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Abstract

Starting from the Bethe Ansatz solution of the open integrable spin-1 XXZ quantum spin chain with
diagonal boundary terms, we derive a set of nonlinear integral equations (NLIEs), which we propose to
describe the boundary supersymmetric sine-Gordon model BSSG+ with Dirichlet boundary conditions on
a finite interval. We compute the corresponding boundary S matrix, and find that it coincides with the
one proposed by Bajnok, Palla and Takács for the Dirichlet BSSG+ model. We derive a relation between
the (UV) parameters in the boundary conditions and the (IR) parameters in the boundary S matrix. By
computing the boundary vacuum energy, we determine a previously unknown parameter in the scattering
theory. We solve the NLIEs numerically for intermediate values of the interval length, and find agreement
with our analytical result for the effective central charge in the UV limit and with boundary conformal
perturbation theory.
© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Much can be learned from studying quantum field theories in finite volume. This is partic-
ularly true for (1 + 1)-dimensional integrable QFTs, for which there are effective descriptions
in both the infrared (infinite size) and ultraviolet (zero size) limits, namely, massive factorized
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Fig. 1. Three sets of parameters and their relations.

scattering theory [1–3] and conformal field theory (CFT) [4,5], respectively. Moreover, at least
for some examples, there also exist effective descriptions in terms of certain nonlinear integral
equations (NLIEs) for general system size.

A case in point is the sine-Gordon (SG) model on a circle (periodic boundary conditions) [6–
8], and on an interval with either Dirichlet [9,10] or general integrable [11] boundary conditions.
NLIEs have been obtained in these papers from Bethe Ansatz solutions of corresponding critical
spin- 1

2 XXZ chains [12–15], with a mass scale introduced by means of an alternating inhomo-
geneity parameter (±Λ). Among the quantities that have been computed from these NLIEs are
bulk and boundary S matrices (IR limit), bulk and boundary energies, and central charge and
conformal dimensions (UV limit). Moreover, Casimir energies in the near UV region obtained
by numerically solving the NLIEs agree well with those obtained using the truncated conformal
space approach (TCSA) [16,17] and conformal perturbation theory.

In the NLIE approach one generally deals with three sets of parameters: The UV parameters
appearing in the action, the IR parameters appearing in the S matrices, and the lattice parameters
in terms of which the NLIE is initially formulated. (See Fig. 1.) In principle, by matching the UV
and IR limits of the NLIE with corresponding known results, one can deduce the “lattice ↔ UV”
and “lattice ↔ IR” relations, respectively. If the “UV ↔ IR” relation is also known, then the
consistency of these three sets of relations can be checked. For the sine-Gordon model, for which
the “UV ↔ IR” relation for the boundary parameters has been determined [18], this consistency
has been established for both the bulk and boundary parameters.

Much less is known about the supersymmetric sine-Gordon (SSG) model [19–22],2

(1.1)L= 1

2
∂μϕ∂μϕ + 1

2
iΨ̄ γ μ∂μΨ − m0

2
cos(βϕ)Ψ̄ Ψ + m2

0

2β2
cos2(βϕ),

where ϕ is a real scalar field, Ψ is a Majorana Fermion field, m0 is a mass parameter, and
β ∈ (0,4π) is a dimensionless coupling constant. Indeed, for the case of periodic boundary
conditions, an NLIE was proposed only recently [23], motivated by [24], and derived in [25]
from the Bethe Ansatz solution of the integrable spin-1 XXZ chain [26,27]. While the ground
state of the critical spin- 1

2 chain is described by a sea of real Bethe roots, the ground state of
the critical spin-1 chain is described by a sea of approximate “two-strings”, i.e., certain complex
conjugate pairs of Bethe roots. As a result, the familiar method [7] of deriving the NLIE, based on
the Bethe Ansatz equations and the corresponding counting function, does not seem to work for

2 We take γ 0 = ( 0 i )
, γ 1 = ( 0 i )

, Ψ = ( ψ

¯
)
, with ψ and ψ̄ real.
−i 0 i 0 ψ
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the spin-1 case. Nevertheless, an NLIE can be derived [24,25] from the model’s T –Q equations,
in a manner similar to the original approach [6]. Very recently, the periodic spin-1 XXZ/SSG
NLIE for excited states was shown [28] to have the correct UV and IR limits. In particular, the
bulk soliton S matrix [22] was obtained from the IR limit of the NLIE.

Our goal has been to find an NLIE for the boundary supersymmetric sine-Gordon model on
an interval with general integrable boundary conditions [29–32]. This field theory is of interest
as a toy model with boundary that is both integrable and supersymmetric; and it may also have
applications to superstring theory [33]. Since a Bethe Ansatz solution of the corresponding open
spin-1 XXZ chain with general integrable boundary terms [34] is still not known, we focus here
on the special case of diagonal boundary terms, whose solution is already available [35]. The
homogeneous chain has the local Hamiltonian

(1.2)H =
N−1∑
n=1

Hn,n+1 + b.t.,

where the bulk terms Hn,n+1 are those of the Fateev–Zamolodchikov [26] spin chain,

Hn,n+1 = σn − (σn)
2 − 2 sin2 γ

[
σz

n + (
Sz

n

)2 + (
Sz

n+1

)2 − (
σz

n

)2]
(1.3)+ 4 sin2

(
γ

2

)(
σ⊥

n σ z
n + σz

nσ⊥
n

)
,

where

(1.4)σn = �Sn · �Sn+1, σ⊥
n = Sx

nSx
n+1 + S

y
nS

y

n+1, σ z
n = Sz

nS
z
n+1,

and �Sn are spin-1 generators of SU(2); and the diagonal boundary terms are give by

b.t. = 1

2
sin(2γ )

{
−[

cotη− + cot(η− − γ )
]
Sz

1 + [
cotη− − cot(η− − γ )

](
Sz

1

)2

(1.5)− [
cotη+ + cot(η+ − γ )

]
Sz

N + [
cotη+ − cot(η+ − γ )

](
Sz

N

)2
}
.

The bulk and boundary parameters are γ and η±, respectively.
We propose that, in analogy with the spin- 1

2 XXZ/SG model, this open spin chain (more
precisely, its generalization obtained by introducing into the transfer matrix an alternating inho-
mogeneity parameter ±Λ) corresponds to the boundary SSG model on an interval [x−, x+] with
Dirichlet boundary conditions,

ϕ(x−, t) = ϕ−, ϕ(x+, t) = ϕ+,

(1.6)ψ(x−, t) − ψ̄(x−, t) = 0, ψ(x+, t) − ψ̄(x+, t) = 0,

where ψ and ψ̄ are the spinor components of the Majorana field Ψ . These boundary condi-
tions follow from the boundary action [30] in the limit that the boundary mass parameters tend
to infinity. That the diagonal boundary terms (1.5) of the spin-1 XXZ chain correspond to the
Dirichlet boundary conditions (1.6) of the SSG model is consistent with the fact that Sz and
topological charge are conserved in the two models, respectively, and also that both models are
integrable.

There are actually two known sets of integrable supersymmetric boundary conditions for the
boundary SSG model [30]. Following [32], we shall refer to the set (1.6) as Dirichlet BSSG+,
and to the set with ψ + ψ̄ = 0 at both ends as Dirichlet BSSG−.
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We derive an NLIE for the Dirichlet BSSG+ model, circumventing (as in [25]) the difficulties
posed by the ground-state sea of two-strings by identifying suitable auxiliary functions from the
model’s T –Q equations [35], and exploiting their analytic properties. By analyzing the IR limit
of this NLIE, we compute the soliton boundary S matrix, which coincides with the one proposed
for the Dirichlet BSSG+ model by Bajnok et al. [32]. We propose the “UV ↔ IR” relation for
the boundary parameters, for the special case of Dirichlet boundary conditions, on the basis of
our NLIE and its UV and IR limits. By computing the boundary vacuum energy, we determine a
previously unknown parameter in the scattering theory [32]. We solve the NLIEs numerically for
intermediate values of the volume, and find agreement with our analytical result for the effective
central charge in the UV limit and with boundary conformal perturbation theory, and confirm the
UV–IR relation.

The outline of this paper is as follows. In Section 2 we rederive the NLIE for the spin- 1
2

XXZ/sine-Gordon model with Dirichlet boundary conditions [9]. However, we use the method
which we apply to the spin-1 case (which differs from the approach used in [9]), and therefore,
this serves as a valuable warm-up exercise for the latter problem. In Section 3 we turn to our main
interest, the spin-1 XXZ/supersymmetric sine-Gordon model with Dirichlet boundary conditions.
We sketch the derivation of the NLIE, relegating some of the details to Appendix B. In particular,
we determine the boundary terms Pbdry(θ) and Py(θ) which encode boundary effects. Section 4 is
devoted to an analysis of the IR limit of this NLIE. In the course of computing the corresponding
boundary S matrix, we determine the “lattice ↔ IR” relation for the boundary parameters. In
Section 5, we analyze the UV limit of our NLIE, and compare with the expected CFT result. In
this way, we obtain a boundary “UV ↔ lattice” relation, and therefore finally the “UV ↔ IR”
relation for the boundary parameters. In Section 6 we compute the effective central charge of
the Dirichlet SSG model using first-order boundary conformal perturbation theory, and compare
with numerical NLIE results. We conclude in Section 7 with a discussion of our results and with
some comments on various open problems. Some important technical details are explained in the
appendices.

2. Spin- 1
2 XXZ/SG with Dirichlet boundary conditions

We rederive here the NLIE for the spin- 1
2 XXZ/sine-Gordon model with Dirichlet boundary

conditions [9]. However, in contrast to the familiar approach [7] used in [9], we do not introduce
the counting function. Instead, we identify suitable auxiliary functions from the model’s T –Q

equation, and exploit their analyticity properties. We shall use the same method to treat the spin-1
XXZ/supersymmetric sine-Gordon model in Section 3.

2.1. T –Q equation

The transfer-matrix eigenvalues T (x) of the inhomogeneous open spin- 1
2 XXZ chain with

Dirichlet boundary conditions satisfy the T –Q equation [14]

(2.1)

T (x) = T (+)(x) + T (−)(x), T (±)(x) ≡ sinh(2x ± iγ )B(±)(x)φ

(
x ± iγ

2

)
Q(x ∓ iγ )

Q(x)
,

where

φ(x) = sinhN(x − Λ) sinhN(x + Λ),
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B(±)(x) = sinh

(
x ± iγH+

2

)
sinh

(
x ± iγH−

2

)
,

(2.2)Q(x) =
M∏

k=1

sinh(x − vk) sinh(x + vk).

We denote the bulk parameter by γ (0 < γ < π ), and the boundary parameters by H±. Moreover,
Λ is the inhomogeneity parameter which provides a mass scale; N is the number of spins; and
the M zeros vk of Q(x) are the Bethe roots. Note that T (−x) = −T (x).

For the homogeneous case Λ = 0, a local Hamiltonian is obtained from the first derivative of
the transfer matrix T (x) [14]. However, for the inhomogeneous case Λ 	= 0 which we consider
here, the definition of energy is less clear. We shall follow the prescription of Reshetikhin and
Saleur [36], which implies

(2.3)E = −g

a

{
d

dx
lnT (x)

∣∣∣∣
x=Λ+ iγ

2

− d

dx
lnT (x)

∣∣∣∣
x=Λ− iγ

2

}
,

where a is the lattice spacing, and g is given by

(2.4)g = − iγ

4π
.

One can verify that this definition has the correct Λ → 0 limit.

2.2. Derivation of NLIE

We define the auxiliary functions a(x) and ā(x) by

(2.5)a(x) = sinh(2x + iγ )B(+)(x)φ
(
x + iγ

2

)
Q(x − iγ )

sinh(2x − iγ )B(−)(x)φ
(
x − iγ

2

)
Q(x + iγ )

, ā(x) = a(−x) = 1

a(x)
.

The transfer-matrix eigenvalues can then be written as

T (x) = sinh(2x − iγ )B(−)(x)φ

(
x − iγ

2

)
Q(x + iγ )

Q(x)
A(x)

(2.6)= sinh(2x + iγ )B(+)(x)φ

(
x + iγ

2

)
Q(x − iγ )

Q(x)
Ā(x),

where

(2.7)A(x) = 1 + a(x), Ā(x) = 1 + ā(x).

The Bethe Ansatz equations are given by

(2.8)A(vk) = 0, k = 1, . . . ,M.

We consider the ground state. For simplicity, we restrict the boundary parameters H± to the
interval

(2.9)0 < H± <
π

γ
.

