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1. Introduction

Instability of non-BPS Dp-brane in string theory is realized by the presence of of tachyonic

mode in its spectrum. It is expected that condensation of the tachyon takes place and its

energetic minimum is the closed string vacuum [1].

Study of tachyon dynamics on a non-BPS Dp brane is accomplished in the scheme of ei-

ther boundary conformal field theory (BCFT) [2, 3] or effective theory with the action [4]–[6]

S = −Tp
∫

dp+1x V (T )
√

−det(ηµν + ∂µT∂νT + Fµν) , (1.1)

where T is tachyon and Fµν is the field strength tensor of abelian gauge field Aµ on the

Dp-brane. Since the tachyon potential V (T ) measures varying tension, it should satisfy

two boundary values such that V (T = 0) = 1 and V (T = ∞) = 0. Specific computa-

tion based on (boundary) string field theory [7] gives V (T ) ∼ e−T
2
and ref. [9] suggests

V (T ) ∼ e−T for large T .1 Here we adopt a runaway tachyon potential which is convenient

for analysis [10]–[14] and is obtained from open string theory [15, 16]

V (T ) =
1

cosh (T/T0)
, (1.2)

where T0 is
√
2 for the non-BPS D-brane in the superstring and 2 for the bosonic string.

Since the theory of our interest is the effective theory of tachyon without physical states

around its vacuum, an adequate proposal to understand the tachyon effective action (1.1) is

made through comparison of the classical solutions from both the effective theory and the

open string theory which is describable in terms of BCFT [15, 14, 17]. The most intriguing

solution is so-called rolling tachyon which provides a real time process of homogeneous

tachyon configuration and, at late time, becomes a pressureless gas [2, 3, 9, 18]. This is

1Comparison of the S-matrix elements from string theory and those from effective theory predicts V (T ) ∼

e−T
2

[8].
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understood in terms of string (field) theory [19] and is also a representative candidate of

S-brane [20]–[22]. In relation with generation of fundamental string (F1) from unstable D-

brane [23, 17], coupling of Born-Infeld type electromagnetism leads to fluid state of electric

flux tube [24, 25] or that of electromagnetic flux tube [26, 11].

Spatial inhomogeneity is another important issue [27, 28], particularly in the form of

tachyon solitons. In the effective theory of pure tachyon, tachyon kinks of codimension one

have been studied extensively, however the obtained configurations are either static singular

solutions [6, 29, 30, 31, 32] or array of regular kink-antikink [14, 33, 34]. Time-dependent

kink or periodic sinusoidal array is also suffered by encountering of a singularity after a

finite time interval [35], which appears in a form of blowing-up energy-momentum tensor

for Dp-branes in bosonic string theory [36]. Static topological tachyon kink is shown to be

BPS D(p−1)-brane with keeping supersymmetry from the study of its worldvolume action

of fluctuations [32, 37, 38]. Computed tension of the tachyon kink coincides with that of

D(p − 1)-brane [14, 32]. In the context of string theory, corresponding BCFT description

has recently been worked out [17].

Remarkably, introduction of electromagnetic fields regularizes static topological

kink [33]. For the various constant electric and magnetic fields, rich spectra of extended

tachyon objects of codimension one are obtained, i.e., they include array of kink-antikink,

topological kink, half-kink, hybrid of two half-kinks, and bounce. The corresponding ten-

sion and F1 charge density confined on the codimension-one kink imply that the single

unit kink is naturally a candidate of D1 or D1F1. When pure electric field is less than

or equal to 1, corresponding BCFT solutions are also obtained in ref. [17]. In the work

of ref. [33], the obtained kinks are codimension one objects of unstable D2-brane. In this

paper, we consider unstable Dp-brane for arbitrary p and find all possible static regular

tachyon solutions of codimension one, which will be interpreted as general flat D(p − 1)-

or D(p − 1)F1-branes. Probably static kinks will play an important role in resuming fun-

damental dynamical questions, e.g., strings from (rolling) tachyons [39, 40] and emission

of gravitational fields or closed strings [41, 42, 14, 17].

