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BPS D-branes from an unstable D-brane in a curved background

Chanju Kim*
Department of Physics, Ewha Womans University, Seoul 120-750, Korea

Yoonbai Kim,† Hwang-hyun Kwon,‡ and O-Kab Kwonx

BK21 Physics Research Division and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746, Korea
(Received 8 June 2005; published 13 July 2005)
*Electronic
†Electronic
‡Electronic
xElectronic

1550-7998=20
We find exact tachyon kink solutions of Dirac-Born-Infeld–type effective action describing an unstable
D5-brane with a world volume gauge field turned on in a curved background. The background of interest
is the ten-dimensional lift of the Salam-Sezgin vacuum and, in the asymptotic limit, it approaches R1;4 �
T2 � S3. The solutions are identified as composites of lower-dimensional D-branes and fundamental
strings, and, in the BPS limit, they become a D4D2F1 composite wrapped on R1;2 � T2 where T2 is inside
S3. In one class of solutions we find an infinite degeneracy with respect to a constant magnetic field along
the direction of the Neveu-Schwarz–Neveu-Schwarz field on S3.
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I. INTRODUCTION

The study of unstable D-branes in string theory has
led to a deeper understanding of the theory in various
aspects [1]. In a dynamical aspect, it provides an ex-
ample of time-dependent string background that can be
described by the language of world sheet conformal
field theory [2]. Descent relations among BPS and non-
BPS D-branes of various dimensions provided a new per-
spective on the characteristics of D-branes and helped the
development of the classification of D-brane charges
in terms of K theory [3]. These rolling tachyons and
tachyon solitons can also be dealt, at least qualitatively,
in terms of Dirac-Born-Infeld (DBI)-type effective action
[4,5].

Most of the studies so far have been performed on flat
unstable D-branes. The purpose of the paper is an attempt
to extend the analysis of unstable D-branes to a curved
bulk background and find tachyonic kink solutions on
them. The background that we consider is the ten-
dimensional embedding of the supersymmetric vacuum,
R1;3 � S2, of the Salam-Sezgin model [6]. The model is
a gauged N � �1; 0� supergravity in six dimensions
coupled to a tensor and an Abelian vector multiplet [7].
The vacuum solution is the unique nonsingular solution
of the model with maximal four-dimensional spacetime
symmetry. It can be embedded into ten dimensions as the
type-IIA supergravity background solution, R1;3 � S2 �
H 2;2 � S1, where H 2;2 represents a three-dimensional
hyperboloid. In view of recent works on the dynamics
of D-branes in NS5-brane background initiated by
Kutasov [8], it is interesting to notice that [6], in the
asymptotic limit at large distances, the local geometry of
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the background of Salam-Sezgin vacuum approaches the
NS5-brane near-horizon geometry [9,10]. However, there
is a difference in that the string coupling constant goes
to zero in the asymptotic limit of the background, while
it blows up in the throat region of the NS5-brane. In
this limit, it is valid to study non-BPS D-branes in terms
of DBI-type effective theory. Still our work may have
an implication for recent developments along the line of
[8].

In the asymptotic limit, the background approaches
R1;4 � T2 � S3. The object of consideration is a non-BPS
D5-brane whose world volume lies on R1;2 � S3. After the
unstable D-brane decays, one may expect the generation
of lower-dimensional stable brane configurations [5,11]
and emission of energy to closed string degrees of free-
dom [12,13]. The former, specifically the codimension-one
object, is what we would like to study in this paper. We
find two classes of exact solutions both of which are
identified as thick D4-branes on R1;2 � T2 where the
two-torus is embedded in the three-sphere. One class of
the solutions contains fundamental string and two D2-
branes; one is tubular and the other flat. The flat D2-brane
disappears when a constant magnetic field, h, along the
direction of the Neveu-Schwarz–Neveu-Schwarz (NS-NS)
field on S3 vanishes. In the thin limit, the solution becomes
BPS when h � 0 and the energy expression is given by a
BPS sum rule. The other class involves one tubular D2-
brane and fundamental string. In the thin limit it becomes
essentially identical to the former class of the solutions
except that it has infinite degeneracy with respect to h.