We argue in Appendix A.1 that the boundary parameters should be further restricted to the range

(2.10)
π − 2 < H+ + H− <

3π − 2

γ γ
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Fig. 2. Integration contour.

in order for the ground state to have M = N/2 real Bethe roots vk and no holes, except for one
hole at the origin. That is, T (x) does not have zeros near the real axis except for a simple zero at
the origin. To remove this root, we define

(2.11)Ť (x) = T (x)

μ(x)
,

where μ(x) is any function whose only real root is a simple zero at the origin, in particular
μ(0) = 0, μ′(0) 	= 0, so that Ť (x) is analytic and nonzero (ANZ) when x is near the real axis.
(We use a prime (′) to denote differentiation with respect to x.) It is convenient to introduce the
compact notation

(2.12)Ť (x) = t−(x)
Q(x + iγ )

Q(x)
A(x) = t+(x)

Q(x − iγ )

Q(x)
Ā(x),

where

(2.13)t±(x) = sinh(2x ± iγ )

μ(x)
B(±)(x)φ

(
x ± iγ

2

)
.

Since ln Ť (x) is analytic near the real axis, Cauchy’s theorem gives3

(2.14)0 =
∮
C

dx
[
ln Ť (x)

]′′
eikx,

where we choose the contour C as in Fig. 2.
Dividing the contour C = C1 + C2, where C1 and C2 have imaginary parts ±iε with ε small

and positive respectively, this integral can be written as

0 =
∫
C1

dx
[
ln t+(x)

]′′
eikx +

∫
C1

dx

{
ln

[
Q(x − iγ )

Q(x)

]}′′
eikx

+
∫
C1

dx
[
ln Ā(x)

]′′
eikx +

∫
C2

dx
[
ln t−(x)

]′′
eikx

3 Since Ť (x) grows exponentially with x for large x (as follows from (2.1)), [ln Ť (x)]′′ → 0 for x → ∞.
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+
∫
C2

dx

{
ln

[
Q(x + iγ )

Q(x)

]}′′
eikx +

∫
C2

dx
[
lnA(x)

]′′
eikx.

In terms of Fourier transforms defined along C2 and C1 by

(2.15)L̂f ′′(k) =
∫
C2

dx
[
lnf (x)

]′′
eikx, L̂f ′′(k) =

∫
C1

dx
[
lnf (x)

]′′
eikx,

respectively, we can rewrite∫
C1

dx

{
ln

[
Q(x − iγ )

Q(x)

]}′′
eikx = −L̂Q′′(k)

(
e−γ k − e−πk

)
,

(2.16)
∫
C2

dx

{
ln

[
Q(x + iγ )

Q(x)

]}′′
eikx = L̂Q′′(k)

[
e(γ−π)k − 1

]
,

where we have used the periodicity

(2.17)Q(x) = Q(x − iπ), x ∈ C1, and Q(x + iγ ) = Q(x + iγ − iπ), x ∈ C2.

Defining

(2.18)C(k) ≡
∫
C1

dx
[
ln t+(x)

]′′
eikx +

∫
C2

dx
[
ln t−(x)

]′′
eikx,

we obtain

(2.19)L̂Q′′(k) = e
πk
2

4 cosh
( γ k

2

)
sinh

(
(π − γ )k

2

)[
L̂A′′(k) + L̂Ā′′(k) + C(k)

]
.

This is the main consequence of analyticity.
It follows from the definition of a(x) (2.5) that

(2.20)L̂a′′(k) =
∫
C2

dx

{
ln

[
Q(x − iγ )

Q(x + iγ )

]}′′
eikx + D(k),

where D(k) is defined by

(2.21)D(k) =
∫
C2

dx

{
ln

[
sinh(2x + iγ )B(+)(x)φ

(
x + iγ

2

)
sinh(2x − iγ )B(−)(x)φ

(
x − iγ

2

)]}′′
eikx.

Using again the periodicity of Q(x), we obtain

(2.22)L̂a′′(k) = L̂Q′′(k)
[
e−γ k − e(γ−π)k

] + D(k).

Inserting (2.19) into (2.22) yields

(2.23)L̂a′′(k) = Ĝ(k)
[
L̂A′′(k) + L̂Ā′′(k)

] + CT (k),

where

(2.24)Ĝ(k) = sinh
(
(π − 2γ )k

2

)
2 cosh

( γ k )
sinh

(
(π − γ )k

) ,
2 2
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(2.25)CT (k) = Ĝ(k)C(k) + D(k).

The evaluation of CT (k) is tedious but straightforward. To this end, we make use of the identities

(2.26)
∫
C2

dx

2π

[
ln sinh(x − iα)

]′′
eikx = e−k(α−nπ)ψ(k), ψ(k) ≡ k

1 − e−πk
,

where n is an integer such that 0 < e(α − nπ) < π , and

(2.27)
∫
C2

dx

2π

[
ln sinh(2x)

]′′
eikx = k

1 − e− πk
2

≡ ψ2(k).

The result is (B.6)

CT (k) = −2πk

{
N cos(Λk)

cosh
( γ k

2

) + sinh
(
(γH+ − π)k

2

) + sinh
(
(γH− − π)k

2

)
2 cosh

( γ k
2

)
sinh

(
(γ − π)k

2

)
(2.28)+ cosh

( γ k
4

)
sinh

(
(2γ − π)k

4

)
cosh

( γ k
2

)
sinh

(
(γ − π)k

4

) }
.

The result (2.23) is the NLIE for the lattice sine-Gordon model with Dirichlet boundary con-
ditions in Fourier space. Passing to coordinate space, and integrating twice, we obtain

lna(x) =
∞∫

−∞
dx′ G(x − x′ + iε) lnA(x′ − iε)

−
∞∫

−∞
dx′ G(x − x′ − iε) ln Ā(x′ + iε)

(2.29)− i2N tan−1

(
sinh πx

γ

cosh πΛ
γ

)
+ iPbdry(x) + iπ,

where G(x) is the Fourier transform of Ĝ(k) (2.24)

(2.30)G(x) = 1

2π

∞∫
−∞

dk e−ikxĜ(k),

Pbdry(x) is given by

(2.31)Pbdry(x) =
x∫

0

dx′ R(x′) = 1

2

x∫
−x

dx′ R(x′),

and R(x) is the Fourier transform of R̂(k),

R̂(k) = −2π

{
sinh

(
(γH+ − π)k

2

) + sinh
(
(γH− − π)k

2

)
2 cosh

( γ k
2

)
sinh

(
(γ − π)k

2

)
(2.32)+ cosh

( γ k
4

)
sinh

(
(2γ − π)k

4

)
cosh

( γ k )
sinh

(
(γ − π)k

) }
.

2 4
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The integration constant is explained in Section C.1.
The continuum limit consists of taking Λ → ∞ (leading to a simplification in the driving

term, −i2N tan−1(
sinh πx

γ

cosh πΛ
γ

) ∼ −i4Ne
− πΛ

γ sinh πx
γ

), together with N → ∞ and lattice spacing

a → 0, such that the interval length L ≡ x+ − x− and the soliton mass m are given by

(2.33)L = Na, m = 2

a
e
− πΛ

γ .

The driving term therefore becomes −i2mL sinh θ , where the renormalized rapidity θ is defined
as

(2.34)θ = πx

γ
.

The resulting NLIE

ln a(θ) =
∞∫

−∞
dθ ′ G(θ − θ ′ + iε) ln A(θ ′ − iε) −

∞∫
−∞

dθ ′ G(θ − θ ′ − iε) ln Ā(θ ′ + iε)

(2.35)− i2mL sinh θ + iPbdry(θ) + iπ,

where we have defined

ε = πε

γ
, a(θ) = a

(
γ θ

π

)
, A(θ) = A

(
γ θ

π

)
,

(2.36)Pbdry(θ) = Pbdry

(
γ θ

π

)
, G(θ) = γ

π
G

(
γ θ

π

)
,

agrees with [9].

2.3. Vacuum and Casimir energies

Since our approach avoids introducing the counting function and the density of Bethe roots,
the energy computation also differs from that of the conventional approach [7]. The main idea
is to express the energy in terms of L̂Q(k), and then make use of the consequence (2.19) of
analyticity.

The energy is given by (2.3). From the T –Q equation (2.1) and the fact φ(Λ) = 0, we see that

(2.37)
d

dx
lnT (x)

∣∣∣∣
x=Λ± iγ

2

= d

dx
lnT (±)(x)

∣∣∣∣
x=Λ± iγ

2

.

Hence, the energy (2.3) can be written as

E = −g

a

d

dx

{
lnT (+)

(
x + iγ

2

)
− lnT (−)

(
x − iγ

2

)}∣∣∣∣
x=Λ

(2.38)= −g

a

∫
dk

2π
e−ikΛ

[
e

γk
2 ̂LT (+)′(k) − e− γ k

2 ̂LT (−)′(k)
]
,

where we used the fact (see (2.15))

(2.39)
[
lnf (x)

]′ =
∫

dk

2π
L̂f ′(k)e−ikx, x ∈ C2.
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Since

(2.40)T (±)

(
x ± iγ

2

)
= sinh(2x ± 2iγ )B(±)

(
x ± iγ

2

)
φ(x ± iγ )

Q
(
x ∓ iγ

2

)
Q

(
x ± iγ

2

) ,

we can compute the Fourier transforms e± γ k
2 ̂LT (±)′(k),4

e− γ k
2 ̂LT (−)′(k) = e− γ k

2 ̂LB(−)′(k) + e−γ kL̂φ′(k) + e−γ k 2πψ2(k)

(−ik)

− 2e− πk
2 sinh

(
(π − γ )

k

2

)
L̂Q′(k),

e
γ k
2 ̂LT (+)′(k) = e

γk
2 ̂LB(+)′(k) + e(γ−π)kL̂φ′(k) + e(γ− π

2 )k 2πψ2(k)

(−ik)

(2.41)+ 2e− πk
2 sinh

(
(π − γ )

k

2

)
L̂Q′(k).

We can eliminate L̂Q′(k) using (2.19) and the fact L̂f ′(k) = 1
(−ik)

L̂f ′′(k),

L̂Q′(k) = 1

(−ik)

e
πk
2

4 cosh
( γ k

2

)
sinh

(
(π − γ )k

2

)[
L̂A′′(k) + L̂Ā′′(k) + C(k)

]
= e

πk
2

4 cosh
( γ k

2

)
sinh

(
(π − γ )k

2

){
L̂A′(k) + L̂Ā′(k) + ̂LB(−)′(k) − ̂LB(+)′(k)

(2.42)+ [
e− γ k

2 − e(
γ
2 −π)k

]
L̂φ′(k) + [

e− γ k
2 − e

( γ
2 − π

2
)
k
]2πψ2(k)

(−ik)
− 2πi

}
,

where we have passed to the second line using (see (B.2), (2.21))

C(k) = ̂LB(−)′′(k) − ̂LB(+)′′(k) + [
e− γ k

2 − e
( γ

2 −π
)
k
]
L̂φ′′(k)

(2.43)+ [
e− γ k

2 − e
( γ

2 − π
2

)
k
]
2πψ2(k) − δ(k).

We obtain

e
γk
2 ̂LT (+)′(k) − e− γ k

2 ̂LT (−)′(k)

= 1

cosh γ k
2

[
L̂A′(k) + L̂Ā′(k) − 2πi

]
+ tanh

(
γ k

2

)[
2e− πk

2 cosh

((
γ − π

2

)
k

)
L̂φ′(k) − 2π cosh

((
γ − π

4

)
k
)

i sinh πk
4

(2.44)+ e− γ k
2 ̂LB(−)′(k) + e

γk
2 ̂LB(+)′(k)

]
.

This is essentially the integrand in the expression (2.38) for the energy.
Let us consider this result term by term. The L̂φ′(k) is obtained as before (B.5)

L̂φ′(k) = 2πN
(
eiΛk + e−iΛk

) ψ(k)

(−ik)
.

4 We assume here that 0 < γ < π/2.
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Inserting the corresponding order N contribution from (2.44) into (2.38), we obtain the bulk
energy

(2.45)EB = Ng

ia

∞∫
−∞

dk
(
1 + e−2iΛk

) sinh γ k
2 cosh

((
γ − π

2

)
k
)

cosh γ k
2 sinh πk

2

.

This quantity is divergent in the continuum limit. We adopt the renormalization procedure [7]
of discarding divergent terms and keeping only the (finite) terms that can be expressed in terms
of the physical mass m given in (2.33). To this end, we discard the Λ-independent term, and
evaluate the remaining integral by closing the contour in the lower half plane and selecting only
the contribution from the pole at k = − iπ

γ
. We arrive at the result [7,37]

(2.46)EB = −4πg

iγ

N

a
e
− 2πΛ

γ cot
π2

2γ
= 1

4
Lm2 cot

π2

2γ
,

where we have used (2.4) and (2.33).
We now consider the boundary energy. From (B.5), we have

e− γ k
2 ̂LB(−)′(k) + e

γk
2 ̂LB(+)′(k)

(2.47)= 2π

(−ik)
ψ(k)

[
e

( γ (H++1)

2 −π
)
k + e

( γ (H−+1)

2 −π
)
k + e− γ (H++1)

2 k + e− γ (H−+1)

2 k
]
.