The rest of the paper is organized as follows. In section 2, we analyze in detail the

case of p = 3. We obtain all possible configurations, including array, topological kink,

half-kink, hybrid of two half-kinks, and bounce. In section 3, we consider the general case

of arbitrary p and show that structure of static regular kinks is the same independent of

p ≥ 2. We conclude in section 4.

2. Tachyon kinks on unstable D3-brane

In this section we analyze the effective tachyon action in (1+3)-dimensions in detail and

find all possible static regular tachyon kink solutions. We will show that they consist of

array of kink-antikink, topological kink, half-kink, hybrid of two half-kinks, and bounce

in addition to homogeneous symmetric and broken vacua. In the context of string theory,

the obtained configurations correspond to D2- and D2F1-branes from unstable D3-brane

or to their hybrids. The solution spectra turn out to be identical to D2 case analyzed in

ref. [33].
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2.1 Effective theory

The effective tachyon action for the unstable D3-brane system is

S = −T3

∫

d4x V (T )
√

−det(ηµν + ∂µT∂νT + Fµν) . (2.1)

To proceed, we introduce a few notations. We first define

Xµν ≡ ηµν + ∂µT∂νT + Fµν , (2.2)

X ≡ det(Xµν) . (2.3)

In Xµν , we separate barred metric η̄µν and barred field strength tensor F̄µν

η̄µν = ηµν + ∂µT∂νT , (2.4)

F̄µν = Fµν . (2.5)

Then we have determinant of barred metric η̄ and inverse metric η̄µν

η̄ = −(1 + ∂µT∂
µT ) , η̄µν = ηµν − ∂µT∂νT

1 + ∂ρT∂ρT
. (2.6)

Contravariant barred field strength tensor F̄ µν and its dual field strength F̄ ∗µν are

F̄ µν = η̄µαη̄νβFαβ , F̄ ∗µν =
ε̄µναβ
2

F̄αβ =
ε̄µναβ
2

η̄αγ η̄βδFγδ , (2.7)

where ε̄µναβ =
√−η̄ εµναβ with ε0123 = 1. In terms of barred quantities eq. (2.3) is

computed as

X = η̄

[

1 +
1

2
F̄µν F̄

µν − 1

16

(

F̄ ∗µν F̄
µν
)2
]

. (2.8)

Then equations of motion for the tachyon T and the gauge field Aµ are

∂µ

(

V√
−X

Cµν
S ∂νT

)

+
√
−X dV

dT
= 0, (2.9)

∂µ

(

V√
−X

Cµν
A

)

= 0 . (2.10)

Here Cµν
S and Cµν

A are symmetric and asymmetric part of the cofactor,

Cµν = η̄
(

η̄µν + F̄ µν + η̄µαη̄βγ η̄δν F̄ ∗αβF̄
∗
γδ + η̄µαη̄βγ F̄ ∗αβF̄

∗
γδF̄

δν
)

, (2.11)

namely,

Cµν
S = η̄(η̄µν + η̄µαη̄βγ η̄δν F̄ ∗αβF̄

∗
γδ) , (2.12)

Cµν
A = η̄(F̄ µν + η̄µαη̄βγ F̄ ∗αβF̄

∗
γδF̄

δν) . (2.13)

Energy-momentum tensor Tµν in the symmetric form is given by

T µν =
T3V (T )√
−X

Cµν
S , (2.14)

where Cµν ≡ ηµαηνβC
αβ.
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We denote conjugate momenta of the gauge fields as Πi,

Π1 = T3
V√
−X

[E1 +B1(E ·B)] , (2.15)

Π2 = T3
V√
−X

[

E2(1 + T ′2) +B2(E ·B)
]

, (2.16)

Π3 = T3
V√
−X

[

E3(1 + T ′2) +B3(E ·B)
]

. (2.17)

We only consider the cases of T = T (x), E = E(x), and B = B(x) without dependence on

y and z coordinates. Then the equations of motion (2.9)–(2.10) become

∂1

[

V√
−X

(1 +B2
1 −E2

2 −E2
3)T

′

]

