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Abstract

We search for tubular solutions in unstable D3-brane. With critical electric field
E = 1, solutions representing supertubes, which are supersymmetric bound states
of fundamental strings, D0-branes, and a cylindrical D2-brane, are found and shown
to exhibit BPS-like property. We also point out that boosting such a tachyon tube
solution generates string flux winding around the tube, resulting in helical electric
fluxes on the D2-brane. We also discuss issues related to fundamental string, absence
of magnetic monopole, and finally more tachyon tubes with noncritical electric field.
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1 Introduction

Supertube is a tubular D2-brane that preserves 1/4 of supersymmetry [1, 2, 3]. This

requires presence of D0 and fundamental string charge, both realized as electromagnetic

field on the D2 worldvolume. Alternatively, it may be considered as blow-up of F1-D0

composites obtained via angular momentum. One unusual characteristic of supertube is

that, as classical solution, they come with huge degeneracy and can take many different

form [2, 4, 5]. For instance, the cross section of a supertube need not be circular and in

fact can even be noncompact [6].

The simplest of such supertubes involves a cylinder of D2 with uniform magnetic field

B and uniform electric field E directed along the length of the cylinder [1]. Let us consider

the field strength of type,

F = BR dθ ∧ dz + E dt ∧ dz, (1.1)

where R is the radius of the cylinder while θ is of period 2π. With Born-Infeld action,

the physical electric flux, along z direction and per unit θ, is

Πz = R
E√

1−E2 + B2
, (1.2)

and the energy density per unit z and unit θ is

E = R
1 + B2

√
1−E2 + B2

=
√

(Π2
z + R2)(1 + B2) . (1.3)

Note that the total electric flux is 2πΠz while the net magnetic flux per unit z is 2πRB.

This configuration is known to become 1/4 supersymmetric when the electric field E

is taken to the critical value E = 1. Upon this, we have an inverse relationship between

magnetic field and flux density,

Πz = R
1

B
, (1.4)

and the energy density decomposes into two pieces nicely

E = R

(
1

B
+ B

)
. (1.5)

In this last expression, the first term represents the energy of fundamental strings and

the second represents D0 energy. Tension of D2 itself disappeared completely.

One aspect of this state particularly relevant for this note is that one can reduce size

of the supertube without affecting the fundamental string charge. Let us fix the total

electric flux

nF1 = 2πΠz =
2πR

B
, (1.6)
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and take the small radius limit, where the energy per unit length becomes

2πE = nF1 +
(2πR)2

nF1

= nF1 + nF1B
2. (1.7)

So as we decrease amount of magnetic flux on D2, the cylindrical configuration collapses

to infinitesimal tubular configuration which entirely consists of the fundamental string

charge.

It was recently suggested that in the system of unstable Dp-brane decay, fundamental

string may be realized as a limiting configuration of tubular D(p− 1)-branes with electric

flux on it [7]. Question of fundamental strings remains one of more puzzling aspect in

the study of unstable D-brane decay [8, 9, 10, 11, 12, 13], and very recently possible roles

of topological defects in this question began to be addressed [14, 15]. Approaching it

from low energy dynamics, several nontrivial interaction between topological defects were

isolated, and it was found that tachyonic kink configurations tend to attract nearby and

parallel electric flux lines [16, 17] forming a bound state of D(p−1) brane and fundamental

strings. The idea is to curl up such a bound state into a cylindrical configuration with

only one noncompact direction and let the compact part shrink away to zero size.

Specific form of such tubular solution was obtained from lifting [18] the Callan-

Maldacena solution of D(p − 1) brane [19, 20] to that of tachyon effective action on

unstable Dp-brane and concentrating on the spike part of the configuration. Such a com-

bination involves vanishing radius of the tube, which makes it fairly singular. In this note,

we consider the case of unstable D3 brane and consider a family of solutions representing

supertube. These may be regarded as a thickened version of such tubular fundamental

string charge carrier and may be used as regulated and stabilized solution.