Substituting this contribution from (2.44) into (2.38), we obtain the boundary energy

Eb = g

ia

∞∫
−∞

dk e−iΛk

{
sinh γ k

2

cosh γ k
2 sinh πk

2

[
cosh

((
γ (H+ + 1) − π

)k

2

)

(2.48)+ (H+ → H−)

]
+ sinh γ k

2 cosh
((

γ − π
4

)
k
)

cosh γ k
2 sinh πk

4

− 1

cosh γ k
2

}
,

which can be evaluated using the same contour integral as before,

(2.49)Eb = m

2

[
1 + cot

π2

4γ
+ sin

(
π
2

(
H+ − π

γ

))
sin π2

2γ

+ sin
(

π
2

(
H− − π

γ

))
sin π2

2γ

]
.

This matches with the result in [9].
The Casimir energy is given by (see (2.38), (2.44))

(2.50)EC = −g

a

∞∫
−∞

dk

2π
e−iΛk 1

cosh γ k
2

[
L̂A′(k) + L̂Ā′(k)

]
.

Passing to coordinate space and taking the continuum limit, we obtain

EC = 2g

aγ
�m

∞∫
−∞

dx

(
1

cosh π
γ
(Λ − x + iε)

)′
lnA(x − iε)

(2.51)= m

2γ
�m

∞∫
dx e

π
γ

(x−iε) lnA(x − iε) = m

2π
�m

∞∫
dθ eθ−iε ln A(θ − iε),
−∞ −∞
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where the renormalized rapidity θ is given by (2.34). Using Ā(x) = A(−x) and �m z = −�m z̄,
the last expression can be rewritten as

EC = m

4π
�m

∞∫
−∞

dθ
[
eθ−iε ln A(θ − iε) − e−θ+iε ln Ā(−θ + iε)

]

(2.52)= m

2π
�m

∞∫
−∞

dθ sinh(θ − iε) ln A(θ − iε).

3. Spin-1 XXZ/SSG with Dirichlet boundary conditions

We turn now to our main interest, the spin-1 XXZ/supersymmetric sine-Gordon model with
Dirichlet boundary conditions.

3.1. T –Q equations

For the spin-1 chain, there are two relevant commuting transfer matrices: T1(x) with a spin- 1
2

(two-dimensional) auxiliary space, and T2(x) with a spin-1 (three-dimensional) auxiliary space.
The corresponding eigenvalues (which we denote by the same notation) obey T –Q equations
found in [35]: T1(x) can be written as5

T1(x) = l1(x) + l2(x),

l1(x) = sinh(2x + iγ )B(−)(x)φ(x + iγ )
Q(x − iγ )

Q(x)
,

(3.1)l2(x) = sinh(2x − iγ )B(+)(x)φ(x − iγ )
Q(x + iγ )

Q(x)
,

and T2(x) can be written as

T2(x) = λ1(x) + λ2(x) + λ3(x),

λ1(x) = sinh(2x − 2iγ )B(+)

(
x − iγ

2

)
B(+)

(
x + iγ

2

)

× φ

(
x − 3iγ

2

)
φ

(
x − iγ

2

)
Q

(
x + 3iγ

2

)
Q

(
x − iγ

2

) ,

λ2(x) = sinh(2x)B(−)

(
x − iγ

2

)
B(+)

(
x + iγ

2

)

× φ

(
x − iγ

2

)
φ

(
x + iγ

2

)
Q

(
x + 3iγ

2

)
Q

(
x − iγ

2

) Q
(
x − 3iγ

2

)
Q

(
x + iγ

2

) ,

5 In [35], the transfer matrices were defined with some multiplicative factors which we omit here.
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λ3(x) = sinh(2x + 2iγ )B(−)

(
x − iγ

2

)
B(−)

(
x + iγ

2

)
(3.2)× φ

(
x + 3iγ

2

)
φ

(
x + iγ

2

)
Q

(
x − 3iγ

2

)
Q

(
x + iγ

2

) ,

where

φ(x) = sinhN(x − Λ) sinhN(x + Λ),

B(±)(x) = sinh(x ± iη+) sinh(x ± iη−),

(3.3)Q(x) =
M∏

k=1

sinh(x − vk) sinh(x + vk).

We denote the bulk and boundary parameters by γ and η±, respectively; Λ is the inhomogeneity
parameter which provides a mass scale; N is the number of spins; and the M zeros vk of Q(x)

are the Bethe roots. As we shall see below (4.4), it suffices to restrict γ to the domain 0 < γ < π
2 .

The domains (0, π
3 ) and (π

3 , π
2 ) correspond to “repulsive” and “attractive” regimes of the SSG

model, respectively. Note that T2(−x) = −T2(x).
The fusion relation

(3.4)T1

(
x − iγ

2

)
T1

(
x + iγ

2

)
= f (x) + T0(x)T2(x),

where

T0(x) = sinh(2x),

f (x) = l2

(
x − iγ

2

)
l1

(
x + iγ

2

)
= sinh(2x − 2iγ ) sinh(2x + 2iγ )

(3.5)× B(+)

(
x − iγ

2

)
B(−)

(
x + iγ

2

)
φ

(
x − 3iγ

2

)
φ

(
x + 3iγ

2

)
,

can be readily verified using the identities

λ1(x) = 1

T0(x)
l2

(
x − iγ

2

)
l2

(
x + iγ

2

)
,

λ2(x) = 1

T0(x)
l1

(
x − iγ

2

)
l2

(
x + iγ

2

)
,

(3.6)λ3(x) = 1

T0(x)
l1

(
x − iγ

2

)
l1

(
x + iγ

2

)
.

For the homogeneous case Λ = 0, the local Hamiltonian (1.2) is obtained from the first deriv-
ative of the transfer matrix T2(x) [35]. For the inhomogeneous case Λ 	= 0, as in the spin-1/2
case (2.3), we define the energy by

(3.7)E = −g

a

{
d

dx
lnT2(x)

∣∣∣∣
x=Λ+ iγ

2

− d

dx
lnT2(x)

∣∣∣∣
x=Λ− iγ

2

}
,

where a is the lattice spacing, and g is given by (2.4).
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Fig. 3. Schematic depiction of zeros of Q(x) and q(x), respectively.

We consider the ground state. For simplicity, we restrict the boundary parameters η± to the
interval

(3.8)
π

2
< η± < π.

We argue in Appendix A.2 that the boundary parameters should be further restricted to the range

(3.9)
2π

3
+ γ < η+ + η− <

4π

3
+ γ,

in order for the ground state to have M = N Bethe roots vk which form approximate two-strings;
that is, pairs xk ± iyk with real centers xk and imaginary parts yk satisfying 0 < yk − γ

2 � 1, as
shown on the left-hand side of Fig. 3.

Since Q(x) can have zeros near the real axis (namely, when γ is close to zero), it is convenient
to work instead with the shifted quantity q(x) defined by

(3.10)q(x) = Q

(
x + iπ

2

)
,

which is ANZ near the real axis. Also, one can check numerically that T1(x) and T2(x) do not
have zeros near the real axis except for a simple zero at the origin. To remove this root, we define

(3.11)Ť1(x) = T1(x)

μ(x)
, Ť2(x) = T2(x)

μ(x)
,

where again μ(x) is any function whose only real root is a simple zero at the origin, in particular
μ(0) = 0, μ′(0) 	= 0, so that Ť1(x) and Ť2(x) are ANZ when x is near the real axis.

3.2. Auxiliary functions

It is convenient to define the auxiliary functions [25]

(3.12)b(x) = λ1(x) + λ2(x)

λ3(x)
, b̄(x) = λ3(x) + λ2(x)

λ1(x)
= b(−x).

Since b̄(x) is the complex conjugate of b(x) for real x, we shall generally refrain from writing
equations for b̄(x), as they can be readily obtained by conjugation of corresponding equations



264 C. Ahn et al. / Nuclear Physics B 767 [FS] (2007) 250–294
for b(x). With the help of (3.6), we obtain

b(x) =
[
l1

(
x − iγ

2

) + l2
(
x − iγ

2

)]
l2

(
x + iγ

2

)
l1

(
x − iγ

2

)
l1

(
x + iγ

2

)

(3.13)

= T1
(
x − iγ

2

)
sinh(2x + 2iγ )

φ
(
x − iγ

2

)
φ

(
x + iγ

2

)
φ

(
x + 3iγ

2

) B(+)
(
x + iγ

2

)
B(−)

(
x − iγ

2

)
B(−)

(
x + iγ

2

) Q
(
x + 3iγ

2

)
Q

(
x − 3iγ

2

) .

In terms of the quantities (3.10), (3.11), we rewrite this relation in the compact form

(3.14)b(x) = Cb(x)Ť1

(
x − iγ

2

)
q

(
x + 3iγ

2 − iπ
2

)
q

(
x − 3iγ

2 + iπ
2

) ,

with

(3.15)Cb(x) = μ
(
x − iγ

2

)
φ

(
x − iγ

2

)
sinh(2x + 2iγ )φ

(
x + iγ

2

)
φ

(
x + 3iγ

2

) B(+)
(
x + iγ

2

)
B(−)

(
x − iγ

2

)
B(−)

(
x + iγ

2

) .

Defining

(3.16)B(x) = 1 + b(x), B̄(x) = 1 + b̄(x) = B(−x),

we also obtain

(3.17)T2(x) = λ3(x)B(x) = λ1(x)B̄(x).

In terms of the quantities (3.10), (3.11), we can re-express (3.17) as

(3.18)Ť2(x) = t−(x)
q

(
x − 3iγ

2 + iπ
2

)
q

(
x + iγ

2 − iπ
2

) B(x)

(3.19)= t+(x)
q

(
x + 3iγ

2 − iπ
2

)
q

(
x − iγ

2 + iπ
2

) B̄(x),

with

(3.20)t±(x) = sinh(2x ∓ 2iγ )

μ(x)
B(±)

(
x − iγ

2

)
B(±)

(
x + iγ

2

)
φ

(
x ∓ 3iγ

2

)
φ

(
x ∓ iγ

2

)
.

We note that B(x) has zeros just above the real axis, and B̄(x) has zeros just below the real
axis. Indeed, due to the factor Q(x + iγ

2 ) in the definition of λ3(x) (3.2), and the fact that the
imaginary parts of the Bethe roots have magnitude >

γ
2 , we see that λ3(x) has poles just above

the real axis (and also just below the line �mx = −γ ). It follows from (3.17) that B(x) must
have corresponding zeros to cancel these poles, since the product λ3(x)B(x) = T2(x) is analytic.
Similarly, since λ1(x) has poles just below the real axis (and also just above the line �mx = γ ),
B̄(x) has corresponding zeros to cancel these poles.

Finally, we define the auxiliary functions y(x) and Y(x),

(3.21)y(x) = T0(x)T2(x)

f (x)
, Y (x) = 1 + y(x),

in terms of which the fusion relation (3.4) becomes

(3.22)Ť1

(
x − iγ

2

)
Ť1

(
x + iγ

2

)
= f (x)Y (x)

μ
(
x − iγ

2

)
μ

(
x + iγ

2

) .
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3.3. Derivation of NLIE

Since ln Ť2(x) is analytic near the real axis, Cauchy’s theorem gives

(3.23)0 =
∮
C

dx
[
ln Ť2(x)

]′′
eikx =

∫
C1

[
ln Ť2(x)

]′′
eikx dx +

∫
C2

[
ln Ť2(x)

]′′
eikx dx,

where we choose the contour C as in Fig. 2, with ε such that max {yk} − γ
2 < ε. These integrals

can be written using (3.18) and (3.19) as∫
C1

[
ln Ť2(x)

]′′
eikx dx

=
∫
C1

dx
{
ln t−(x)

}′′
eikx +

∫
C1

dx

{
ln

[
q

(
x − 3iγ

2 + iπ
2

)
q

(
x + iγ

2 − iπ
2

) ]}′′
eikx

(3.24)+
∫
C1

dx
{
lnB(x)

}′′
eikx,

∫
C2

[
ln Ť2(x)

]′′
eikx dx

=
∫
C2

dx
{
ln t+(x)

}′′
eikx +

∫
C2

dx

{
ln

[
q

(
x + 3iγ

2 − iπ
2

)
q

(
x − iγ

2 + iπ
2

) ]}′′
eikx

(3.25)+
∫
C2

dx
{
ln B̄(x)

}′′
eikx,

so that the quantities q(x + iγ
2 − iπ

2 ) and q(x − iγ
2 + iπ

2 ) are integrated along C1 and C2,
respectively, and not the other way around.6

In terms of Fourier transforms defined by (2.15), we can rewrite (3.24) and (3.25) as7

(3.26)L̂Ť ′′
2 (k) = L̂t ′′−(k) + [

e
( γ

2 − π
2

)
k − e

( π
2 − 3γ

2
)
k
]
L̂q ′′(k) + L̂B ′′(k),

(3.27)L̂Ť ′′
2 (k) = L̂t ′′+(k) + [

e
( 3γ

2 − π
2

)
k − e

( π
2 − γ

2
)
k
]
L̂q ′′(k) + L̂B̄ ′′(k),

respectively. In obtaining these results, we use the periodicity of q(x) as in (2.17) to make the
imaginary part of the argument negative.