The rest of this paper is organized as follows. In Sec. II,
we give a brief review of the bulk background on which we
consider tachyon kink solutions of an unstable D5-brane.
In Sec. III, by considering an unstable D5-brane in the
given background, we obtain stable codimension-one D-
brane configurations and identify their BPS limit. We con-
clude the paper in Sec. IV.
-1  2005 The American Physical Society
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II. BACKGROUND GEOMETRY

In this section we briefly describe the background of the
ten-dimensional lift of Salam-Sezgin vacuum1 and set the
convention. The type-IIA supergravity action is given by
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for the massless NS-NS fields in the string frame. Here �10

is the ten-dimensional gravitational coupling constant, 
 is
1The details of the construction of the background can be
found in [6].
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the dilaton field, and H
�� is the field strength of NS-NS
two-form potential B
�. Ramond-Ramond (R-R) and fer-
mionic fields do not play a role for the embedding and may
be set to zero.

The six-dimensional Salam-Sezgin model is a gauged
N � �1; 0� supergravity coupled to a tensor and an
Abelian vector multiplet. Its bosonic sector consists of
the metric, real scalar field, �, Abelian one-form and
two-form gauge fields, A and B0. Through a chain of
dimensional reductions and truncations, one can see that
the model can be obtained by dimensionally reducing IIA
supergravity on H 2;2 � S1. Here H 2;2 is the quadric,

2

1 �
2
2 �
2

3 �
2
4 � 1; in Euclidean space R4. The

embedding is described by the ansatz
ds2 � e��=2ds26 �
1

2g2

�
d�2 �

cosh2�
cosh2�

�d�� gA�2 �
sinh2�
cosh2�

�d�� gA�2
�
� d�2;

H �
sinh� cosh�

g2�cosh2��2
d� ^ �d�� gA� ^ �d�� gA� �

1

2g cosh2�
dA ^ �cosh2��d�� gA� � sinh2��d�� gA�
 � dB0;

e
 � �cosh2���1=2e��=2;

(2)
where g is a rescaled coupling constant for the gauge
potential A, ��;�; �� parametrize the hyperboloid H 2;2,
and � the circle S1.

Using the ansatz (2), any solution of the Salam-Sezgin
model can be lifted to ten dimensions. The one of our
interest is the supersymmetric vacuum solution, R1;3 �
S2, with the magnetic monopole flux on S2, which is given
by

ds26 � dx24 �
1

8g2 �d�
2 � sin2�d’2�;

A � �
1

2g
cos�d’; dB0 � 0; � � 0;

(3)

where dx24 represents the line element of the four-
dimensional Minkowski space. Inserting the solution (3)
into the ansatz (2) gives the background of the ten-
dimensional lift of the Salam-Sezgin vacuum. In the
large-� limit, the embedded solution simplifies and can
be written as

ds2 � dx26 �
1

2g2 d�
2 �

1

8g2 �d�
2 � sin2�d’2

� �d��� �� � cos�d’�2
;

H �
1

8g2 sin�d� ^ d’ ^ d��� ��; 
 � ��;

(4)

where 0 � � � �, 0 � ’ � 2�, 0 � ��� �� � 4�, and
dx26 represent the line element of R1;3 � T2. Besides the
fact that there is a linear dilaton background along the
direction R�, one can notice that the coordinates ��; ’;��

�� parametrize S3 as the Hopf fibration of S1 over S2 and
the field strength H is proportional to the volume form of
the unit three-sphere. Therefore, the background (4) is
locally identical to the near-horizon geometry of the
NS5-brane [9,10]. However, as remarked in the previous
section, the behavior of the dilaton is opposite in the
respective limits of the two background solutions.

In the following discussions, it turns out to be useful to

rescale the angular variables by the radius of S3, R �

1=
��������
8g2

p
, to the variables �u; v; w� and use a gauge-fixed

value of the gauge potential B, which brings (4) to

ds2 � dx26 � 4R2d�2 � du2 � sin2
�
u
R

�
dv2

�

�
dw� cos

�
u
R

�
dv

�
2
; (5)

B � � cos
�
u
R

�
dv ^ dw; (6)


 � ��: (7)
III. D4D2F1-COMPOSITES FROM UNSTABLE
D5-BRANE

In this section we will study tachyon kink solutions on
an unstable D5-brane in the large-� limit of the ten-
dimensional lift of Salam-Sezgin vacuum on R1;3 � T2 �

R� � S3 described by Eqs. (5)–(7). We consider the D5-
-2
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brane on R2 � S3 with the coordinates �z; �; u; v; w� where
z is one of the spatial coordinates2 of R1;3. The string
coupling constant goes to zero in the limit and many
features of the dynamics of unstable D-branes can be
described by the DBI-type world volume effective action
[14]

SD5 � �T 5

Z
d6!e�
V�T�

�
����������������������������������������������������������������������������
� det�g
� � F
� � B
� � @
T@�T�

q
; (8)

where T 5 is the tension of the non-BPS D5-brane, F
� is
the field strength of the U(1) world volume gauge field,
T�x� is the real tachyon field, and !
�
 � 0; . . . ; 5� runs
over the coordinates �t; z; �; u; v; w�. The background met-
ric g
� and NS-NS field B
� are given by the pullbacks of
(5) and (6) on the D5-brane. For the tachyon potential
V�T�, any runaway potential with V�0� � 1 and V��1� �
0 is allowed for the existence of the D-brane configuration
of our interest that is consistent with universal behavior in
tachyon condensation [5], but we assume a specific form
for exact solutions [15]

V�T� �
1

cosh�TR�
; (9)

where R turns out to be identical to the compactification
scale R in (5) for the kink solutions we find.

For the rest of the paper we will study codimension-one
solutions of (8) under the ansatz

T � T�u; w�; (10)

and the nonvanishing components of the world volume
gauge field strength are

F0z � Ez�u;w�; Fvz � '�u; w�; Fvw � h�u;w�:

(11)

It turns out to be an appropriate ansatz for the tachyon and
the U(1) gauge field to support a tachyon tube embedded in
a codimension-one D4-brane.3 With this ansatz, the coor-
dinate � decouples from the others and hence the presence
of the dilaton background (7) plays no role. Therefore, in
the following, we will simply ignore the dilaton back-
ground in the action.

Applying the Bianchi identity

@
F�( � @�F(
 � @(F
� � 0; (12)
2Inclusion of the linear dilaton coordinate � in the world
volume of D5 is not essential for the type of solutions we
consider; it can be trivially replaced by any other spatial coor-
dinate on R1;3 without changing the rest of the analysis.

3One can also consider solutions with all w replaced by v in
(10) and (11). Since the coordinates v and w are symmetric
(except minus signs in vw components of two-form fields and
the range of the variables), the resulting solutions will be
essentially identical to the present case.
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we can further simplify the ansatz (11). The result is

Ez � const; ' � const; h � h�w�: (13)

Substituting the nonvanishing gauge field (13), the tachyon
(10), and the NS-NS two-form field (6) into the action (8),
we have

SD5 � �T 5

Z
d6!V�T�

	
�1� E2

z � '2��1� �@uT�
2

� �@wT�
2
 � �1� E2

z��1� �@uT�
2


�

��
h� cos

�
u
R

��
2
� cos2

�
u
R

��

1=2

: (14)

As has been done for every tubular object, we take a critical
electric field along the z direction, jEzj � 1, as a basic
ansatz, and then the action (14) takes a simple form,

SD5 � �T 5'
Z

d6!V�T�
��������������������������������������������
1� �@uT�

2 � �@wT�
2

q
: (15)

Then the equations of motion for the tachyon and gauge
field are given by

@u

�
'V��������
�X

p @uT
�
� @w

�
'V��������
�X

p @wT
�
�

��������
�X

p

'
dV
dT

; (16)

@u

�
'V��������
�X

p h@uT@wT
�
� @w

�
'V��������
�X

p h�1� �@uT�
2�

�
; (17)

@u

�
'V��������
�X

p cos
�
u
R

�
@uT@wT

�
� @w

�
'V��������
�X

p cos
�
u
R

�

� �1� �@uT�2�
�
; (18)

where X � �'2�1� �@uT�2 � �@wT�2
. It is not difficult
to solve these equations. After some manipulations with
(16) and (18) we find that they are consistent only when

@uT@wT � 0; (19)

i.e., the tachyon field T is a function of either u or w but not
both. Then from (17) and (18) it is easy to see that h should
be a constant.