=
√
−XdV

dT
, (2.18)

∂1Π1 = 0 , (2.19)

∂1

{

V√
−X

[−B3 +E3(E ·B)]

}

= 0 , (2.20)

∂1

{

V√
−X

[−B2 +E2(E ·B)]

}

= 0 , (2.21)

where

−X =
[

1−E2 +B2 − (E ·B)2
]

+ (1 +B2
1 −E2

2 −E2
3)T

′2 . (2.22)

From eq. (2.14) we have energy density ρ

ρ ≡ T00 = T3
V√
−X

[

(1 + T
′2)(1 +B2

1) +B2
2 +B2

3

]

. (2.23)

The system in this reference frame carries nonvanishing linear momentum density

Pi ≡ T 0i = T3
V√
−X

(

εijkB
jEk − εij1B

1EjT
′2
)

. (2.24)

Other nonvanishing components of the energy-momentum tensor (2.14) are

T11 = −T3
V (T )√
−X

(

1 +B2
1 −E2

2 −E2
3

)

, (2.25)

T22 = −T3
V (T )√
−X

[

(1 + T
′2)(1−E2

3)−E2
1 +B2

2

]

, (2.26)

T33 = −T3
V (T )√
−X

[

(1 + T
′2)(1−E2

2)−E2
1 +B2

3

]

, (2.27)

T12 = −T3
V (T )√
−X

(E1E2 +B1B2) , (2.28)

T13 = −T3
V (T )√
−X

(E1E3 +B1B3) , (2.29)

T23 = −T3
V (T )√
−X

[

E2E3(1 + T
′2) +B2B3

]

. (2.30)
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Conservation of the energy-momentum tensor, ∂µTµν = 0, leads to four constants of motion

T10 = T01 , T11 , T21 = T12 , T31 = T13 . (2.31)

From Faraday’s law ∂µF ∗µν = 0, we find that E2, E3 and B3 are constants. By an

appropriate choice of coordinates we may assume that, without loss of generality,

E3 = 0 . (2.32)

Then from eq. (2.20) we see that

γ ≡ T3
V (T )√
−X

=
Π1

E1 +B1(E ·B)
= constant . (2.33)

Constancy of T11 and T13, in turn, implies that B1 is also a constant. Finally, the remaining

equations (2.19), (2.21) and (2.28) lead to constancy of B2 and E1. Therefore E and B are

actually constants.

Substitution of the expression of X (2.22) into eq. (2.33) summarizes the static system

of our interest as a single first-order equation

E =
1

2
T ′2 + U(T ) . (2.34)

Here E and U(T ) are

E = − β

2α
, (2.35)

U(T ) = − 1

2αγ2
[T3V (T )]2 , (2.36)

where α and β are defined by

α = 1 +B2
1 −E2

2 , (2.37)

β = 1−E2 +B2 − (E ·B)2 . (2.38)

Note that every static solution of eq. (2.34) with x-dependence alone satisfies the second-

order tachyon equation (2.18). Though the original system is complicated, we now have a

simplified equation (2.34) specified by three constants α, β and γ.

The choice E3 = 0 allows us to identify additional constants: T02, T23 and Π3. Let us

summarize the results. The solution space of our tachyonic system coupled to Born-Infeld

electromagnetism is classified by six independent constant parameters; here we choose

(Π1, E1, E2, B1, B2, B3) (2.39)

with E3 = 0. Then other eight constants (Π3, T01, T02, T11, T12, T13, T23, γ) are expressed

by the above 6 parameters (2.39). Nontrivial x-dependence appears in the quantities

(Π2(x), T00(x), T03(x), T22(x), T33(x)), which can be written as

Π2 = γ[E2 +B2(E ·B)] + γE2T
′2 , (2.40)

T00 = γ(1 +B2) + γ(1 +B2
1)T

′2 , (2.41)

T03 = γ(E1B2 −E2B1) + γE2B1T
′2 , (2.42)

T22 = −γ(1−E2
1 +B2

2)− γT
′2 , (2.43)