Adding (3.26) and (3.27), and remembering the fact (3.23)

(3.28)L̂Ť ′′
2 (k) + L̂Ť ′′

2 (k) = 0,

6 Because of our choice of ε, the quantities q(x + iγ
2 − iπ

2 ) and B(x) are nonzero along C1, and q(x − iγ
2 + iπ

2 ) and

B̄(x) are nonzero along C2.
7 Note that all the integrals of q have been expressed in terms of L̂q′′(k). This would not have been possible if we had

interchanged C1 and C2 in (3.24) and (3.25).
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we obtain an expression for L̂q ′′(k),

(3.29)

[
e

( π
2 − 3γ

2
)
k − e

( γ
2 − π

2
)
k − e

( 3γ
2 − π

2
)
k + e

( π
2 − γ

2
)
k
]
L̂q ′′(k) = L̂B̄ ′′(k) + L̂B ′′(k) + Dq(k),

where we define

(3.30)Dq(k) = L̂t ′′+(k) + L̂t ′′−(k).

From the expression (3.14) for b(x) and the fact that Ť1(x) is ANZ near the real axis, we
obtain

(3.31)L̂b′′(k) = e− γ k
2 L̂Ť ′′

1 (k) + L̂q ′′(k)
[
e

( 3γ
2 − π

2
)
k − e

( π
2 − 3γ

2
)
k
] + L̂C′′

b (k).

From the fusion relation (3.22), we obtain

(3.32)
(
e

γk
2 + e− γ k

2
)
L̂Ť ′′

1 (k) = L̂Y ′′(k) + L̂f ′′(k) − (
e

γk
2 + e− γ k

2
)
L̂μ′′(k) + e

γk
2 δ(k),

where δ(k) is again given by (B.3). Substituting Eqs. (3.29) and (3.32) into Eq. (3.31), we obtain

L̂b′′(k) = e
( 3γ

2 − π
2

)
k − e

( π
2 − 3γ

2
)
k

e
( π

2 − 3γ
2

)
k − e

( γ
2 − π

2
)
k − e

( 3γ
2 − π

2
)
k + e

( π
2 − γ

2
)
k

[
L̂B̄ ′′(k) + L̂B ′′(k) + Dq(k)

]
+ e− γ k

2

e
γk
2 + e− γ k

2

[
L̂Y ′′(k) + L̂f ′′(k)

] + L̂C′′
b (k) − e− γ k

2 L̂μ′′(k) + δ(k)

e
γ k
2 + e− γ k

2

(3.33)= −Ĝ(k)
[
L̂B̄ ′′(k) + L̂B ′′(k)

] + Ĝ2(k)L̂Y ′′(k) + C(k),

where

(3.34)Ĝ(k) = sinh
(
(π − 3γ )k

2

)
2 cosh γ k

2 sinh
(
(π − 2γ ) k

2

) ,

(3.35)Ĝ2(k) = e− γ k
2

e
γk
2 + e− γ k

2

,

(3.36)C(k) = −Ĝ(k)Dq(k) + Ĝ2(k)L̂f ′′(k) + L̂C′′
b (k) − e− γ k

2 L̂μ′′(k) + δ(k)

e
γ k
2 + e− γ k

2

.

We find that C(k) is given by (B.11)

C(k) = 2πk

{
N

(
eiΛk + e−iΛk

2 cosh γ k
2

)
+

[
sinh

((
η+ − π

2

)
k
) + sinh

((
η− − π

2

)
k
)]

2 cosh γ k
2 sinh

((
π
2 − γ

)
k
)

(3.37)+ cosh γ k
4 sinh

(
(3γ − π)k

4

)
cosh γ k

2 sinh
(
(2γ − π)k

4

)}
.

We now turn to the third and final NLIE equation. From the definitions of y(x) (3.21) and
Ť2(x) (3.11), we obtain

(3.38)L̂y′′(k) = L̂Ť ′′
2 (k) + L̂T ′′

0 (k) + L̂μ′′(k) − L̂f ′′(k).

To evaluate L̂Ť ′′
2 (k), we combine Eqs. (3.26) and (3.27) to cancel L̂q ′′(k), namely,

−e
γk
2 L̂Ť ′′(k) + e− γ k

2 L̂Ť ′′(k),
2 2
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which together with (3.28) gives

(3.39)
(
e

γk
2 + e− γ k

2
)
L̂Ť ′′

2 (k) = e− γ k
2 L̂B̄ ′′(k) − e

γk
2 L̂B ′′(k) + DT (k),

where we define

(3.40)DT (k) = e− γ k
2 L̂t ′′+(k) − e

γk
2 L̂t ′′−(k).

Substituting the result (3.39) for L̂Ť ′′
2 (k) into (3.38), we obtain

(3.41)L̂y′′(k) = −Ĝ2(−k)L̂B ′′(k) + Ĝ2(k)L̂B̄ ′′(k) + Cy(k),

where we define

(3.42)Cy(k) = DT (k)

e
γk
2 + e− γ k

2

+ L̂T ′′
0 (k) + L̂μ′′(k) − L̂f ′′(k).

We find (B.13)

(3.43)Cy(k) = 4πkĜ2(−k).

In summary, the NLIEs of the lattice SSG model with Dirichlet boundary conditions in Fourier
space are

(3.44)L̂b′′(k) = −Ĝ(k)
[
L̂B̄ ′′(k) + L̂B ′′(k)

] + Ĝ2(k)L̂Y ′′(k) + C(k),

(3.45)L̂y′′(k) = Ĝ2(k)L̂B̄ ′′(k) − Ĝ2(−k)L̂B ′′(k) + Cy(k),

where C(k) and Cy(k) are given by Eqs. (3.37) and (3.43), respectively. Passing to coordinate
space, integrating twice, and taking the continuum limit, we obtain

ln b(θ) =
∞∫

−∞
dθ ′ G(θ − θ ′ − iε) ln B(θ ′ + iε)

−
∞∫

−∞
dθ ′ G(θ − θ ′ + iε) ln B̄(θ ′ − iε)

+
∞∫

−∞
dθ ′ G2(θ − θ ′ + iε) ln Y(θ ′ − iε)

+ i2mL sinh θ + iPbdry(θ) − iπ,

ln b̄(θ) = −
∞∫

−∞
dθ ′ G(θ − θ ′ − iε) ln B(θ ′ + iε)

+
∞∫

−∞
dθ ′ G(θ − θ ′ + iε) ln B̄(θ ′ − iε)

+
∞∫

dθ ′ G2(θ
′ − θ + iε) ln Y(θ ′ + iε)
−∞
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− i2mL sinh θ − iPbdry(θ) + iπ,

ln y(θ) =
∞∫

−∞
dθ ′ G2(θ − θ ′ + iε) ln B̄(θ ′ − iε)

(3.46)+
∞∫

−∞
dθ ′ G2(θ

′ − θ + iε) ln B(θ ′ + iε) + iPy(θ).

As in the spin-1/2 case, the continuum limit consists of taking Λ → ∞, N → ∞ and lattice
spacing a → 0, such that the interval length L ≡ x+ − x− and the soliton mass m are given by
(2.33). The renormalized rapidity θ is again given by (2.34), and we have defined b(θ) = b(

γ θ
π

),
etc. as in (2.36). Hence, the kernel G(θ) is given by

(3.47)G(θ) = γ

2π2

∞∫
−∞

dk e−ikγ θ/π Ĝ(k),

where Ĝ(k) is given by (3.34); and G2(θ) is defined similarly in terms of Ĝ2(k) (3.35),

(3.48)G2(θ) = γ

2π2

∞∫
−∞

dk e−ikγ θ/π Ĝ2(k) = i

2π sinh θ
,

where θ has a slightly positive imaginary part. Finally, Pbdry(θ) is given by

(3.49)Pbdry(θ) =
γ θ
π∫

0

dx′ R(x′) = 1

2

γ θ
π∫

− γ θ
π

dx′ R(x′) = γ

4π2

θ∫
−θ

dθ ′
∞∫

−∞
dk e−ikγ θ ′/π R̂(k),

where R̂(k) is given by

(3.50)

R̂(k) = 2π

{[
sinh

((
η+ − π

2

)
k
) + sinh

((
η− − π

2

)
k
)]

2 cosh γ k
2 sinh

(
(π − 2γ ) k

2

) + cosh γ k
4 sinh

(
(3γ − π)k

4

)
cosh γ k

2 sinh
(
(2γ − π)k

4

)}
;

and Py(θ) is given by

(3.51)Py(θ) = 4π

θ∫
−∞

dθ ′ G2(−θ ′) = −2i ln tanh
θ

2
− 2π,

where θ has a slightly negative imaginary part. The integration constants are explained in Sec-
tion C.2.

These NLIE equations are similar to those for the periodic chain [23,25,28], with additional
boundary terms involving Pbdry(θ) or Py(θ). These terms constitute one of our main results. As
we shall see, these boundary terms make essential contributions to the boundary S matrix (IR
limit) and to the effective central charge (UV limit).
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3.4. Vacuum and Casimir energies

The energy computation is similar to the one for the spin-1/2 case in Section 2.3. We see from
(3.21) that T2(x) can be expressed in terms of y(x),

(3.52)T2(x) = f (x)y(x)

T0(x)
.

It follows from the energy definition (3.7) together with the fact (2.39) that

(3.53)E = −g

a

∫
dk

2π

[
e−ik

(
Λ+ iγ

2
)
− e−ik

(
Λ− iγ

2
)][

L̂f ′(k) + L̂y′(k) − L̂T ′
0(k)

]
.

Recalling the results for L̂f ′′(k) (B.9) and L̂y′′(k) (3.45), we obtain

E = −g

a

∫
dk

2π
e−ikΛ

{
L̂φ′(k)

(
eγ k − 1

)(
e(γ−π)k + e−2γ k

)
+ 2 sinh

(
γ k

2

)[
e− γ k

2 ̂LB(+)′(k) + e
γk
2 ̂LB(−)′(k) + 4πiĜ2(−k)

(3.54)+ 2π
ψ2(k)

(−ik)

(
e−γ k + e

(
γ− π

2
)
k − 1

)]
+ 1

cosh γ k
2

[
L̂B̄ ′(k) + L̂B ′(k)

]}
.

The first term gives the bulk vacuum energy, which can be written explicitly as

(3.55)EB = 2Ng

ia

∞∫
−∞

dk e−2iΛk
sinh γ k

2 cosh
(( 3γ

2 − π
2

)
k
)

sinh πk
2

.

The second term gives (with the help of (B.10)) the boundary vacuum energy

Eb = 2g

ia

∞∫
−∞

dk e−iΛk sinh

(
γ k

2

){
1

sinh πk
2

[
cosh

((
η+ − γ

2
− π

2

)
k

)
+ (η+ → η−)

]

(3.56)+ e
γk
2

cosh γ k
2

+ e( π
4 −γ )k + e(γ− π

4 )k − e
πk
4

2 sinh πk
4

}
,

and the third term gives the Casimir energy,

(3.57)EC = −g

a

∞∫
−∞

dk

2π
e−iΛk 1

cosh γ k
2

[
L̂B̄ ′(k) + L̂B ′(k)

]
.

In order to take the continuum limit, we adopt (as in the spin-1/2 case) the renormalization
procedure of keeping only the (finite) terms that can be expressed in terms of the physical mass
m (2.33). We implement this procedure by closing the integral contours in the lower half plane,
and selecting only the contribution from the residue at k = − iπ

γ
. Since the integrand in (3.55) is

analytic at k = − iπ
γ

, the bulk energy vanishes,

(3.58)EB = 0,
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in agreement with known results (see, e.g., the second reference in [23]). We obtain from (3.56)
that the boundary vacuum energy does not vanish, however, and is given by

(3.59)Eb = m.

That is, each boundary contributes the vacuum energy m/2. Note that this result is independent
of the boundary parameters. We shall present further support for this result in Section 6. Finally,
we find that the Casimir energy (3.57) is given by

(3.60)EC = m

2π
�m

∞∫
−∞

dθ sinh(θ − iε) ln B̄(θ − iε).

4. Infrared limit

In this section we analyze the IR limit mL → ∞. In particular, we compute the SSG soliton
boundary S matrix (4.27), and show that it coincides with one proposed by Bajnok et al. [32].
In making this identification, we determine the “lattice ↔ IR” relation for the boundary SSG
parameters (4.25).