The D(p − 1) branes are also typically represented by infinitesimally thin domain

wall solutions [21]. Nevertheless, smooth kink solutions are known and, in the theory of

tachyon, are represented by an infinite array of kinks and anti-kinks to be interpreted

as D-brane-anti-D-brane pairs [22, 23, 24]. When the tachyon couples to Born-Infeld

gauge field, spectra of regular extended objects become rich [23, 25]. Some of these

smooth solutions are interpreted as thickened D-branes or bound states of D-brane and

F1. Topological kink solution with orthogonal and uniform critical electric flux appears

to enjoy BPS properties. For infinite array of kinks-anti-kinks and a topological kink with

orthogonal and uniform electric flux, exact boundary states were also found [7]. Naturally,

this prompts us to ask whether there exists a regulated and thickened version of supertube-

like solutions, which of course should reproduce genuine supertube configurations in the

zero thickness limit.
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Section 2 will introduce the setup and solve for supertube-like configuration with

“critical” electric field. With a specific choice of potential, we find an analytic and smooth

solutions of coaxial array of tubes with D0 and fundamental string charge. Surprisingly,

this family of solutions seemingly saturate a BPS-like energy formula, and behave much

like supertubes, except the D2 worldvolume is thickened. Taking an infinitesimally thin

limit of this solution, we find singular supertube solutions of arbitrary radius which match

up with expected properties of supertubes precisely. We close the section with brief

comments on relevance of these solutions in the context of fundamental string formation.

Section 3 addresses the question of turning on more electric fields and point out that

boosting the tubular solution lengthwise will tilt the flux such that fundamental string

appears winding helically along the tube. Section 4 considers a different class of ansatz

involving Dirac monopole in gauge sector. We show that the only static solution of such

kind involves strict vacuum T = ∞ so that the monopole-like configuration cannot lead

to any physical effect. The appendix explores supertube ansatz with noncritical E < 1

case. We close with summary.1

2 Supertubes from Unstable D3-Brane

We begin this section with introducing effective tachyon action for unstable D3-brane [27,

18, 28, 29, 30, 31]

S = −T3

∫
d4x V (T )

√
− det(gµν + ∂µT∂νT + Fµν) . (2.1)

This sort of behavior with potential multiplying the kinetic term seems generic and in

particular predicted by boundary string field theory approach [32, 33]. For most of this

note, we will adopt a convenient form of V (T ) [34, 35, 36, 22], which has been derived

from open string theory [37] recently,

V (T ) =
1

cosh (T/T0)
, (2.2)

where T0 is
√

2 for the non-BPS D-brane in the superstring and 2 for the bosonic string,

in the string unit.

We are interested in tubular configurations embedded in flat D3-brane, and will work

in the cylindrical coordinate system,

xµ = (t, xi) = (t, z, r, θ), ds2 = −dt2 + dz2 + dr2 + r2dθ2. (2.3)
1As this work was finished, a related work discussing singular supertube solution appeared on the net

[26].
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Both the tachyon field and the electromagnetic fields are assumed to depend only on the

radial coordinate r, and we employ ansatz for the electromagnetic fields consistent with

supertube solution

T = T (r), (2.4)

F0r = F0θ = Frθ = Fzr = 0. (2.5)

With the assumption of time independence, behavior of Ez and Fθz is determined entirely

by the Bianchi identity, which gives

Ez = E, Fθz/r = B(r) = α/r, (2.6)

with constant E and α.2 Since we have

−X ≡ − det(gµν + ∂µT∂νT + Fµν) =
[
(1− E2)r2 + α2

]
(1 + T ′2), (2.7)

the low energy effective action simplifies drastically

−T3

∫
dtdzdθ

∫
dr V (T )

√
(1−E2)r2 + α2

√
1 + T ′2 , (2.8)

where the prime ′ denotes differentiation with respect to the radial coordinate r.

2.1 Tachyon Tube

Since we are primarily concerned with supertube-like solutions, we may as well take E = 1

for start and work with the action

−αT3

∫
dtdzdθ

∫
dr V (T )

√
1 + T ′2 . (2.9)

We will come back in later part of the note for more general solution. Then the effective

action above maps to that of a simple mechanical system with conserved “energy” by

imagining r as “time”, which immediately gives us the following integral of motion,

V (T )√
1 + T ′2 = βα/T3, (2.10)

where we introduced an arbitrary integration constant β. Equivalently this integral of mo-

tion can be obtained from the energy-momentum conservation of the full action. Eq. (2.10)

may be rewritten as
1

2
T ′2 + U(T ) = −1

2
, (2.11)

2This ansatz fails Bianchi identity ∇ · B = 0 at origin.