T33 = −γ(1−E2
1 −E2

2 +B2
3)− γ(1−E2

2)T
′2 . (2.44)

– 5 –



J
H
E
P
1
1
(
2
0
0
3
)
0
3
4

Here the inhomogeneous part γT ′2 can also be written as a constant term plus a piece

proportional to square of the tachyon potential,

γT ′2 = −βγ

α
+

1

αγ
[T3V (T )]2 (2.45)

by use of eq. (2.34). Note that in the above equations the constant terms are proportional

to Π1 while (T2V )2 terms are inversely proportional to Π1. Another interesting point is

that, for the string charge density Π2 along y-direction, the coefficients of inhomogeneous

part is proportional to E2. Therefore, the existence of E2 is necessary to achieve a confined

F1 charge on the kink. In addition, the inhomogeneous part of T33 vanishes when E2
2 = 1.

If we turn off B1 and B2, the magnetic field has only B3 orthogonal to the electric

field E so that E ·B = 0. Then the system reduces to the case of unstable D2-brane and

subsequently the obtained kink configurations are D1- or D1F1-branes [33].

2.2 Tachyon kink solutions

In this section we examine the equation (2.34) and find all possible regular static kink config-

urations. As mentioned previously, each solution is characterized by three parameters α, β,

and γ defined in eq. (2.37), eq.(2.38, and eq. (2.33). First of all, from eq. (2.36) we see that

the solution space is divided into two classes depending on the sign of α since the potential

U(T ) flips the sign (see figure 1). The singular point of α = 0 will be dealt with separately.

Suppose we have a positive fixed α with a given nonzero γ. Then, there are five cases

classified by the value of β or equivalently by E .

(i) When E < U(0) (β > T 2
3 /γ

2), there exists no real tachyon solution.

(ii) When E = U(0) (β = T 2
3 /γ

2; see the dotted-dashed line in figure 1a), the con-

stant ontop solution T (x) = 0 is allowed (see the dotted-dashed line in figure 2).

Correspondingly all the quantities in eqs. (2.40)–(2.44) become constant (see the

dotted-dashed line in figure 3). In the limit of Π1 → 0, γ → 0 and then they vanish.

(iii) When U(0) < E < 0 (0 < β < T 2
3 /γ

2), the tachyon field oscillates between Tmax and

−Tmax where Tmax = T0 arccosh(T3/γ
√
β) (see the solid line in figure 1a). Rewriting

J
H
E
P
1
1
(
2
0
0
3
)
0
3
4

�������

�� �	��
� ����
��
�

�������������� �

J
H
E
P
1
1
(
2
0
0
3
)
0
3
4

�! #"�$

"
% "�&	' ( "	&	' ()

*�+�,-/.�0�132 ,

(a) (b)

Figure 1: Two representative shapes of U(T ): (a) α > 0, (b) α < 0.
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Figure 2: Profiles of tachyon field T (x) for

various β’s when α < 0.

Figure 3: Profiles of string charge density

Π2(x) when α > 0.

eq. (2.34) as an integral equation

x =

∫ T

0
dT

√
α

√
β
√

(T3V )2/βγ2 − 1
, (2.46)

we find an exact solution with the tachyon potential (1.2)

T (x) = ±T0 arcsinh

[

√

u2 − 1 sin

(

x

ζ

)]

, (2.47)

where period ζ is

2πζ = 2πT0

√

α

β
, (2.48)

and u is

u =
T3

γ
√
β
. (2.49)

The obtained configuration is a kink (or antikink) which is not topological. Since the

period ζ (2.48) is finite, space-filling configuration is an array of kink-antikink (see

the solid line in figure 2). The localized part of the quantities in eqs. (2.40)–(2.44) is

given by, e.g.,

Π2l ≡ γE2T
′2 =

E2βγ

α

1

−1 + sec2(x/ζ)
1−(1/u2)

. (2.50)

Note that for single kink (antikink) eq. (2.50) is peaked at the origin and localized in

the region −πζ/2 < x < πζ/2 (see the solid line in figure 3). The localized piece of

the energy density over the half period provides the tension of this codimension one

object

T2 =
(1 +B2

1)T
2
3

αγ

∫ π
2
ζ

−π
2
ζ
dxV 2(T (x)) (2.51)