A. T � T�u�

We first consider the case @wT � 0, i.e., T depends only
on u. Then the only nontrivial equation is (16) (with
@wT � 0). This equation is actually exactly the same as
that for the usual tachyon tube [16,17] in lower dimensions
and can also be directly derived from the reduced action

SD5 � �T 5'
Z

d6!V�T�

�����������������������
1�

�
dT
du

�
2

s
: (20)

It is now quite straightforward to solve Eq. (16). Rewriting
the equation, we find
-3
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@u

�
V�T���������
�X

p

�
� 0: (21)

Thus the whole equations of motion reduce to a single first-
order differential equation

* �
T 5V�T���������

�X
p ; (22)

where * is an integration constant. With the tachyon
potential (9), we can find the exact solution in a closed
form,

sinh
�
T�u�
R

�
� �

�������������������������
T 5

'*

�
2
� 1

s
cos

�
u
R

�
: (23)

The energy-momentum tensor T
� of the system is
given by

T
� �
T 5V��������
�X

p �������
�g

p C
�
s ; (24)

where C
�
s is the symmetric part of the cofactor of X
� �

g
� � F
� � B
� � @
T@�T. For the solution (23), non-
vanishing components are

Ttt �
1

sin�u=R�

�
1� '2 � h2 � 2h cos

�
u
R

��
��u�;

Tzz � �
1

sin�u=R�

�
1� h2 � 2h cos

�
u
R

��
��u�;

Tuu � �
*'2

sin�u=R�
; Tww � �

'2

sin�u=R�
��u�;

Ttv � �
'

sin�u=R�
��u�; Ttw � ' cot

�
u
R

�
��u�;

Tzw �
'

sin�u=R�

�
h� cos

�
u
R

��
��u�;

(25)

where

��u� � *�1� �@uT�2
 �
1

*'2 �T 5V�2

�
T 2

5=*'2

��T 5

*'�
2 � 1
cos2�uR� � 1

: (26)

The electric flux �i, which is the conjugate momentum of
Ai, is calculated as

�i �
T 5V��������
�X

p C0i
A ; (27)

where C0i
A is the antisymmetric part of the cofactor of X
�.

Then the solution (23) has two nonzero components,

�z �

�
1� h2 � 2h cos

�
u
R

��
��u�;

�w � �'
�
h� cos

�
u
R

��
��u�:

(28)
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Note that, except Tuu, all nonzero components of T
�

and �i depend on ��u� which has a peak at u � �R=2
where the NS-NS two-form background field (6) vanishes.
In fact, in the limit * ! 0 it becomes a delta function

��u� !
�RT 5

'
-�u� �R=2�; (29)

and so do the nonvanishing components of T
� and �i
(Tuu goes to zero in this limit). Therefore, when * is small,
the coordinate u is essentially fixed at �R=2 and the
solution represents a dimensionally reduced configuration.
From the background metric (5), we see that the configu-
ration spans T2 in the three-sphere:

dsS3 � du2 � sin2
�
u
R

�
dv2 �

�
dw� cos

�
u
R

�
dv

�
2 ���!uR��

2
dsT2

� dv2 � dw2: (30)

Of course, this is because the three-sphere with the above
metric is a Hopf fibration of S2 with coordinates �u; v� and
hence the circle u � �R=2 along the equator of the two-
sphere corresponds to T2 in the three-sphere.

The coupling to the bulk R-R fields can be read off from
the Wess-Zumino term for unstable D-branes [5,18],

SWZ � T 5

Z
V�T�dT ^ CRR ^ eF�B: (31)

For the solution (23),

dT � @uTdu;

F� B � dt ^ dz� 'dz ^ dv�

�
h� cos

�
u
R

��
dv ^ dw:

(32)

Then, in the thin limit * ! 0 we can use (29) to simplify
SWZ,

SWZ � ��RT 5

Z
�C�5� � C�3� ^ �dt ^ dz� 'dz ^ dv

� hdv ^ dw� � hC�1� ^ dt ^ dz ^ dv ^ dw
;

(33)

where the terms containing a R-R form wedged to dt are
irrelevant. The resulting configuration consists of the fol-
lowing objects. First we have a D4-brane stretched along
R2 � T2 with coordinates �z; �; v; w�. Its RR-charge reads