Before starting this computation, we note the relations among the three bulk SSG parameters
(see Fig. 1). Let λ denote the IR bulk SSG parameter, and recall that β and γ are our UV
and lattice bulk SSG parameters, respectively. (See Eqs. (1.1), (1.3).) The SSG soliton bulk S

matrix [22] has the product form SG(θ;λ) ⊗ RSOS(θ), where SG(θ;λ) is the SG soliton bulk S

matrix [1], and RSOS(θ) is the quantum-group restricted SG model bulk S matrix [2]. The bulk
“UV ↔ IR” relation is given by [22],

(4.1)
2π

β2
− 1

2
= λ.

The bulk “lattice ↔ IR” relation is given by

(4.2)
1

π
γ

− 2
= λ.

This relation can be readily inferred from a comparison of the kernel Ĝ(k) (3.34) with the integral
representation of the SG soliton-soliton scattering amplitude SG++(θ;λ),

(4.3)
1

i

d

dθ
ln SG++(θ;λ) =

∞∫
−∞

dk e−ikθ
sinh

(( 1
λ

− 1
)

πk
2

)
2 cosh πk

2 sinh πk
2λ

.

The relations (4.1), (4.2) imply the bulk “UV ↔ lattice” relation

(4.4)β2 = 4(π − 2γ ).

The condition 0 < β2 < 4π therefore implies 0 < γ < π
2 . The free Fermion point λ = 1 corre-

sponds to γ = π
3 . In the “repulsive” domain γ ∈ (0, π

3 ), the particle spectrum consists only of
supersymmetric multiplets of solitons and antisolitons. In the “attractive” domain γ ∈ (π

3 , π
2 ),

the spectrum also includes bound states, namely, supersymmetric multiplets of breathers of mass
[22]

(4.5)mn = 2m sin

(
nπ

)
, n = 1,2, . . . , �λ�.
2λ
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We turn now to the boundary theory. Let ξ± denote the IR boundary SSG parameters, and
recall that ϕ± and η± are our UV and lattice boundary SSG parameters, respectively. (See
Eqs. (1.6), (1.5).)

We define the boundary S matrices (reflection factors) R(θh;λ, ξ±) for a soliton with mass m

and rapidity θh by the Yang equation for a single soliton on an interval of length L � 1/m,

(4.6)ei2mL sinh θhR(θh;λ, ξ−)R(θh;λ, ξ+) = 1.

We shall compute these S matrices by deriving a similar relation from the IR limit mL → ∞ of
the NLIE for a state of one hole with rapidity θh,

ln b(θ) = i2mL sinh θ + iPbdry(θ) + iχ(θ − θh) + iχ(θ + θh)

(4.7)+
∞∫

−∞
dθ ′ G2(θ − θ ′ + iε) ln Y(θ ′ − iε) − iπ,

(4.8)ln y(θ) = iPy(θ) + igy(θ − θh) + igy(θ + θh),

where χ(θ) and gy(θ) are the hole source terms [25,28]

(4.9)χ(θ) = 2π

θ∫
0

dθ ′ G(θ ′), gy(θ) = −i ln tanh
θ

2
+ π

2
,

and where, in the latter equation, θ has a slightly negative imaginary part. Indeed, since ln b(θh)

is iπ times an odd integer (see, e.g., [25,28]), evaluating Eq. (4.7) at θh and exponentiating both
sides gives

(4.10)ei2mL sinh θheiPbdry(θh)+iχ(2θh)+K(θh) = 1,

where K(θ) is the convolution term in (4.7),

(4.11)K(θ) ≡
∞∫

−∞
dθ ′ G2(θ − θ ′ + iε) ln Y(θ ′ − iε).

Comparing (4.10) with the Yang equation (4.6), we conclude that the product of boundary S

matrices is given by

(4.12)R(θh;λ, ξ−)R(θh;λ, ξ+) = eiPbdry(θh)+iχ(2θh)+K(θh).

We evaluate first the factor eK(θh) which, as we shall see, is the RSOS factor. To this end, we
observe from (3.51), (4.8) and (4.9) that y(θ) is given by

(4.13)y(θ) = − tanh2 θ

2
tanh

1

2
(θ − θh) tanh

1

2
(θ + θh).

It follows that

(4.14)ln Y(θ) = ln
(
1 + y(θ)

) = ln

[
cosh2 θh

2 cosh θ

cosh2 θ
2 cosh 1

2 (θ − θh) cosh 1
2 (θ + θh)

]
.

The convolution term (4.11) is therefore given by

(4.15)K(θ) = ln cosh
θh + Q1(θ) − 2Q2(θ) − Q2(θ − θh) − Q2(θ + θh),

2
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where [28]

Q1(θ) =
∞∫

−∞
dθ ′ G2(θ − θ ′ + iε) ln cosh(θ ′ − iε) = − i

2
tan−1 sinh θ + 1

2
ln cosh θ,

(4.16)Q2(θ) =
∞∫

−∞
dθ ′ G2(θ − θ ′ + iε) ln cosh

1

2
(θ ′ − iε) = − i

2
χ2(θ) + 1

2
ln cosh

θ

2
,

with

(4.17)χ ′
2(θ) =

∞∫
−∞

dk e−ikθ 1

4 cosh2 πk
2

, χ2(0) = 1.

It follows that

(4.18)K(θh) = i

2

[
χ2(2θh) + 2χ2(θh) − tan−1 sinh θh

]
.

Differentiating with respect to θh, and then making use of (4.17) and the Fourier transform result

(4.19)
1

cosh θ
=

∞∫
−∞

dk e−ikθ 1

2 cosh πk
2

,

we obtain

(4.20)
d

dθh

K(θh) = i

2

[
2χ ′

2(2θh) + 2χ ′
2(θh) − 1

cosh θh

]
= i

4

∞∫
−∞

dk
e−2ikθh

cosh2 πk
2 cosh2 πk

.

Upon integrating, we conclude that8

(4.21)eK(θh) ∼ Pmin(θh)
2,

where Pmin(θ) is a reflection factor of the boundary tricritical Ising model [31], whose integral
representation is given by [39]

(4.22)Pmin(θ) ∼ exp

{
i

8

∞∫
0

dt

t

sin(2tθ/π)

cosh2 t
2 cosh2 t

}
.

We stress that the boundary term Py(θ) in (4.8) is essential for obtaining this result. Since Py(θ)

is independent of the boundary parameters, so is the result (4.21).
We turn now to the remaining factor eiPbdry(θh)+iχ(2θh) in (4.12) which, as we shall see, is the

sine-Gordon factor. Differentiating with respect to θh, and recalling the Fourier transform results
(3.34), (3.50), we obtain

d

dθh

[
Pbdry(θh) + χ(2θh)

] = P′
bdry(θh) + 2χ ′(2θh)

8 We use ∼ to denote equality up to crossing factors of the form econst θ . Such factors have also not been obtained in
the bulk case [28].
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=
∞∫

−∞
dk e−ikθh

{
sinh

((
η+ − π

2

)
πk
γ

) + sinh
((

η− − π
2

)
πk
γ

)
2 cosh πk

2 sinh
((

π
γ

− 2
)

πk
2

)
(4.23)+ 2

sinh 3πk
4 sinh

((
π
γ

− 3
)

πk
4

)
sinhπk sinh

((
π
γ

− 2
)

πk
4

) }
.

Let us compare this result with the soliton reflection amplitude P+(θ, ξ) of the boundary SG
model with Dirichlet boundary conditions [3], which has the integral representation [38]

(4.24)

1

i

d

dθ
lnP+(θ, ξ) =

∞∫
−∞

dk e−ikθ

[
sinh

((
1 + 2ξ

πλ

)
πk
2

)
2 cosh πk

2 sinh πk
2λ

+ sinh 3πk
4 sinh

(( 1
λ

− 1
)

πk
4

)
sinhπk sinh πk

4λ

]
,

where λ and ξ are the bulk and boundary IR parameters, respectively. Recalling the bulk
“lattice ↔ IR” relation (4.2), and assuming the boundary “lattice ↔ IR” relation

(4.25)η± = 1

2
(π + γ ) +

(
1 − 2γ

π

)
ξ±,

we conclude that

(4.26)eiPbdry(θh)+iχ(2θh) = P+(θh, ξ−)P+(θh, ξ+).

Combining the results (4.12), (4.21) and (4.26), we conclude that the NLIE generates the
following SSG soliton boundary S matrices

(4.27)R(θh;λ, ξ±) ∼ P+(θh, ξ±)Pmin(θh).

This is the boundary S matrix which was proposed by Bajnok et al. [32] for the Dirichlet BSSG+
model. This is another of our main results. Similarly to the bulk case, the SSG boundary S matrix
is a product of SG and RSOS boundary S matrices.

For general values of boundary parameters, the BSSG+ model with one boundary has the
conserved supercharge [30–32]

(4.28)Q̃+ = Q + Q̄ + γ ′Γ,

where Γ = (−1)F is the Fermionic parity operator, and γ ′ is an undetermined parameter.9 Ba-
jnok et al. also propose the relation

(4.29)Q̃2+ = 2(H̃ + mZ̃),

where H̃ is the Hamiltonian, and Z̃ is the topological charge. Since the ground state has Q̃+ = γ ′
and Z̃ = 0, it has energy H̃ = γ ′2/2. Our result (3.59) that each boundary contributes vacuum
energy m/2 implies that

(4.30)γ ′ = ±√
m,

at least for the Dirichlet case. That is, we have succeeded to fix the undetermined parameter in
the scattering theory proposed in [32].

9 This parameter is called γ in [32]; however, here we add a prime in order to distinguish it from our bulk lattice
parameter.
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5. Ultraviolet limit

In this section we first analytically compute the Casimir energy EC(L) (3.60) in the UV limit
mL → 0. The result (5.17) is proportional to the effective central charge

(5.1)EC(0) = − π

24L
ceff(0),

where ceff(0) = c−24Δ0, c is the central charge, and Δ0 is the L0 eigenvalue of the ground state.
We then compare this result for ceff(0) to the value for the conformal limit of the SSG model with
Dirichlet boundary conditions. In this way, we obtain a boundary “UV ↔ lattice” relation (5.22).
When combined with the boundary “lattice ↔ IR” relation from the previous section (4.25), we
obtain the boundary “UV ↔ IR” relation (5.23).

5.1. NLIE computation

We now proceed to analytically evaluate the Casimir energy in the UV limit mL → 0. As
is well known, only large values of |θ | contribute in this limit. Let us first consider θ � 1, and
define the finite rapidity θ̂ by

(5.2)θ = θ̂ − ln(mL).

The corresponding contribution E+
C to the Casimir energy (3.60) is given by

(5.3)LE+
C = 1

16π

∞∫
−∞

dθ̂ 2ieθ̂
[
ln B+(θ̂) − ln B̄+(θ̂ )

]
,

where the auxiliary functions B+(θ̂) ≡ B(θ̂ − ln(mL)), etc. satisfy the NLIE equations

ln b+(θ̂ ) =
∞∫

−∞
dθ̂ ′ G(θ̂ − θ̂ ′ − iε) ln B+(θ̂ ′ + iε)

−
∞∫

−∞
dθ̂ ′ G(θ̂ − θ̂ ′ + iε) ln B̄+(θ̂ ′ − iε)

+
∞∫

−∞
dθ̂ ′ G2(θ̂ − θ̂ ′ + iε) ln Y+(θ̂ ′ − iε) + ieθ̂ + iPbdry(∞) − iπ,

ln b̄+(θ̂ ) = −
∞∫

−∞
dθ̂ ′ G(θ̂ − θ̂ ′ − iε) ln B+(θ̂ ′ + iε)

+
∞∫

−∞
dθ̂ ′ G(θ̂ − θ̂ ′ + iε) ln B̄+(θ̂ ′ − iε)

(5.4)+
∞∫

dθ̂ ′ G2(θ̂
′ − θ̂ + iε) ln Y+(θ̂ ′ + iε) − ieθ̂ − iPbdry(∞) + iπ,
−∞
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ln y+(θ̂ ) =
∞∫

−∞
dθ̂ ′ G2(θ̂ − θ̂ ′ + iε) ln B̄(θ̂ ′ − iε)

+
∞∫

−∞
dθ̂ ′ G2(θ̂

′ − θ̂ + iε) ln B(θ̂ ′ + iε),

which are independent of mL. The Py term (3.51) does not appear in the third equation due to
the fact Py(∞) = 0 mod 2π . We note here for later reference that

(5.5)Pbdry(∞) = 1

2
R̂(0) = π

π − 2γ
(η+ + η− − 3γ ).