5



T (r)

r
πT0 3πT02πT0

0

Figure 1: Plot of T (r) with r0 = 0, T0 = 1, α = 1, and E = 1: (i) solid line for

αβ/T3 = 0.001, and (ii) dashed line for αβ/T3 = 0.1.

with

U(T ) = − 1

2(αβ)2
[T3V (T )]2 . (2.12)

Note that, in the limit of vanishing magnetic field α = 0, the equation becomes V (T ) = 0

and it allows only trivial vacuum solution T (r) = ±∞.

A nontrivial solution exists for (αβ/T3)
2 < 1 and is a coaxial array of tubular configu-

ration where T oscillates as function of r. For instance, under the specific form of tachyon

potential (2.2), we have an exact solution

T (r) = −T0 arcsinh



√(

T3

αβ

)2

− 1 cos

(
r + r0

T0

)
 . (2.13)

Note that this represents a coaxial array of tubular D2 and anti-D2 since the solution

involves kink and anti-kink pair along every ∆r = 2πT [39]. For the moment, we shall

impose regularity of T field at origin by requiring r0 = mπT0 where m is an integer. Note

that the periodicity of the solution, 2πT0, is independent of the value of (αβ/T3)
2. This

is a consequence of the particular form of the potential (2.2) we adopted.

For the obtained tubular objects, the following physical momenta vanish,

T0z = 0, T0r = 0, (2.14)
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and all off-diagonal components of stress-tensor vanish as would be expected of a station-

ary solution. All nonvanishing conserved densities are dictated by a single quantity

Σ(r) ≡ T3

α
V (T )

√
1 + T ′2 = β(1 + T ′2) (2.15)

which, for the particular form of the potential (2.2), has an explicit expression

Σ(r) → β

{
1 +

sin2(r/T0)

[(T3/αβ)2 − 1]−1 + cos2(r/T0)

}
. (2.16)

The energy and the electric flux in infinitesimal rdrdθ are written as

E drdθ = (r2 + α2)Σ(r) drdθ, (2.17)

Π drdθ = r2Σ(r) drdθ, (2.18)

per unit length along z. For these quantities, we can see that the period along r is actually

half of that of T (r). This can be understood by realizing that solution represents a coaxial

array of tubular D2 and anti-D2 branes with worldvolume gauge fields turned on. While a

single isolated D2 in vacuum is given by singular kink, it is also known that modification

of boundary condition may thicken the kink into a smooth thickened solution [23, 24, 25].

Each period of T contains a pair of tubular domain wall and anti-domain wall, while the

above conserved quantities are insensitive on orientation of the wall. Distinction between

D2 and anti-D2 can be seen from gradient of T which generates RR charge of D2 branes

[38, 39, 18].

In order to identify the obtained tubular objects in each half period ∆r = πT0, we

compute the energy (tube tension) per unit tube length

E (n)
2 = 2π

∫ nπT0

(n−1)πT0

dr E = 2πβ

∫ nπT0

(n−1)πT0

dr
(T3/αβ)2(r2 + α2)

1 + [(T3/αβ)2 − 1] cos2(r/T0)
, (2.19)

and string charge per unit length

Q
(n)
F1 = 2π

∫ nπT0

(n−1)πT0

dr Π = 2πβ

∫ nπT0

(n−1)πT0

dr
(T3/αβ)2 r2

1 + [(T3/αβ)2 − 1] cos2(r/T0)
. (2.20)

In addition, each unit tube (or antitube) carries angular momentum per unit length

L(n) = −2παβ

∫ nπT0

(n−1)πT0

dr
(T3/αβ)2 r2

1 + [(T3/αβ)2 − 1] cos2(r/T0)
. (2.21)

A salient point is that the difference E−Π is quite simple and can be identified as D0-brane

charge. In terms of formulae above, we define Q
(n)
D0 as

E (n)
2 = Q

(n)
D0 + Q

(n)
F1 . (2.22)
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Figure 2: Plot of ξ(r) ≡ E(r) − Π(r) with r0 = 0, T0 = 1, α = 1, and Ez = 1: (i) solid

line for αβ/T3 = 0.1, and dashed line for αβ/T3 = 0.5.