= πT0T3
1 +B2

1√
α

. (2.52)
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The multiplicative factor (1+B2
1 )/
√
α is expected since the energy density of a Born-

Infeld theory increases precisely by this factor when constant electromagnetic fields

are turned on on the worldvolume. It allows us to interpret this codimension one

object as a D2-brane in the context of string theory. Similarly, we have string charge

per unit transverse area

QF1 =
E2T

2
3

αγ

∫ π
2
ζ

−π
2
ζ
dxV 2(T (x)) (2.53)

= πT0T3
E2√
α
. (2.54)

It means that the form of F1’s on the D2-brane is a string fluid confined on the

D2-brane, where string charge is proportional to E2.

In the limit of Π1 → 0 or equivalently γ → 0 with fixed α and β, constant piece of

eqs. (2.40)–(2.44) vanishes and localized part becomes sharply peaked so that they

are given by sums of δ-functions

ρ(x) ' T2

∞
∑

n=−∞

δ(x− nπζ) , (2.55)

Π2 ' QF1

∞
∑

n=−∞

δ(x− nπζ) . (2.56)

Therefore, the array of kink-antikink is interpreted as that of infinitely thin D2-

D̄2 or D2F1-D̄2F1. The period 2πζ is unchanged in the singular limit under the

tachyon potential of our consideration (1.2) but can be changed under a different

potential [34].

The obtained array with electromagnetic fields shares the same property with the

array of pure tachyon kink-antikink except for scaling factor. This phenomenon can

easily be understood through a rescaling of x-coordinate in the effective action (2.1)

S = −T3

∫

dt dx d2x⊥ V (T )

√

β + α

(

dT

dx

)2

= −
√
αT3

∫

dt d

(

T0
x

ζ

)

d2x⊥ V (T )

√

1 +

[

dT

d(T0x/ζ)

]2

. (2.57)

The resultant action (2.57) is the same as that of pure tachyonic theory except for

the rescaling of x-coordinate x→ (
√

β/α x) and an overall factor
√
α.

(iv) When E = 0 (β = 0; see the dashed line in figure 1a), the period of the tachyon

kink stretches to infinity, limβ→0 2πζ = limβ→0 2πT0

√

α/β → ∞. In addition, u in

eq. (2.49) diverges with finite ratio ζ/u = γT0
√
α/T3. The solution obtained in this

limit is a regular static single topological kink configuration with T ′(±∞) = 0 (see

the dashed line in figure 2)

T (x) = T0 arcsinh

(

ux

ζ

)

. (2.58)
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Figure 4: Profiles of string charge density Π2(x) for various Π1’s. Dashed line with Π1 = 0.3,

dotted line with Π1 = 0.9, and solid line with Π1 = 1.6.

The localized piece of various quantities (2.40)–(2.44) including the energy density

and the string charge density takes lorentzian shape (see the dashed line in figure 3)

since

γT ′2 =
1

αγ
[T3V (T )]2 =

πT0T3√
α

ζ/πu

x2 + (ζ/u)2
, (2.59)

where ζ/u = (γT0
√
α)/T3 stands for width of the topological kink. When Π1 goes to

zero, the localized piece (2.59) approaches a δ-function. This sharpening is shown in

figure 4. From the coefficients in front of the lorentzian shape, we read the tension

and the string charge

T2 = πT0T3
1 +B2

1√
α

, QF1 = πT0T3
E2√
α
. (2.60)

An intriguing point is that the action (2.1) is rewritten in a localized form

S = −Tp
∫

dt dx d2x⊥ V (T )
√

β + αT ′2

β=0
= −(±)

√
αTp

∫

dt dx d2x⊥ V (T )T ′ (2.61)