We use the so-called dilogarithm trick [6,24]. We first rewrite the NLIE equations (5.4) in
matrix form,

(5.6)u = v + K ∗ w,

where

(5.7)u =
( ln b+

ln b̄+
ln y+

)
, v =

⎛⎝ ieθ̂ + iPbdry(∞) − iπ

−ieθ̂ − iPbdry(∞) + iπ

0

⎞⎠ , w =
( ln B+

ln B̄+
ln Y+

)
,

the kernel K is symmetric (i.e., Kij (θ̂ , θ̂ ′) = Kji(θ̂
′, θ̂ )), and the star ∗ denotes convolution. We

see from (5.6) that10

(5.8)

∞∫
−∞

dθ̂
(
wT u′ − w′T u

) =
∞∫

−∞
dθ̂

(
wT v′ − w′T v

)
,

since the symmetry of the kernel implies that

(5.9)

∞∫
−∞

dθ̂
(
wT K ′ ∗ w − w′T K ∗ w

) = 0.

It follows from (5.8) that

∞∫
−∞

dθ̂
{
(ln b+)′ ln B+ − ln b+(ln B+)′ + (ln b̄+)′ ln B̄+ − ln b̄+(ln B̄+)′

+ (ln y+)′ ln Y+ − ln y+(ln Y+)′
}

(5.10)

=
∞∫

−∞
dθ̂ 2ieθ̂ (ln B+ − ln B̄+) − i

(
eθ̂ + Pbdry(∞) − π

)
(ln B+ − ln B̄+)

∣∣θ̂=∞
θ̂=−∞.

10 Here the prime denotes differentiation with respect to θ̂ .
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Since B+ = 1 + b+, etc., the LHS of (5.10) can be expressed in terms of the dilogarithm function
L+(x), defined by

(5.11)L+(x) = 1

2

x∫
0

dy

[
1

y
ln(1 + y) − 1

1 + y
lny

]
.

The integral on the RHS of (5.10) is essentially the sought-after quantity LE+
C (5.3). We conclude

that

LE+
C = 1

8π

{
L+

(
b+(∞)

) − L+
(
b+(−∞)

) + L+
(
b̄+(∞)

) − L+
(
b̄+(−∞)

)
+ L+

(
y+(∞)

) − L+
(
y+(−∞)

)
(5.12)+ i

2

(
eθ̂ + Pbdry(∞) − π

)
(ln B+ − ln B̄+)

∣∣θ̂=∞
θ̂=−∞

}
.

The plateau values of the auxiliary functions can be obtained from the NLIE equations (5.4).
For θ̂ → ∞, we readily obtain

(5.13)b+(∞) = b̄+(∞) = 0, y+(∞) = 1.

To determine the plateau values for θ̂ → −∞ is less trivial, as the corresponding plateau equa-
tions are nonlinear. We make the Ansatz

b+(−∞) = eiω
(
1 + eiω

)
, b̄+(−∞) = e−iω

(
1 + e−iω

)
,

(5.14)y+(−∞) = 1 + eiω + e−iω,

where ω is still to be determined. We indeed find a solution with

(5.15)ω = Pbdry(∞) − π

2
[ 3

4 − Ĝ(0)
] = 2(η+ + η− − γ − π),

where we have used the result (5.5). For the plateau values (5.14), the following sum rule holds
[25]

(5.16)L+
(
b+(−∞)

) + L+
(
b̄+(−∞)

) + L+
(
y+(−∞)

) − L+(1) = π2

4
, |ω| < 2π

3
.

The above bound is satisfied when the boundary parameters are in the domain (3.9). Noting also
that L+(0) = 0, we conclude that the Casimir energy is given by

(5.17)LEC(0) = 2LE+
C = − π

24

[
3

2
− 12

π(π − 2γ )
(η+ + η− − γ − π)2

]
.

In obtaining the first equality, we have used the fact that the contribution E−
C from θ � −1 is the

same as E+
C , and that EC(0) = E+

C + E−
C .

5.2. CFT analysis and UV–IR relation

Our result for the Casimir energy (5.17) together with the relation (5.1) evidently imply that
the effective central charge has the value

(5.18)ceff(0) = c − 24Δ0 = 3 − 12
(η+ + η− − γ − π)2.
2 π(π − 2γ )
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We remark that for boundary parameter values η+ = η− = 1
2 (π + γ ), the boundary terms in the

Hamiltonian (1.5) which are proportional to Sz vanish; and also Δ0 vanishes, so that ceff(0) =
c = 3/2. A similar phenomenon was observed for the spin-1/2 case in [9].

In the UV limit, the boundary SSG model with Dirichlet boundary conditions (1.1), (1.6)
evidently reduces to a system of one free Boson and one free Majorana Fermion, each with
Dirichlet boundary conditions. For the former model, the central charge and lowest dimension
are given by [40]

(5.19)cB = 1, ΔB = 1

2π
(ϕ− − ϕ+)2,

while for the latter model11

(5.20)cF = 1

2
, ΔF = 0.

It follows that the SSG model with Dirichlet boundary conditions should have

(5.21)c = cB + cF = 3

2
, Δ0 = ΔB + ΔF = 1

2π
(ϕ− − ϕ+)2.

Comparing this CFT result with the NLIE result (5.18) and recalling the bulk “UV ↔ lattice”
relation (4.4), we obtain the boundary “UV ↔ lattice” relation

(5.22)η± = 1

2
(π + γ ) ± β

2
ϕ±.

Combining this result with the boundary “lattice ↔ IR” relation (4.25), we finally arrive at the
SSG boundary “UV ↔ IR” relation

(5.23)ξ± = ±2π

β
ϕ±.

This is another of our main results.
The relation (5.23) is similar to the one found by Ghoshal and Zamolodchikov [3] for the SG

model (namely, ξ = 4π
β

ϕ0), and it can be understood in a similar way. Indeed, for the SSG model,
it is also plausible to assume a linear relation between these parameters,

(5.24)ξ± = a + bϕ±.

When ϕ± = 0, the model has the symmetry ϕ �→ −ϕ; and, since the RSOS factor of the boundary
S matrix is proportional to the identity for BSSG+ [32], the soliton and antisoliton reflection
amplitudes should be equal, which corresponds to ξ± = 0. Thus, a = 0. Furthermore, as in the
SG model, there are boundary bound states corresponding to poles of the boundary S matrix at
θ = iνn, where

(5.25)νn = ξ±
λ

− (2n + 1)π

2λ
, n = 0,1, . . . .

Moreover, these states satisfy [32]

(5.26)Q̃2+ = 2

(
γ ′2

2
+ m cosνn + m

)
,

11 Since both the left and right boundaries have the same (Dirichlet) boundary condition, the operator content includes
the identity operator, which has dimension zero.
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Fig. 4. ceff vs. ln l, for γ = 2π/7, η+ = η− = (π + γ )/2 (solid line) and η+ = η− = π/2 + 3γ /4 (dotted line).

which is consistent with (4.29), since these states have Z̃ = 1. When ϕ± have the half-period
values ϕ± = ±π/β ,12 the n = 0 bound state should have the same Q̃2+ eigenvalue as the ground
state. From (5.26), we see that this condition corresponds to ν0 = π , which in turn implies ξ± =
π(λ + 1

2 ) = 2π2/β2, as follows from (5.25) and the bulk UV–IR relation (4.1). It follows that
b = ±2π/β , and so we recover the boundary UV–IR relation (5.23).

6. Intermediate volume and BCPT

For intermediate values of volume l ≡ mL, the Casimir energy cannot be computed analyti-
cally. Nevertheless, it is possible to solve the NLIEs (3.46) numerically by iteration, and evaluate
the Casimir energy through (3.60). Two sample plots of ceff(l) ≡ −24LEC(L)/π vs. ln l are
shown in Fig. 4. The numerical result for ceff(l) in the UV region l → 0 coincides with the ana-
lytical result (5.18). Also, as expected, ceff(l) decreases monotonically to 0 as l varies from the
UV region to the IR region l → ∞.

For small values of l, these numerical results can be compared with those from boundary
conformal perturbation theory (BCPT). We shall follow closely the presentation in the appendix
of the second reference in [11]. We regard the SSG model (1.1) as a perturbed boundary CFT,

(6.1)L = LBCFT + Lpertb, Lpertb = −m0

2

L∫
0

dx Φ(x, t),

where LBCFT is the Lagrangian for a free scalar field ϕ and a free Majorana Fermion field Ψ

obeying Dirichlet boundary conditions (1.6). We restrict our attention here to the particular case
ϕ− = ϕ+ ≡ ϕ0, in order to avoid introducing boundary-changing operators. The bulk perturbing
operator Φ(x, t) = cos(βϕ)Ψ̄ Ψ is a primary field with weights (Δ,Δ), where

(6.2)Δ = 1

2
+ β2

8π
,

1

2
< Δ < 1.

12 The Lagrangian (1.1) has the periodicity ϕ �→ ϕ + 2π/β .
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The corresponding Hamiltonian is

(6.3)H(L) = HBCFT + m0

2

L∫
0

dx Φ(x, t).

We map the infinitely long strip of width L to the upper half plane by setting z = ei π
L

(x+t), where
t = −iy is the Euclidean time. Taking the Hamiltonian at t = 0 and changing the integration
variable to θ = π

L
x, we have

(6.4)H(L) = π

L

(
L0 − c

24

)
+ m0

2

(
π

L

)2Δ−1 π∫
0

dθ Φ
(
eiθ , e−iθ

)
,

with c = 3/2. First-order perturbation theory implies that the ground-state energy is given by

(6.5)E0(L) = π

L

(
Δ0 − c

24

)
+ m0

2

(
π

L

)2Δ−1 π∫
0

dθ 〈0|Φ(
eiθ , e−iθ

)|0〉 + O
(
m2

0

)
,

where |0〉 is the ground state of the unperturbed theory. Using the fact that the bulk one-point
function has the form

(6.6)〈0|Φ(
eiθ , e−iθ

)|0〉 = cbulk

(2 sin θ)2Δ
,

and performing the θ integration, we obtain

(6.7)E0(L) = − π

24L
ceff(0) + m0

4

(
π

2L

)2Δ−1 �( 1
2 − Δ)�( 1

2 )

�(1 − Δ)
cbulk + O

(
m2

0

)
,

where ceff(0) = c−24Δ0, as before. The energy E0(L) is the sum of bulk, boundary and Casimir
energies

(6.8)E0(L) = EBL + Eb + EC(L), EC(L) = − π

24L
ceff(l).

Recalling the bulk and boundary energy results (3.58), (3.59), we obtain

(6.9)ceff(l) = ceff(0) + 24l

π
− 3m0

(
π

2L

)2Δ−2 �( 1
2 − Δ)�( 1

2 )

�(1 − Δ)
cbulk + O

(
m2

0

)
.

Following Cardy and Lewellen [42], the coefficient of the bulk one-point function can be
expressed as a ratio of scalar products,

(6.10)cbulk = 〈〈Φ|D〉
〈〈0|D〉 = 〈〈cos(βϕ)|BD(ϕ0)〉

〈0,0|BD(ϕ0)〉
∣∣∣∣
c=1

· 〈〈Ψ̄ Ψ |0̃〉
〈〈0|0̃〉

∣∣∣∣
Ising

.

Here |BD(ϕ0)〉 is the c = 1 Dirichlet boundary state [40]

(6.11)
∣∣BD(ϕ0)

〉 =ND

∞∑
k=−∞

eikβϕ0e−∑∞
n=1

1
n
α−nᾱ−n |0, k〉,

where |0, k〉 is annihilated by αn and ᾱn for n > 0, and has weight h0,k = k2β2

8π
; and ND is a

normalization factor. Hence, e±βϕ (which have weight β2
) are identified with |0,±1〉. Thus,
8π
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| cos(βϕ)〉〉 = 1
2 (|0,1〉 + |0,−1〉), and we conclude that

(6.12)
〈〈cos(βϕ)|BD(ϕ0)〉

〈0,0|BD(ϕ0)〉
∣∣∣∣
c=1

= cos(βϕ0).

Moreover, Ψ̄ Ψ = − 1
π
ε, where ε is the Ising energy density operator. Recalling the expressions

[43] for the boundary states corresponding to fixed boundary conditions in terms of Ishibashi
states

|0̃〉 = 1√
2
|0〉〉 + 1√

2
|ε〉〉 + 1

4
√

2
|σ 〉〉,

(6.13)

∣∣∣∣ 1̃

2

〉
= 1√

2
|0〉〉 + 1√

2
|ε〉〉 − 1

4
√

2
|σ 〉〉,

we obtain13

(6.14)
〈〈ε|0̃〉
〈〈0|0̃〉

∣∣∣∣
Ising

= 1.

We conclude from (6.10), (6.12) and (6.14) that the coefficient of the bulk one-point function is
given by

(6.15)cbulk = − 1

π
cos(βϕ0).

Moreover, the parameter m0 is related to the SSG soliton mass m by the so-called mass-gap
formula [41]

(6.16)m0 = 8�(Δ)

�(1 − Δ)

[
πm

8

(
2Δ − 1

1 − Δ

)]2−2Δ

.