For the specific form of the tachyon potential (2.2), it coincides exactly with the D0-brane

charge before introducing tachyon profile

Q
(n)
D0 = 2πβα2

∫ nπT0

(n−1)πT0

dr
(T3/αβ)2

1 + [(T3/αβ)2 − 1] cos2(r/T0)
= 2π2αT0T3, (2.23)

regardless of value of β. Thus, much like the case of supertube we introduced earlier, the

tension of unit tachyon tube (or antitube) system decomposes linearly into two additive

pieces.

Furthermore QD0, as the notation suggests, happens to be the energy density expected

of D0-branes. To see this, we need to note that

T2 = πT0T3 (2.24)

is the quantity that becomes tension of the D2-brane in this low energy theory. On the

other hand, 2πα is the net magnetic flux on the D2 per unit z length. Product of the two

generates D0 charge in spacetime [40].

However, we must caution the reader against taking this fact too seriously. Most likely,

this miracle happened only because of the particular form of the potential (2.2) adopted

above, which is justified only in certain limit [37]. A priori, there seems to be no rationale

why the integral that defines Q
(n)
D0 (2.23) must be independent of β, for more general form
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of potential. Dependence on β will result in an anomalous dependence on the electric flux

density and ruin the BPS-like energy formula. In such general case, one must take the

limit of infinitesimal thickness of the domain wall to find such a simple behavior, which is

the subject of next part. Nevertheless, as long as we are working with such a particular

potential, this gives an interesting option for handling supertube-like configurations.

2.2 Thin Supertube

When we take a limit of β → 0, the configuration gets squeezed near r = (n − 1/2)πT0

for each positive integer n. Every localized piece becomes sharply peaked at each site of

the tachyon tube (or antitube) so that

lim
β→0

β(1 + T ′2) =
πT3T0

α

∞∑
n=1

δ (r − (n− 1/2)πT0) , (2.25)

as shown in Fig. 2.

This singular form of solution also implies that value of T lies at ±∞ away from these

centers, and neither the value of T ′ nor B enters the dynamics directly except for discrete

positions of tube (antitube). In such limit, we have no reason whatsoever to insist upon

regularity at the origin. We thus have more general singular solution such that

lim
β→0

β(1 + T ′2) =
πT3T0

α

∞∑
n=1

δ (r + r0 − (n− 1/2)πT0) . (2.26)

Without loss of generality we may consider values of r0 such that πT0/2 > r0 ≥ 0.

Correspondingly, we have

E (n)
2 =

2π

α

[
((n− 1/2)πT0 − r0)

2 + α2
]
× πT3T0, (2.27)

Q
(n)
F1 =

2π

α
((n− 1/2)πT0 − r0)

2 × πT3T0, (2.28)

Q
(n)
D0 = 2πα× πT3T0, (2.29)

and the accompanying angular momenta,

L(n) = −2π ((n− 1/2)πT0 − r0)
2 × πT3T0. (2.30)

Though distribution of the D0 charge and its magnetic field profile are singular, induced

energy contribution is finite as shown in Eq. (2.27). Note that Eq. (2.22) and Eq. (2.28)

satisfy the relation between radial size of n-th tube Rn = (n− 1/2)πT0 − r0 and charges

such as Rn =

√
Q

(n)
F1 Q

(n)
D0/2π2T0T3.
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Different choice of the tachyon potential will modify the universal function Σ(r), but

the limiting form will again involve delta-functions. For the following discussion we will

consider more general form of the potential, and retains the requirement that the poten-

tial decays exponentially ∼ e−|T | asymptotically. Other requirements are that V (T ) is

monotonically decreasing in |T | and that V (0) = 1.

For convenience, take a half period of T (r) that solves

T ′(r) =
√

(T3V (T )/βα)2 − 1 . (2.31)

T ′(r) then starts out with value zero and begins to increase slowly as long as V (T ) value

remains exponentially small in T . Conversely when T ′ remains small V (T ) value must

remain small also. Let us take any of one of half period such that T (r) starts at large

negative value −Tmax, where V (±Tmax) = βα/T3 for the rest of discussion. So the half

period is determined by the integral

∆rhalf =

∫ Tmax

−Tmax

dT√
(T3V (T )/βα)2 − 1

. (2.32)

At some points near the middle of this half period, T begins to approach −T0 where T0

now refers to characteristic scale where V (T ) is of order 1. In this region T ′(r) is very

large, achieving a maximum value at r = R such that T (R) = 0. This means that the

interval in r where T is comparable to T0 is very short.