= −
∫

dt d2x⊥
√
αTp

∫ ∞

−∞

dT V (T ) , (2.62)

where +(−) in the second line (2.61) corresponds to the kink (the antikink). The

exact integral formula for the tachyon field in the third line (2.62) coincides with that

of the tension

Tp−1 = Tp

∫ ∞

−∞

dT V (T ) , (2.63)

which can be obtained only for the singular limit of the kink in the array with or

without electromagnetic fields [32].
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(v) When E > 0 (β < 0; see the dotted line in figure 1a), the solution is given by (see

the dotted line in figure 2)

T (x) = T0 arcsinh

[

√

1 + ū2 sinh

(

x

ζ̄

)]

, (2.64)

where

ζ̄ = T0

√

−α

β
, ū2 = − T 2

3

βγ2
. (2.65)

The obtained configuration is also a topological kink with a finite asymptotic slope

T ′(±∞) = ±
√

−(β/α) 6= 0. Therefore, the localized piece is represented by V (T )2

as
1

αγ
[T3V (T )]2 =

T 2
3

αγ

1

1 + (1 + ū2) sinh2(x/ζ̄)
, (2.66)

and then all the quantities in eqs. (2.40)–(2.44) also have such localized piece in

addition to a relatively large constant piece. As an example, the string charge density

Π2 is plotted by the dotted line in figure 3. Note that the pressure along z-direction

flips its sign when E2
2 > 1. Similar to the previous case, the tension and the string

charge density are given by

T2 =
(1 +B2

1)T
2
3

αγ

∫ ∞

−∞

dxV 2(T (x))

=
2T0T3(1 +B2

1)√
α

arctan (ū) , (2.67)

and

QF1 =
E2T

2
3

γα

∫ ∞

−∞

dxV 2(T (x))

=
2T0T3E2√

α
arctan (ū) , (2.68)

which are less than the quantities in eq. (2.52), eq. (2.54), and eq. (2.60). In the

limit of divergent ū with a fixed α, the previous values are reproduced. When
√
−β

diverges with finite ū and α, the tachyon kink becomes sharply peaked.

When α is negative (E2
2 > 1+B2

1), the potential U(T ) is flipped as shown in figure 1b

and then character of regular static solutions changes drastically. For fixed α and γ, the

system of our interest is again specified by the value of β in E (2.35). When β is positive,

the action of our system (2.1) is rewritten as

S = −T3

∫

dt dx d2x⊥ V (T )

√

β − (−α)
(

dT

dx

)2

= −
√
−αT3

∫

dt d

(

T0x

ζ̄

)

d2x⊥ V (T )

√

1−
[

dT

d(T0x/ζ̄)

]2

. (2.69)
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Figure 5: Profiles of tachyon kink and

bounce T (x) when α < 0.

Figure 6: Profiles of string charge density

Π2 when α > 0.

But this action (2.69) is exactly the same as that of rolling tachyon which is given by

S = −T3

∫

dt dx d2x⊥ V (T )

√

β − (1 +B2)

(

dT

dt

)2

= −
√

(1 +B2)T3

∫

dx d

(

T0t

ζB

)

d2x⊥ V (T )

√

1−
[

dT

d(T0t/ζB)

]2

(2.70)

where ζB =
√

(1 +B2)/β. Thus, there exists a one-to-one correspondence between a

regular configuration with spatial x-dependence and the time evolution of a homogeneous

rolling tachyon solution. With this identification, the pressure −T11 of this system plays

the same role as the hamiltonian density H in the rolling tachyon system. Since we will

find static configurations in a closed form in what follows, it means that we obtain the

most general rolling tachyon solutions in an arbitrary flat unstable Dp-brane [2, 3, 9, 18,

24, 25, 26, 11].

(i) When E → 0+ (β → 0+; see the dotted-dashed line in figure 1b), constant vacuum

solutions, T (x) = ±∞, are the only possible configurations (see the dotted-dashed

line in figures 5 and 6).