T 4 � �RT 5; (34)

which is precisely the relation one would expect when the
codimension-one solution in the world volume theory of an
unstable Dp-brane on R2 � S3 is identified as a BPS
D�p� 1�-brane on R2 � T2. We also have two D2-branes
with charges per unit area, �RT 5' and �RT 5h, which
are spanned by the world volume coordinates �t; �; w� and
�t; �; z�, respectively. In addition, there are fundamental
strings with flux (28) on cylinder R� S1 of �z; w�.
-4
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In order to study the BPS nature of the solution, we now
investigate the energy-momentum tensor (25). For the
solution to be a BPS object, it is required that the stress
components vanish in the transverse directions, i.e., T
� �
0 with 
; � � u; v. From (25), this is satisfied if * ! 0 for
which the pressure in the u direction Tuu vanishes. [The
other limit ' ! 0 with finite * is not interesting since ��u�
and local densities blow up.] Also, the off-diagonal stress
component between D2-branes Tzw should vanish. In the
thin limit * ! 0 where u is fixed to �R=2, this dictates that
h � 0. Then we have only one D2-brane along the direc-
tions ��;w� and an electric flux along the z direction since
�w becomes zero. This solution is expected to form a BPS
configuration. Indeed, the energy per unit area of coordi-
nates ��;w� takes the form

ER
d�dw

�
Z

dzdudv�1� '2���u�

�
Z

dzdudv�z � �RT 5'
Z

dzdv

� QF1 �QD2; (35)

where QF1 is the total charge of fundamental strings along
the z direction and QD2 the total charge of the D2-brane
stretched along the ��;w� direction on the area

R
dzdv.

This is the familiar BPS sum rule which we have met in our
previous works when considering solutions such as
tachyon kinks and tubes [11,16,17]. Other nonvanishing
components of the energy-momentum tensor are Ttv whose
presence means that the configuration carries angular mo-
mentum as in tachyon tubes, Tzz corresponding to the
fundamental string charge, and Tww the D2-brane charge.

In summary, when h � 0, the solution produces a BPS
D4D2F1-composite in the thin limit, * ! 0. It consists of
the D4-brane wrapped on R2 � T2, the tubular D2-brane
with the coordinates ��;w�, and the fundamental strings
stretched along the z direction.

B. T � T�w�

When we put @uT � 0 into the equations of motion
(16)–(18), we obtain exactly the same equations as in the
previous case if @uT is replaced by @wT. The solution can
be expressed as

sinh
�
T�w�
R

�
� �

24 �������������������������
T 5

'*

�
2
� 1

s
cos

�
w
R

�35; (36)

where * is again given by (22) with X � �'2�1�
�@wT�

2
.
The energy-momentum tensor (24), however, has a dif-

ferent form since the background fields, (5) and (6), are not
symmetric under the exchange of u and w. Its nonvanishing
components are
026006
Ttt �
1� '2

sin�u=R�
��w� �

*
sin�u=R�

�
h2 � 2h cos

�
u
R

��
;

Tzz � �
1

sin�u=R�
��w� �

*
sin�u=R�

�
h2 � 2h cos

�
u
R

��
;

Tuu � �
'2

sin�u=R�
��w�; Tww � �

*'2

sin�u=R�
;

Ttv � �
'

sin�u=R�
��w�; Ttw � '* cot

�
u
R

�
;

Tzw �
'*

sin�u=R�

�
h� cos

�
u
R

��
:

(37)

We also have the electric fluxes

�z � ��w� � *
�
h2 � 2h cos

�
u
R

��
;

�w � �'*
�
h� cos

�
u
R

��
:

(38)

Comparing with the previous case, we see that there are
terms which are not proportional to ��w�. But note that
they are all multiplied by * and, hence, all the quantities
are proportional to ��w� in the * ! 0 limit as before.
Moreover, in this thin limit, h completely disappears
from the energy-momentum tensor and the electric flux.
This is also true for the Wess-Zumino term (31) since dT �
@wTdw kills the terms containing h in (32), which means
that the constant magnetic field h does not induce D2-brane
charge. From the expression for the energy density in (37),
it can be seen that a BPS sum rule similar to (35) holds and
is independent of h. Therefore, in the present case, one may
say that there is an infinite degeneracy with respect to h
which is, different from the previous case, not constrained
to be zero in the BPS limit. The BPS object is again a
D4D2F1-composite with the world volume direction w
replaced by u.

Since the range of the variable w is from 0 to 4�R, ��w�
now reduces to a sum of four delta functions rather than
one in the thin limit, i.e.,

��w� !
�RT 5

'

X3
n�0

-�w� �R=2� n�R�; * ! 0:

(39)

Because of this difference and the different pattern of
degeneracy in h, it might seem that the solution in this
case describes a different object from that of the previous
case. We will, however, show that the difference is actually
an artifact of the coordinates. It turns out that the two
configurations are identical, with the ways T2 being em-
bedded in S3 different.