Recall that the function Σ is given by

Σ(r) =
T3

α
V (T )

√
1 + T ′2 . (2.33)

We wish to approximate this expression by

Σ(r) ∼ Σ0 =
T3

α
V (T )T ′, (2.34)

for monotonic and increasing T (r). Of course this is possible only if T ′ is very large. In

the region where T ′ is of order one, the equation for T above tells us that we also must

have,

T3V (T )/βα ∼ 1, (2.35)

meaning that V (T ) is still of order β. Since we are taking the limit of β → 0, this allows

us to use the approximate formula Σ0 in place of Σ. Within this half period, assuming

that the latter is finite, Σ(r) reduces to

lim
β→0

Σ(r) → 1

α
×

(
T3

∫
V (T ) dT

)
× δ(r − R). (2.36)
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We have used the fact that the support of Σ, more precisely the region of r where Σ

remains larger than, say, ∼ β1/3 vanishes rapidly as ∼ β1/3 when we take β → 0.

The quantity in the parenthesis is to be identified with ordinary BPS D2-brane tension

T2 [21]. With this, D0 charge and F1 charge are respectively,

QD0 = 2παT2, (2.37)

QF1 =
2πR2

α
T2, (2.38)

and the energy is the sum of the two

E2 = QD0 + QF1. (2.39)

In order to compare this to ordinary supertube, we need to restore the factor of D2-brane

tension, T2, in energy formulae of section 1 and identify α with BR.

Therefore, the supertube can be understood as that in singular zero-thickness limit

of the obtained unit tachyon tube (or antitube) solution. The whole configuration we

obtained is interpreted as coaxial array of tube-antitube. Once we take β = 0 limit, on

the other hand, each and every tube becomes a complete solution on its own.

2.3 Tachyon Tube and Tubular Fundamental String

As we saw earlier in this note, supertube provides an interesting method of blowing up a

long fundamental string. While this is not much of advantage in ordinary supersymmetric

string theory context, it may prove more useful when we consider how fundamental string

forms from decay of unstable D-branes.

One of more intriguing scenarios that emerged recently involve string flux sitting at

top of tachyon potential. However, no such stable solution exists and one must take a

double scaling limit of cylindrical domain wall to reach such a state. That is, take an

infinitely thin domain wall with fluxes on it and then take infinitesimal radius limit of a

cylinder thereof. The string flux is imagined to be embedded in this infinitesimal cylinder.

Because of such a double scaling limit, the object is a bit difficult to handle.

A priori, it is not obvious whether, in the absence of D(p− 1) branes nearby, there is

really any tangible difference between such configurations and a tight collection of string

fluid [10] sitting at some homogeneous vacuum. As was point out in Ref. [7], the dynamics

of the two will follow exactly the same, Nambu-Goto-like, equation of motion [10, 11, 41]

away from D(p − 1) brane. One motivation for the current work is to provide a setting

where more precise question about such stringy configurations can be asked.
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By adding magnetic field to the tubular configuration, we essentially obviated one of

the two scalings, and found a stable string-like configuration of small but finite tubular

radius. Magnetic field strength necessary scales with the radius of the tube, so one can

take smaller and smaller size tube by taking small magnetic field limit. For specific form

of the potential, furthermore, the unit tachyon tube before taking thin supertube limit

provides additional control, given that it also satisfies a BPS-type relation (2.22) and is

given by exact and smooth solution (2.13). Existence of such a static and smooth profile

in closed form may come in handy, at least for the purpose of having a set of solutions

that approaches infinitesimally small tubular solution.3

While we concentrated on cylinders with circular cross section, it is well known that

a supertube can be deformed to have an arbitrary cross section [2, 4, 6]. In the present

context, this results in huge degeneracy which gives at best arbitrarily shaped distribution

of fundamental string charges, much as in the case of string fluid in real vacuum. As was

also pointed out previously, therefore, this alternate picture of fundamental string is so

far unable to resolve the usual degeneracy problem [9, 10, 17], or equivalently the lack of

confinement mechanism, at the level of classical effective theory. It remains to be seen

how and at what level this degeneracy is lifted [8, 9, 12, 7].