(ii) When 0 < E < U(0) (0 < β < T 2
3 /γ

2; see the solid line in figure 1b), there is a turning

point Tmin (−Tmin) such that

T (x) ≥ Tmin = T0 arccosh(u) , (T (x) ≤ −Tmin) , (2.71)

where u is given in eq. (2.49). The corresponding configuration is a bounce which is

convex up (convex down) as shown by the two solid curves in figure 5

T (x) = T0 arcsinh

[

√

u2 − 1 cosh

(

x

ζ̄

)]

, (2.72)
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where ζ is given in eq. (2.48). Its asymptotic slopes are

T
′

(±∞) = ±T0

ζ̄
, (2.73)

which are shown by the two solid straight lines in figure 5. Since α is negative, the

localized pieces of eqs. (2.40)–(2.44) change the sign,

1

αγ
[T3V (T )]2 = − T 2

3

−αγ
1

1 + (u2 − 1) cosh2(x/ζ̄)
, (2.74)

which implies negative contribution of the localized energy density ρ and the localized

string charge density Π2 to the constant background quantities as shown by the solid

line in figure 6.

(iii) When E = U(0) (β = T 2
3 /γ

2; see the dashed line in figure 1b), we have the trivial

ontop solution T (x) = 0. In addition, we find nontrivial tachyon half-kink solutions

connecting the unstable symmetric vacuum T (−∞) = 0 and one of two stable broken

vacua T (∞) = ±∞ (see the dashed curve in figure 5),

T (x) = ±T0 arcsinh

[

exp

(

x

ζ̄

)]

. (2.75)

Since the half-kink connects smoothly two vacua with different vacuum energy as

V (T = 0) > V (T = ±∞), the localized piece of eqs. (2.40)–(2.44) is monotonically

increasing or decreasing as shown by the dashed line in figure 6,

1

αγ
[T3V (T )]2 = − T 2

3

−αγ
1

1 + exp
(

2x/ζ̄
) . (2.76)

In the limit of infinite Π1 with finite −α, 1
αγ [T3V (T )]2 becomes a step function with

infinite gap.

(iv) When E > U(0) (β > T 2
3 /γ

2; see the dotted line in figure 1b), we have

T (x) = T0 arcsinh

[

√

1− u2 sinh

(

x

ζ̄

)]

. (2.77)

Configuration is monotonically increasing (or decreasing) from T (−∞) = ∓∞ to

T (∞) = ±∞ (see the dotted curve in figure 5) so that this solution can be regarded

as hybrid of two half-kink solutions joined at the origin. Opposite to the similar

kink solutions for positive α, slope of the solutions has minimum value at the origin

and maximum value at infinity. Thus the localized piece of eqs. (2.40)–(2.44) has

minimum at the origin due to the flip of its signature

1

αγ
[T3V (T )]2 = − T 2

3

−αγ
1

1 + (1− u2) sinh2
(

x/ζ̄
) . (2.78)

The string charge density Π2 is plotted by the dotted line in figure 6.

Finally we consider the case α = 0. If we multiply α to eq. (2.34) and take the limit

of α → 0, then T ′2 term disappears. The original tachyon equation (2.18) reduces to

dV/dT = 0 so that we only have homogeneous vacuum solutions, T (x) = 0 or T (x) = ±∞.
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3. Tachyon kinks on unstable Dp-brane

The analysis in the previous section can be applied to general unstable Dp-branes without

much difficulty. In this section we will show that, even for general Dp-branes, the equations

of motion reduce to a single first-order equation of the form in eq. (2.34) for static case

with inhomogeneity in the x-direction. Thus what we have obtained in the previous section

and also in ref. [33] are actually the most general type of regular static kink solutions of

codimension one for Dp-branes.

Assuming only the x(= x1)-dependences in the fields T and Aµ, the determinant X in

the action (1.1) can be written as

−X = −det(ηµν + ∂µT∂νT + Fµν)

= βp + T ′
2
αp , (3.1)

where

βp = −det(ηµν + Fµν) , (3.2)

and αp = C11 is the 11-component of the cofactor of Xµν . The equations of motion are

∂1

(

Tp
V√
−X

C11T ′
)

= −
√
−XTp

dV

dT
,

∂1Π1 = 0 ,

∂1

(

Tp
V√
−X

C1i
A

)