This relation has the correct classical limit β → 0, namely m0 → m1, where m1 is the mass of
the first breather (4.5).

Substituting (6.15) and (6.16) into (6.9), we obtain the result

(6.17)ceff(l) ≈ ceff(0) + 24

π

(
l − α1l

2−2Δ + α2l
4−4Δ

)
, l � 1,

where

(6.18)α1 = −
[

2Δ − 1

4(1 − Δ)

]2−2Δ �( 1
2 − Δ)�( 1

2 )�(Δ)

�(1 − Δ)2
cos(βϕ0).

We have not attempted to compute the second-order correction α2. In Table 1, we compare the
analytical BCPT result for α1 (6.18) with results obtained by fitting numerical NLIE values for
ceff(l) to the curve (6.17). The excellent agreement between the analytical and numerical values
further supports the validity of our NLIE (3.46), as well as the boundary energy result (3.59) and
the boundary “UV ↔ lattice” relation (5.22).

13 We evidently obtain the same result if we consider | 1̃
2 〉 instead of |0̃〉.
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Table 1
Comparison of NLIE (numerical) and BCPT (analytical) results for α1, for various values of bulk and boundary parame-
ters

π/γ ϕ0 = 0 ϕ0 = 0.1 ϕ0 = 0.2

NLIE BCPT NLIE BCPT NLIE BCPT

2.6 1.05337 1.05314 1.03813 1.0379 0.992871 0.992644
2.8 0.977854 0.977706 0.960355 0.960207 0.908481 0.908335
3 0.898947 0.898868 0.880187 0.880108 0.824691 0.82461
3.5 0.717426 0.717416 0.698197 0.698184 0.641543 0.641519
4 0.572666 0.572698 0.554784 0.5548 0.502248 0.502225
4.5 0.46177 0.461973 0.445794 0.445941 0.398955 0.398957
5 0.37713 0.377594 0.363094 0.363448 0.321985 0.322071

7. Discussion

We have proposed a set of nonlinear integral equations (3.46) to describe the boundary su-
persymmetric sine-Gordon model BSSG+ with Dirichlet boundary conditions on a finite interval
(1.1), (1.6). In particular, we have found the boundary terms Pbdry(θ) and Py(θ) which encode
boundary effects. We have computed the corresponding boundary S matrix (4.27), and found that
it coincides with the one proposed by Bajnok et al. [32] for the Dirichlet BSSG+ model, with
conserved supercharge (4.28) depending on a parameter γ ′. We have determined this parameter
(4.30) by computing the boundary vacuum energy. We have also proposed a relation (5.23) be-
tween the (UV) parameters in the boundary conditions and the (IR) parameters in the boundary
S matrix. Moreover, we have demonstrated that the NLIEs can be solved numerically for inter-
mediate values of mL, and we have found agreement with our analytical result (5.18) for the
effective central charge in the UV limit and with boundary conformal perturbation theory (6.17),
(6.18).

There are a number of related questions which remain to be addressed. While we have focused
here primarily on the ground state, it should be interesting to study bulk (along the lines [28])
and also boundary excitations. It would also be interesting to formulate the TBA equations for
this model, and compare the results with those from our NLIE.

Ultimately, we would like to extend this (Dirichlet) analysis of BSSG+ to the case of general
integrable boundary conditions [30]. For this we would need the Bethe Ansatz solution of the
open spin-1 XXZ quantum spin chain with general integrable boundary terms [34], which is
currently under investigation.

It is not evident which integrable spin-1 model, if any, corresponds to the Dirichlet BSSG−
model. Indeed, the boundary terms (1.5) already correspond to the most general diagonal c-
number solution of the boundary Yang–Baxter equation. Perhaps additional dynamical boundary
degrees of freedom or impurities will be required. An interesting feature of BSSG− is that, in
contrast to BSSG+, the RSOS part of the boundary S matrix [32] does depend on the boundary
parameter. Therefore, the corresponding NLIE may have a Py(θ) term which also depends on
the boundary parameters.

Another interesting problem is to identify the specific feature of the spin-1 models which
leads, in the continuum limit, to supersymmetry. It may be possible to construct an integrable
open spin-1 chain whose continuum limit is integrable but not supersymmetric, such as models
considered in [29]. We hope to be able to address some of these questions in the future.
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Appendix A. Range of boundary parameters

We derive here the restrictions on the ranges of the boundary parameters given in the main
text (2.10), (3.9).

A.1. Spin- 1
2

Our argument depends on two assumptions. First, the imaginary part of ln ā(x) is monotoni-
cally increasing. Second, there should be no holes on the real axis (except for a single hole at the
origin). The first assumption suffers from exceptions for some values of γ if the system size is
small. However, we regard this as a finite size effect and expect our assumption to be valid in the
thermodynamic limit.

We consider first the repulsive regime 0 < γ < π
2 . Let 0 < a < π

2 . We then define two func-
tions,

ϑ−(x, a) = 1

i
ln

(
− sinh(x − ia)

sinh(x + ia)

)
, ϑ+(x, a) = 1

i
ln

(
sinh(x − ia)

sinh(x + ia)

)
,

where we adopt the convention for the logarithm such that its imaginary part is restricted to
[−π,π). These functions are essentially the same but for the choice of phase (Fig. 5). We choose
the branch of ϑ−(x, a) such that a branch cut line emerges from ia and goes to positive infinity,
and another line starts from −ia and goes to negative infinity, as shown in Fig. 6.

Fig. 5. The functions ϑ− (left) and ϑ+ (right).



C. Ahn et al. / Nuclear Physics B 767 [FS] (2007) 250–294 283
Fig. 6. The branch cut lines for ϑ− .

In the rest of the range, π
2 < a < π , we define

(A.1)ϑ−(x, a) = −ϑ−(x,π − a), ϑ+(x, a) = −ϑ+(x,π − a).

Recalling (2.5), we consider

1

i
Log ā(x) =

∑
α=±

ϑ−
(

x,
Hαγ

2

)
+ ϑ+(2x, γ ) + N

∑
α=±

ϑ−
(

x − αΛ,
γ

2

)

(A.2)−
M∑

k=1

[
ϑ−(x − vk, γ ) + ϑ−(x + vk, γ )

]
,

where M denotes the number of BAE roots. By Log, we mean the logarithm whose imaginary
part is not restricted to [−π,π). Strictly speaking, ā is defined in the upper half-plane. We assume
that it is also well-defined on the real axis. Note that 1

i
Log ā(0+) = ϑ+(0+, γ ) = −π for 0 <

γ < π/2.
With the help of the identities

ϑ−(∞, a) = π − 2a, ϑ+(∞, a) = −2a, 0 < a <
π

2
,

one easily derives the asymptotic value

(A.3)
1

iπ
Log ā(∞) = 2(N − M + 1) − γ

π
(2N − 4M + 2 + H+ + H−)

for H± in the interval (2.9). We denote the integer part of the above as n,

n = 2(N − M + 1) − δ,

where

δ =
⌊

γ

π
(2N − 4M + 2 + H+ + H−)

⌋
+ 1,

and �x� specifies the integer part of x. When x is a root or a hole, 1
iπ

Log ā(x) is an odd inte-
ger. The range of 1

iπ
Log ā is set so as to be able to accommodate M roots. As already noted,

there should be no holes (except for a single hole at the origin). Thanks to the assumption of
monotonicity, these conditions determine the range of n,

(A.4)2M − 1 � n < 2M + 1.
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This is equivalent to having δ = 2,3. The ground state selects M = N/2, and this leads to the
conclusion (2.10),

π

γ
< H+ + H− + 2 <

3π

γ
.

In the attractive regime π/2 < γ < π , some functions in (A.2) must be rewritten in terms of
γ̃ = π − γ which is now in the range (0,π/2). Thanks to (A.1), this only results in an extra 2π

on the RHS of (A.3). In this case, however, 1
i

Log ā(0+) = π , which cancels this extra 2π in the
argument for the possible values of δ. We then reach the same conclusion on the range of H±.

A.2. Spin-1

The spin-1 case suffers from an extra complication due to the absence of an auxiliary function
which precisely encodes the “branch cut integers” such as a and ā in the spin-1/2 case. Previous
studies [25,28] nevertheless give this interpretation to lnb(x). It roughly encodes the information
of the two-string center. We assume this here, and utilize b in place of ā in the above argument.

We consider first the repulsive regime, 0 < γ < π
3 . The following representation is convenient

for our purpose (recall Eqs. (3.1), (3.13)),

�m Logb(x) = N
∑
α=±

[
ϑ−

(
x − αΛ,

γ

2

)
+ ϑ−

(
x − αΛ,

3γ

2

)]
−

∑
α=±

[
ϑ−

(
x,ηα − γ

2

)
+ ϑ−

(
x,ηα + γ

2

)]
+ ϑ+(2x,2γ )

−
M∑

k=1

[
ϑ−

(
x − vk,

γ

2

)
+ ϑ−

(
x + vk,

γ

2

)
+ ϑ−

(
x − vk,

3γ

2

)
(A.5)+ ϑ−

(
x + vk,

3γ

2

)]
+ �m ln

(
1 + a1

(
x − iγ

2

))
,

where we define a1(x) = l1(x)/ l2(x). In the above, ϑ+(2x,2γ ) should be understood as
−ϑ+(2x,π − 2γ ) if π/4 < γ < π/3. The above expression is valid for �mx = +ε.

We assume that the ground state is given by a sea of 2-strings with slight deviations, |�mvk| =
γ /2 + ε, and M = N . Then a careful analysis concludes

�m ln

(
1 + a1

(
x + iε − iγ

2

))∣∣∣∣
x→∞

= γ − (η+ + η−) + δπ,

where δ is an integer satisfying |γ − (η+ +η−)+δπ | < π . This leads to the following expression
of the asymptotic value,

�m Logb(∞) = 3(η+ + η− − γ ) − 4π + 2πN + δπ,

where, for simplicity, we have further restricted the boundary parameters to the interval π/2 <

η± < π − γ /2.
For the spin-1 case, we must locate N/2 2-string centers on the real positive x-axis. Then an

argument similar to the one for the spin-1/2 case leads to

π < η+ + η− − γ + δ

3
π <

5π

3
.
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One can then easily draw a conclusion that δ = 1 is the only consistent choice, and that the
constraint (3.9) must be imposed,

2π

3
+ γ < η+ + η− <

4π

3
+ γ.

A little modification leads to the same conclusion for the attractive regime π/3 < γ < π/2.

Appendix B. Boundary terms

We provide here details in the computation of various boundary terms appearing in the NLIEs.

B.1. Spin- 1
2 : CT (k)

In the spin- 1
2 calculation, the quantity CT (k) is defined by (2.25)

(B.1)CT (k) = Ĝ(k)C(k) + D(k).

Since B(±)(x) and φ(x ± iγ
2 ) are ANZ near the real axis, the contour integral on C1 in (2.18)

can be changed into −C2, and C(k) becomes

(B.2)C(k) = −D(k) − δ(k),

(B.3)δ(k) =
∮
C

[
lnμ(x)

]′′
eikx = −ik

∮
C

[
lnμ(x)

]′
eikx = 2πk.

It follows that

(B.4)CT (k) = D(k)
[
1 − Ĝ(k)

] − 2πkĜ(k).

We now evaluate D(k), which is defined by (2.21), i.e.,

D(k) =
∫
C2

dx

{
ln

[
sinh

(
x + iγH+

2

)
sinh

(
x + iγH−

2

)
sinhN

(
x − Λ + iγ

2

)
sinhN

(
x + Λ + iγ

2

)
sinh

(
x − iγH+

2

)
sinh

(
x − iγH−

2

)
sinhN

(
x − Λ − iγ

2

)
sinhN

(
x + Λ − iγ

2

)
× sinh(2x + iγ )

sinh(2x − iγ )

]}′′
eikx.

Making use of the identities (2.26) and (2.27), we obtain

D(k) = 2πψ(k)
{
e

( γH+
2 −π

)
k + e

( γH−
2 −π

)
k − e− γH+

2 k − e− γH−
2 k

+ N
(
eiΛk + e−iΛk

)[
e

( γ
2 −π

)
k − e− γ

2 k
]}

(B.5)+ 2πψ2(k)
[
e

( γ
2 − π

2
)
k − e− γ

2 k
]
.

We have assumed here that the boundary parameters H± are in the domain (2.10).



286 C. Ahn et al. / Nuclear Physics B 767 [FS] (2007) 250–294
Using these results we can simplify the first term in Eq. (B.4). From (2.24),

ψ(k)
[
1 − Ĝ(k)

] = − ke
πk
2

4 cosh
( γ k

2

)
sinh

(
(γ − π)k

2

) ,

ψ2(k)
[
1 − Ĝ(k)

] = − ke
πk
4 cosh πk

4

2 cosh
( γ k

2

)
sinh

(
(γ − π)k

2

) .