3 Boosted Tachyon Tube with Helical String Flux

One might ask whether more general ansatz leads to new kind of tubular solutions. One

of more obvious variation we can try is to turn on more electromagnetic field. In fact

there is a simple generalization of the ansatz that brings us back to an equally simple

integrable equation for T . Consider turning on Eθ in addition to Ez

F = Ezdt ∧ dz + Eθdt ∧ dθ + α̃dθ ∧ dz. (3.1)

With static field strength of r dependence alone, Bianchi identity demands that both Eθ

and Ez are constants.

Note that Eθ 6= 0 will generate fundamental string charge along angular direction in

addition to the one along z direction, so the electric flux will have a helical shape along

the tube. More precisely, the electric flux along z and θ directions has a relation

Πθ =
Eθ

Ez
Πz, (3.2)

3This is not to say that these are a degenerate one-parameter family of solutions associated with a
supertube. For smooth tube solution, the net electric flux in each unit tube depends on the parameter β

while the D0 charge remains unchanged for the particular form of the potential. What remains unchanged
is that the energy gets contribution from that of fundamental strings and D0’s only.
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where we define Πθ ≡ δS/δEθ = Πθ/r
2, and Πz ≡ δS/δEz in A0 = 0 gauge. The effective

action for the tachyon field T = T (r) becomes

−T3

∫
dtdzdθ

∫
dr V (T )

√
(1− E2

z )r
2 + (α̃2 −E2

θ )
√

1 + T ′2 . (3.3)

As before, this becomes integrable once we impose the condition of critical electric field,

E2
z = 1, since the Lagrangian will then have no explicit r-dependence. Furthermore it is

easy to show that, within cylindrical symmetry ansatz, this is the only case where simple

first order integral of motion is possible.

In fact, the form of the action is identical to the case with Eθ = 0 above if we identify

√
α2 =

√
α̃2 − E2

θ . (3.4)

Note in particular that sensible solution will appear only if α̃2 > E2
θ . One can understand

this by realizing that the two cases are in fact related by a Lorentz boost along z direction.

Starting with the simplest case,

F = Ezdt ∧ dz + αdθ ∧ dz, (3.5)

one may boost this field strength along z with velocity v,

F = Ezdt ∧ dz +
αv√
1− v2

dt ∧ dθ +
α√

1− v2
dθ ∧ dz. (3.6)

We then may identify

α̃ =
α√

1− v2
, Eθ =

αv√
1− v2

, (3.7)

which also gives Eq. (3.4) completing the assertion that turning on Eθ is equivalent to

boosting and appropriate rescaling of B. Of course T is a scalar field and so T ′ is also

invariant under the Lorentz boost along z direction.

Emergence of winding electric flux on D2, or equivalently winding fundamental string

charge, upon a boost may be surprising. After all, the same will happen even if the

D2-brane were wound on a topological circle, which seems to say that boosting generated

net conserved string charge along the topological circle direction. This unexpected effect

may be understood once we realize that worldvolume magnetic field also couples NS-NS

field Bµν . Although it does not generate net string charge, the worldvolume magnetic

field generates a spacelike current associated with string charge.4 All that happen is that

the Lorentz boost tilts this spacelike current toward time direction a bit, which effectively

generates density of string charge.
4We thank Kimyeong Lee on this point.
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4 Is There a Magnetic Monopole in an Unstable D3?

With a minimal assumption on nontrivial field content, the effective action was shown

above to be of the form, ∫
dr V (T )R(r)

√
1 + T ′2 (4.1)

with

R(r) =
√

(1−E2)r2 + α2 (4.2)

for the supertube case with constant rB = α. Reality of the Born-Infeld action requires,

E2 ≤ 1, since otherwise the action will become purely imaginary at asymptotic region.

This sort of effective action can be used to explore another kind of configuration,

namely a spherically symmetry magnetic monopole. The latter should have

F = Q sin θdθ ∧ dφ (4.3)

which gives an effective action of the above form with

R(r) =
√

r4 + Q2. (4.4)

Of course r in Eq. (4.4) is the radial coordinate of spherical coordinate system.