= 0 , (i = 2, 3, . . . , p− 1) , (3.3)

where

Π1 = Tp
V√
−X

C01
A . (3.4)

The expression of the energy-momentum tensor is again given by the symmetric part of

the cofactor as in the D3-brane, namely,

T µν = Tp
V√
−X

Cµν
S . (3.5)

Then the conservation equation, ∂µT
µν = 0, becomes

∂1T
1µ = ∂1

(

Tp
V√
−X

C1µ
S

)

= 0 . (3.6)

Addition of eq. (3.3) and eq. (3.6) leads to

∂1

(

Tp
V√
−X

Cµ1

)

= 0 . (3.7)

As in the case of unstable D3-brane, the Bianchi identity ∂(µFνλ) = 0 imposes p(p−1)/2
constraints on the p(p + 1)/2 components of field strength tensor with our ansatz: Ek =

constant and Fkl = constant, where k 6= 1 and l 6= 1. Now we argue that, in fact, all the

– 13 –
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field strength components are constant including E1 and F1µ. Since the cofactor C11 in

eq. (3.1) does not contain Fµν with µ = 1 or ν = 1, eq. (3.7) implies that

γp ≡ Tp
V√
−X

= constant , (3.8)

as in eq. (2.33). Now the only remaining nontrivial equations are, from eq. (3.7),

∂1C
01 = 0 ,

∂1C
k1 = 0 , (k = 2, 3, . . . , p− 1) . (3.9)

However, note that these equations are actually homogeneous coupled linear equations of

∂1F1µ since each X1ν (ν 6= 1) appears precisely once in every term of Cµ1. Therefore,

as long as the determinant made of the coefficients of ∂1F1µ does not vanish, we have

Fµν = constant for all µ, ν. (When the determinant does vanish, we can treat the case in

a similar fashion as done in section 2.)

Combining eqs. (3.1) and (3.8), we again obtain the single first-order equation (2.34)

with

E = − βp
2αp

,

U(T ) = − 1

2αpγ2
p

[TpV (T )]2 . (3.10)

Then, the rest of the analysis is the same as in D3 case, e.g., the solution space for regular

static kinks of codimension one is classified by three constants αp, βp, and γp and so on.

When p = 1, the field strength tensor has only one component of electric field and the

solutions involve only those of αp > 0 case.

4. Conclusion

In this paper we have analyzed regular static solutions of codimension-one extended objects

in the effective theory of a real tachyon, described by Born-Infeld type action with a

runaway tachyon potential coupled to an abelian gauge field. On arbitrary flat unstable

Dp-brane, the types of codimension-one extended objects are the same irrespective of p,

(p ≥ 2). The static regular kink-type solutions on unstable Dp-brane are shown to be

classified by three parameters: βp = −det(ηµν + Fµν), αp = C11 (11-component of the

cofactor of Xµν = ηµν + ∂µT∂νT + Fµν) and γp = TpV/
√
−X. Detailed analysis has been

carried out for D3 case. Species of the obtained solutions are summarized in table 1 for

various αp and βp with fixed nonzero γp.

For the single unit object listed in the left column of table 1 (αp > 0), the tension of

lower dimensional branes is correctly reproduced. When the electric field along the kink

direction is nonzero, the fundamental string charge per unit (p− 1)-dimensional transverse

volume has a confined piece. This suggests that it may be interpreted as D(p − 1)- or

D(p− 1)F1-brane on the unstable Dp-brane. If αp < 0, due to the correspondence between

the static case and time-dependent rolling tachyon case, the solutions found here may also

be interpreted as the most general homogeneous rolling tachyon solutions of an arbitrary

flat Dp-brane.
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αp > 0 αp < 0

βp < 0 topological kink with T ′(±∞) 6= 0

βp = 0 topological kink constant vacuum, T = ±∞
0 < βp < 1/γp array of kink-antikink bounce

βp = T 2
3 /γ

2
p constant ontop, T = 0 constant ontop, T = 0, & half-kink

βp > T 2
3 /γ

2
p hybrid of two half-kinks

Table 1: List of regular static configurations.
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