First, we observe that, if the coordinate w is exchanged
with u, the energy-momentum tensor (37) and the electric
flux (38) are identical to (25) and (28) of the previous case
in the thin limit with h � 0. Now we consider the geometry
of the solution. With w � �n� 1

2��R, n � 0; . . . ; 3, the
-5
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metric of S3 reduces to

dsS3 � du2 � sin2
�
u
R

�
dv2 �

�
dw� cos

�
u
R

�
dv

�
2

! du2 � dv2; (40)

which is locally the metric of T2. The global topology is
determined by examining the range of coordinates. In the
Appendix, we verify this by finding an explicit orthogonal
coordinate transformation connecting the two solutions.
Since the background fields are obviously invariant under
the transformation, the solution indeed describes the same
object as in the previous section embedded in a different
direction in S3 (in the limit * ! 0).
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FIG. 1 (color online). Stereographic projection of the solution
T � T�u� of Sec. III A.
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IV. CONCLUSION

In this paper we studied the DBI type effective action of
a non-BPS D5-brane in the asymptotic limit of the ten-
dimensional lift of the Salam-Sezgin vacuum. In the limit
the background approaches R1;4 � T2 � S3 and exact
tachyon kink solutions were found for the D5-brane on
R1;2 � S3. There are two classes of solutions both of which
describe BPS D4D2F1-composites on R2 � T2, D2 being
tubular and wrapped on an S1 and F1 stretched along one of
the flat directions. In one class of the solutions, there is an
infinite degeneracy with respect to a constant magnetic
field along the direction of the NS-NS field on the three-
sphere.

Although the ten-dimensional embedding of the Salam-
Sezgin vacuum is a solution of type IIA supergravity, it
needs to be seen whether it is also an exact string back-
ground. One of the methods to check this is to see whether
the background survives higher-order stringy correction
terms in the low-energy type-IIA string effective action.
However, the background at the asymptotic limit may
provide an exact string background, considering that the
local geometry is that of the near-horizon limit of the NS5-
brane which is known to be exact at the string tree level [9].
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FIG. 2 (color online). Stereographic projection of the solution
T � T�w� of Sec. III B.
APPENDIX: EQUIVALENCE BETWEEN THE TWO
TYPES OF SOLUTIONS IN BPS LIMIT

Here we demonstrate that under a suitable coordinate
transformation the solution T � T�u� of (23) in Sec. III A
becomes the solution T � T�w� of (36) in Sec. III B in the
thin limit.
026006
The three-sphere with metric dsS3 in (30) can be repre-
sented by Cartesian coordinates 1i, i � 1; . . . ; 4 via

11 � cos
�
u
2R

�
cos

�
v� w
2R

�
;

12 � cos
�
u
2R

�
sin

�
�

v� w
2R

�
;

13 � sin
�
u
2R

�
cos

�
v� w
2R

�
;

14 � sin
�
u
2R

�
sin

�
v� w
2R

�
;

(A1)
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so that
P4

i�1 1
2
i � 1. In these coordinates, the solution (23)

describes T2 embedded in S3 as seen in Sec. III A. To
visualize this solution, it is convenient to use the stereo-
graphic projection of S3 onto R3 given by

wi �
1i

1� 14
�i � 1; 2; 3�; (A2)

where the point �0; 0; 0; 1� is chosen to be the ‘‘north pole.’’
Figure 1 shows the torus (30) embedded in S3.

In this stereographic projection, the configuration ob-
tained as the thin limit of the solution (36) is visualized as
in Fig. 2. Note that the figure is obtained after patching all
contributions from the four delta functions in (39). At first,
026006
the shape of the surface in Fig. 2 does not look like a torus.
However, the spatial infinities of R3 are to be identified in
the stereographic projection and it is not difficult to see that
the surface actually is a torus embedded in S3. Indeed, with
the new coordinates

1 0
1 � �

1���
2

p �12 � 14�; 1 0
2 �

1���
2

p �11 � 13�;

1 0
3 �

1���
2

p �12 � 14�; 1 0
4 �

1���
2

p �11 � 13�;

(A3)

and the corresponding stereographic projection, the surface
in Fig. 2 is precisely transformed to the torus of Fig. 1.
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