Unlike the case of Maxwell theory, the singularity of this Dirac monopole does not

cost infinite amount of energy, and one might wonder if there exist a Dirac monopole-like

solution of finite mass. Existence of such a solution is unlikely, given that no obvious

stringy interpretation is available. Here we will confirm this expectation by showing that

the above class of action does not possess a regular and isolated solution that approaches

vacuum at large radius.

If there is an isolated solution with such charges, T (r) must approach ±∞ at large

r. Since the system is invariant under T → −T , take positive infinity for the asymptotic

value of T . Far away from origin, then, the potential V approaches e−T exponentially

fast, and we could ask whether there is a proper solution with V = e−T and T (∞) = +∞.

Euler-Lagrange equation of motion reduces to

d

dr

(
RT ′

√
1 + T ′2

)
+

R√
1 + T ′2 = 0, (4.5)

where we used ∂T e−T = −e−T . Defining f as

f(r) ≡ T ′
√

1 + T ′2 , (4.6)
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the equation of motion (4.5) is now

d

dr
(Rf) + R

√
1− f 2 = 0. (4.7)

Because of the relative positive sign, this first order equation always drives f toward −1

from above as r →∞ for both choices of R(r). Near r = ∞, we find

f = −1 +
c

2r2
+ · · · , (4.8)

where c = 1 for supertube ansatz (4.2) and c = 4 for monopole ansatz (4.4). The

corresponding T is, on the other hand,

T (r) =

∫
dr

f√
1− f 2

= −
∫

dr
r√
c

+ · · · = − r2

2
√

c
+ · · · (4.9)

which is inconsistent with original assumption T → +∞. Thus there exists no isolated

supertube or monopole solution such that T at finite r is finite.

Thus only acceptable solutions that approach vacuum at infinity are singular. In

case of supertube ansatz, it corresponds to any one of the coaxial tubes in β → 0 limit

in section 2. In case of monopole, it corresponds to T = ∞ everywhere with a Dirac

monopole in the gauge sector. In the latter case, the Dirac monopole does not generate

any measurable quantity, since all conserved quantum numbers we considered above vanish

for this configuration. Only if there is an electric charge that couples to the gauge field

directly (say, via minimal vector-current coupling), can there be physical consequence of

this monopole solution. In the context of unstable D-brane, no such charged particle is

known to exist.

5 Summary

In this note we considered static tubular solution in unstable D3-brane decay with an

ansatz that involves both D0 charge and fundamental string charge. A series of both

smooth and singular solutions are obtained and compared to supertube configuration of

D2. While for a specific choice of potential there exists a smooth BPS-like solution, for

generic choice of potential, one must take a singular limit to find supertube solution.

After a brief comment on possible relevant of such solutions in study of fundamental

string formation, we turned to other exotic solutions. Finally we show that magnetic

monopole solution does not exist as a sensible finite energy solution.
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Appendix: Tachyon Tubes with Noncritical Electric

Field

In the previous sections we dealt with tubular objects with critical value of the electric

field E2 = 1. In this appendix let us consider arbitrary value of the z-component of the

electric field E2 < 1 and investigate effect of it. As we saw above, isolated solution does

not exist. Rather we shall find that the coaxial structure found in E2 = 1 case still persist,

but with some quantitative modification. Below we will study this case.

Finding solution is a matter of finding classical solution of the following reduced La-

grangian

−V (T )
√

(1− E2)r2 + α2
√

1 + T ′2 , (A.1)

and we have the following second order equation to solve.

T ′′

1 + T ′2 +
(1− E2)rT ′

(1−E2)r2 + α2
=

1

V

dV

dT
. (A.2)

Alternatively, we can get the same equation from r-component of energy-momentum

conservation law, using

Trr = −T3
V√
−X r

[
r2(1−E2) + α2

]
, (A.3)

Tθθ = −T3
V r3

√
−X

(1 + T ′2)(1−E2). (A.4)

Since we kept the orthogonality between electric and magnetic fields, physical electric flux

is such that

Πr = Πθ = 0, Π(≡ Πz) = T3
V r2E√
−X

(1 + T ′2), (A.5)
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where −X is given in Eq. (2.7). Π in Eq. (A.5) contains a factor of
√
−X , so we can see

that E2 larger than 1 is not acceptable physically, if we wish to maintain reality of the

action. Thus we will consider E2 < 1 from now on.

