” UEM(0),

(E2 −B2 = 1− (T2E1/Π1)
2; see the dashed line in figure 7), we obtain the trivial vacuum
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ontop solution T (x) = 0. In addition, there is also the tachyon “half-kink” (or “half-

antikink”) solution which connects the unstable symmetric vacuum T (−∞) = 0 and a

stable broken vacuum T (∞) = ±∞ (see the dashed curve in figure 8),

T (x) = ±T0 arcsinh
[

exp

(

x

ζB

)]

. (4.31)

Since the half-kink connects two vacua with different vacuum energy as V (T = 0) > V (T =

±∞), the energy density is monotonically increasing (see the dashed curve in figure 9),

ρ(x) =
Π1(B

2E22 −E21)

E1(E22 − 1)
− E1T

2
2

Π1(E22 − 1)

1

1 + exp(2x/ζB)
. (4.32)

The transverse component of pressure p2 and the string charge density Π2 are also mono-

tonic.

(iv) If EEM > UEM (0), (E2−B2 < 1− (T2E1/Π1)
2, see the dotted line in figure 7), we

have

T (x) = T0 arcsinh

[

√

1− u2 sinh

(

x

ζB

)]

. (4.33)

Configuration is monotonically increasing (or decreasing) from T (−∞) = ∓∞ to T (∞) =

±∞ (see also the dotted curve in figure 8). Opposite to the similar kink solutions in the

previous section, slope of the solutions has minimum value at the origin, and maximum

at infinity. This solution can be considered as two half-kink solutions joined at the origin.

The energy density of this solution is given by

ρ =
Π1(B

2E22 −E21)

E1(E
2
2 − 1)

− E1T
2
2

Π1(E
2
2 − 1)

1

1 + (1− u2) sinh2(x/ζB)
. (4.34)

It is plotted in figure 9 with the dotted line.

5. Conclusion

In this paper, static solutions have been investigated in Born-Infeld type tachyonic effective

action with and without electromagnetic fields.

In pure tachyonic theory, we have shown that the periodic array of tachyon kink-

antikinks is the unique static regular solution. In the limit of vanishing pressure along the

array, the solution becomes an array of step functions with an infinite gap. The values

of tension of single unit kink (or antikink) Tp−1 =
√
2πTp and period remain constant

irrespective of the value of pressure.

When the electrostatic field orthogonal to the tachyon soliton is turned on in an un-

stable D2-brane, a periodic array, and regular topological tachyon kinks are obtained,

classified by the value of electric field with fixed conjugate momentum. For a given electric

field, taking limit of vanishing conjugate momentum leads to singular limit where both

energy density and transverse component of pressure are given by sum of δ-functions or

a δ-function. When the electric field is smaller than or equal to critical value, tension is

Tp−1 =
√
2πTp. When the electric field is larger than the critical value, a multiplicative

factor depending on the value of electric field appears.
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For the general case with both electric and magnetic fields, spectra of solutions are

specified by four parameters, three components of electromagnetic fields and one pressure

component along the soliton, and divided into two classes by transverse component of

electric field. When it is smaller than critical value, the spectra of solitons are exactly the

same as the cases of pure electric field, i.e., they are periodic array of tachyon kink-antikinks

and topological tachyon kinks. Minor difference appears in the constant scales and the

tension. Major difference is that they carry confined component of F1 charge density so

that each kink is presumably a D1F1. When the transverse component of electric field is

larger than critical value, we additionally found half-kink connecting unstable and stable

vacua, tachyon bounce, and topological tachyon kink.

The topological tachyon kink at the critical value of the electric field orthogonal to the

tachyon soliton seems to be a BPS object, but it should be addressed in future works by

obtaining its worldvolume action and checking existing supersymmetry as has been done

in ref. [21].
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