With this, the second term of Eq. (A.2) gives always damping effect. A natural

boundary condition at the origin is again to assume T ′(0) = 0. Then the damping term of

Eq. (A.2) does not affect choice of boundary value of the tachyon field, so it can have any

value similar to the free parameter β in Eq. (2.10) for the case of E2 = 1, say T (0) = −T̄ .

Since the tachyon profile should be nonsingular, power series expansion near the origin

gives

T (r) ≈ −T̄ + a1r
2 + a1a2r

4 +O(r6) (A.6)

with

a1 =
tanh(T̄ /T0)

2T0
, (A.7)

a2 =

[
tanh(T̄ /T0)

2T0

]2

− 1

12T 2
0

− 1−E2

6α2
. (A.8)

Since the coefficient of r2 term is determined only by the tachyon potential and double

derivative term of Eq. (A.2), it is independent of the electric and magnetic fields. Its

signature is opposite to that of initial value −T̄ , which is consistent with monotonically

increasing (decreasing) behavior of tachyon tube (antitube). In the limit of infinite T̄ ,

both second and third terms in Eq. (A.6) remain finite and this implies possibility of

zero thickness limit of the tachyon tube with keeping the period finite. As expected,

electromagnetic contribution appears as decreased slope in the r4 term (A.8) and it implies

increment of the period (see Fig. 3). Even in the limit of vanishing α2/(1− E2) but not

exactly zero, the coefficient of the second term of Eq. (A.2) has 1/r which decreases as r

increases. For sufficiently large r, the approximated equation does not afford the decaying

solution to zero as 1/rp form, so the critical or overdamping solution seems unlikely.

Near rc with T (rc) = 0, power series solution of Eq. (A.2) is

T (r) ≈ b0(r − rc)
[
1 + b1(r − rc) + b2(r − rc)

2 + · · ·
]

(A.9)

with

b1 = − rc(1 + b2
0)

2
(
r2
c + α2

1−E2

) , (A.10)

b2 =
1 + b2

0

6

[
− 1

T 2
0

− 1

r2
c + α2

1−E2

+
3r2

c (1 + b2
0)(

r2
c + α2

1−E2

)2

]
, (A.11)
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T (r)

−T̄

r
πT0 5πT03πT00

Figure 3: Plots of T (r) with common initial value −T̄ : (i) solid line for α2/(1−E2) = 10,

(ii) dashed line for α2/(1− E2) = 1, and (iii) dotted line for α2/(1− E2) = 0.1.

where b0 and rc are determined by proper behavior near the origin. Existence of even order

terms in Eq. (A.9), e.g., nonvanishing b1 (A.10), breaks reflection symmetry about rc and

stands for signal of the damping due to the noncritical electric field. In order to confirm

the limit of step function for sufficiently large α2/(1−E2), let us compare the results (A.9)

with the critical case (2.13). Expansion of T (r) in Eq. (2.13) near rc0 = (2n± 1
2
)πT0:

T (r) ≈ ±

√(
T3

αβ

)2

− 1 (r − rc0)

[
1− T 2

3

6T 2
0 α2β2

(r − rc0)
2

]
+O((r − rc0)

5). (A.12)

Taking the limit of critical electric field E2 → 1 in Eq. (A.9) with assumption rc → rc0,

we observe as expected that

b0
E2→1−→ ±

√(
T3

αβ

)2

− 1, b0b1
E2→1−→ 0. (A.13)

The limiting value of b0b2 consistently reproduces the cubic term in Eq. (A.12). Therefore,

near the critical E, we can safely take zero thickness limit in a consistent way with β → 0

limit. On the other hand, once we take b0 → ∞ limit first with keeping α2/(1 − E2)

finite, then b0b1 ∼ −rcb
3
0/

[
2(r2

c + α2

1−E2 )
]

approaches ∓∞ as far as rc remains to be

finite. Survival of even order terms implies asymmetry of T in the vicinity of rc and then

derivative term T ′2 is not expressed purely by δ-function.
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