Combining these,

1

2πk
D(k)

[
1 − Ĝ(k)

] = −N cos(Λk)

cosh
( γ k

2

) − cosh
(

πk
4

)
sinh

((
γ − π

2

)
k
2

)
cosh

( γ k
2

)
sinh

(
(γ − π)k

2

)
− sinh

(
(γH+ − π)k

2

) + sinh
(
(γH− − π)k

2

)
2 cosh

( γ k
2

)
sinh

(
(γ − π)k

2

) .

Finally, taking into account also the second term in (B.4), we conclude that CT (k) is given by

CT (k) = −2πk

{
N cos(Λk)

cosh
( γ k

2

) + sinh
(
(γH+ − π)k

2

) + sinh
(
(γH− − π)k

2

)
2 cosh

( γ k
2

)
sinh

(
(γ − π)k

2

)
(B.6)+ cosh

( γ k
4

)
sinh

(
(2γ − π)k

4

)
cosh

( γ k
2

)
sinh

(
(γ − π)k

4

) }
.

B.2. Spin-1: C(k)

In the spin-1 calculation, the quantity C(k) is defined by (3.36)

(B.7)C(k) = −Ĝ(k)Dq(k) + Ĝ2(k)L̂f ′′(k) + L̂C′′
b (k) − e− γ k

2 L̂μ′′(k) + δ(k)

e
γ k
2 + e− γ k

2

.

The quantity Dq(k) (3.30) can be evaluated as follows:

L̂t ′′+(k) = 2πψ2(k)e−γ k + (
e

γk
2 + e− γ k

2
)

̂LB(+)′′(k)

+ (
e− 3γ k

2 + e− γ k
2

)
L̂φ′′(k) − L̂μ′′(k),

−L̂t ′′−(k) = 2πψ2(k)e
(
γ− π

2
)
k + (

e
γk
2 + e− γ k

2
)

̂LB(−)′′(k)

(B.8)+ [
e

( 3γ
2 −π

)
k + e

( γ
2 −π

)
k
]
L̂φ′′(k) + L̂μ′′(k),

which gives

Dq(k) = 2πψ2(k)
[
e−γ k − e

(
γ− π

2
)
k
] + (

e
γk
2 + e− γ k

2
)[

̂LB(+)′′(k) − ̂LB(−)′′(k)
]

+ 2πψ(k)N
(
eiΛk + e−iΛk

)[
e− 3γ k

2 + e− γ k
2 − e

( 3γ
2 −π

)
k − e

( γ
2 −π

)
k
]

−
∮
C

[
lnμ(x)

]′′
eikx.
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From the definition of f (x) (3.5), we can derive

L̂f ′′(k) =
∫
C2

dx

{
ln

[
sinh(2x − 2iγ ) sinh(2x + 2iγ )B(+)

(
x − iγ

2

)

× B(−)

(
x + iγ

2

)
φ

(
x − 3iγ

2

)
φ

(
x + 3iγ

2

)]}′′
eikx.

It follows from the identities (2.26) and (2.27) that L̂f ′′(k) is given by

L̂f ′′(k) = 2πψ2(k)
[
e−γ k + e

(
γ− π

2
)
k
] + [

e− γ k
2 ̂LB(+)′′(k) + e

γk
2 ̂LB(−)′′(k)

]
(B.9)+ 2πψ(k)N

(
eiΛk + e−iΛk

)[
e− 3γ k

2 + e
( 3γ

2 −π
)
k
]
.

Similarly, from the definition of Cb(x) (3.15),

L̂C′′
b (k) = −2πψ2(k)e

(
γ− π

2
)
k + e

γk
2 ̂LB(+)′′(k) − (

e
γk
2 + e− γ k

2
)

̂LB(−)′′(k)

+ 2πψ(k)N
(
eiΛk + e−iΛk

)[
e− γ k

2 − e
( γ

2 −π
)
k − e

( 3γ
2 −π

)] + e− γ k
2 L̂μ′′(k).

Substituting these results into (B.7), we obtain

C(k) = 2πNψ(k)(1 − e−πk)

2 cosh γ k
2

(
eiΛk + e−iΛk

)
+ [ ̂LB(+)′′(k) − ̂LB(−)′′(k)](e πk

2 − e− πk
2

)[
e

( π
2 −γ

)
k − e

(
γ− π

2
)
k
](

e
γk
2 + e− γ k

2
)

− 2πψ2(k)
(
1 − e− πk

2
)(

e
γk
2 − e− γ k

2
)(

e
γk
2 + e− γ k

2
)[

e
( π

2 −γ
)
k − e

(
γ− π

2
)
k
] + 2πk

(
Ĝ(k) + 1

e
γk
2 + e− γ k

2

)
,

where we have also used the result (B.3). From the definition of B(±)(x) (3.3),

̂LB(+)′′(k) = 2πψ(k)
[
e(η+−π)k + e(η−−π)k

]
,

(B.10)̂LB(−)′′(k) = 2πψ(k)
(
e−η+k + e−η−k

)
.

We conclude that C(k) is given by

C(k) = 2πk

{
N

(
eiΛk + e−iΛk

2 cosh γ k
2

)
+

[
sinh

((
η+ − π

2

)
k
) + sinh

((
η− − π

2

)
k
)]

2 cosh γ k
2 sinh

((
π
2 − γ

)
k
)

(B.11)+ cosh γ k
4 sinh

(
(3γ − π)k

4

)
cosh γ k

2 sinh
(
(2γ − π)k

4

)}
.

B.3. Spin-1: Cy(k)

The quantity Cy(k) is defined by (3.42)

(B.12)Cy(k) = DT (k)

e
γk
2 + e− γ k

2

+ L̂T ′′
0 (k) + L̂μ′′(k) − L̂f ′′(k).
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From the definition of DT (k) (3.40) and the results (B.8),

DT (k) = e− γ k
2 L̂t ′′+(k) − e

γk
2 L̂t ′′−(k)

= 2πψ2(k)
[
e− 3γ k

2 + e
( 3γ

2 − π
2

)
k
] + (

1 + e−γ k
)

̂LB(+)′′(k) + (
1 + eγ k

)
̂LB(−)′′(k)

+ 2πψ(k)N
(
eiΛk + e−iΛk

)[
e−γ k + e(γ−π)k + e−2γ k + e(2γ−π)k

]
+ e

γk
2 L̂μ′′(k) − e− γ k

2 L̂μ′′(k).

It follows from (B.12) that Cy(k) is given by

Cy(k) = 2πψ2(k)

[
e− 3γ k

2 + e
( 3γ

2 − π
2

)
k

e
γ k
2 + e− γ k

2

]
+ e− γ k

2 ̂LB(+)′′(k) + e
γk
2 ̂LB(−)′′(k)

+ 2πψ(k)N
(
eiΛk + e−iΛk

)[
e

( 3γ
2 −π

)
k + e− 3γ k

2
]

+ e
γk
2 L̂μ′′(k) − e− γ k

2 L̂μ′′(k)

e
γ k
2 + e− γ k

2

+ L̂μ′′(k)

+ 2πψ2(k) − L̂f ′′(k)

(B.13)= 4πkG2(−k),

where, in passing to the last line, we have used the results (3.35), (B.3) and (B.9).

Appendix C. Integration constants

We explain here how to determine the integration constants in the NLIEs.

C.1. Spin- 1
2

The main idea is to carefully consider the limit x → ∞. In this limit, the NLIE (2.29) becomes

(C.1)lna(∞) = G(∞)
[
lnA(∞) − ln Ā(∞)

] + iPbdry(∞) + iπC,

where C is the constant which is to be determined. The contribution from the driving term is
a multiple of 2πi (since N is even), and can therefore be dropped. From the definition of a(x)

(2.5) and the fact that M = N/2 for the ground state, we readily obtain

(C.2)a(∞) = eiω, ω ≡ γ (H+ + H− + 2).

We define the branch of the logarithm such that |�m lnx| � π . It follows that

(C.3)lna(∞) = i(ω − 2πm),

where m is an integer such that

(C.4)−π < ω − 2πm < π.

Moreover,

(C.5)A(∞) = 1 + a(∞) = 1 + eiω = 2e
iω
2 cos

ω

2
= 2ei( ω

2 +πδ)

∣∣∣∣cos
ω

2

∣∣∣∣,
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where δ is given by

(C.6)δ =
{

0: cos ω
2 > 0,

±1: cos ω
2 < 0.

Hence,

(C.7)lnA(∞) = ln

[
2

∣∣∣∣cos
ω

2

∣∣∣∣] + i

(
ω

2
+ πδ − 2πn

)
,

and ln Ā(∞) is obtained by complex conjugation. Here n is another integer such that

(C.8)−π <
ω

2
+ πδ − 2πn < π.

We now substitute into (C.1) the expressions for lna(∞) (C.3) and lnA(∞), ln Ā(∞) (C.7), as
well as the results

(C.9)G(∞) = π − 2γ

2(π − γ )
, Pbdry(∞) = π

2(π − γ )
(γH+ + γH− + 4γ − 4π),

which follow from (2.30) and (2.31), respectively. Solving for ω, we obtain

ω = γH+ + γH− + 2π(C + δ + 2m − 2n − 2)

(C.10)+ 2γ (−C − 2δ − 2m + 4n + 2).

Comparing this result with the definition of ω in (C.2), and assuming that C is independent of γ ,
we obtain a pair of equations,

(C.11)C + δ + 2m − 2n − 2 = 0, −C − 2δ − 2m + 4n + 2 = 1,

which imply

(C.12)δ = 2n − 1

and

(C.13)C = 3 − 2m.

The relations (C.12) and (C.8) imply that 0 < ω < 4π . In fact, since δ can be only 0 or ±1,
(C.12) implies δ = ±1. It follows from (C.6) that ω is further restricted to the interval

(C.14)π < ω < 3π.

Finally, (C.4) then implies m = 1, which determines C through (C.13),

(C.15)C = 1.

Note that the definition of ω (C.2) together with (C.14) imply the domain of boundary parameters
quoted in the text (2.10).



290 C. Ahn et al. / Nuclear Physics B 767 [FS] (2007) 250–294
C.2. Spin-1

In the limit x → ∞, the spin-1 NLIE becomes

(C.16)lnb(∞) = G(∞)
[
lnB(∞) − ln B̄(∞)

] + 1

2
lnY(∞) + iPbdry(∞) + iπC,

(C.17)lny(∞) = 1

2

[
lnB(∞) + ln B̄(∞)

] + iπCy,

where C and Cy are the constants which are to be determined. As in the spin- 1
2 case, we assume

that N is even, and therefore drop the contribution from the driving term. From the definition of
b(x) (3.12) and y(x) (3.21) and the fact that M = N for the ground state, we obtain

(C.18)b(∞) = e2iω + e4iω, y(∞) = 1 + e2iω + e−2iω,

where now ω is defined as

(C.19)ω ≡ η+ + η− − γ.

We rewrite the expression for b(∞) as

(C.20)b(∞) = 2e3iω cosω = 2e3i(ω+πδ1)| cosω|,
where δ1 is given by

(C.21)δ1 =
{

0: cosω > 0,

±1: cosω < 0.

It follows that

(C.22)lnb(∞) = ln
[
2| cosω|] + i(3ω + πδ1 − 2πm),

where m is an integer such that

(C.23)−π < 3ω + πδ1 − 2πm < π.

Moreover,

B(∞) = 1 + b(∞) = 1 + e2iω + e4iω = e2iω(1 + 2 cos 2ω)

(C.24)= 2ei(2ω+πδ2)|1 + 2 cos 2ω|,
where δ2 is given by

(C.25)δ2 =
{

0 : 1 + 2 cos 2ω > 0,

±1: 1 + 2 cos 2ω < 0.

Hence,

(C.26)lnB(∞) = ln |1 + 2 cos 2ω| + i(2ω + πδ2 − 2πn),

and ln B̄(∞) is obtained by complex conjugation, where n is an integer such that

(C.27)−π < 2ω + πδ2 − 2πn < π.

From (C.18) we also see that

(C.28)y(∞) = 1 + 2 cos 2ω,



C. Ahn et al. / Nuclear Physics B 767 [FS] (2007) 250–294 291
and therefore

(C.29)Y(∞) = 1 + y(∞) = 2 + e2iω + e−2iω = (
eiω + e−iω

)2 = |2 cosω|2.
We now substitute into the first NLIE (C.16) the above expressions for lnb(∞) (C.22) and

lnB(∞), ln B̄(∞) (C.26), as well as the result

(C.30)G(∞) = π − 3γ

2(π − γ )
,

which follows from (3.34), and the expression for Pbdry(∞) (5.5). Solving for ω, we obtain

ω = η+ + η− + π(C − δ1 + δ2 + 2m − 2n)

(C.31)+ γ (−2C + 2δ1 − 3δ2 − 4m + 6n − 3).

Comparing this result with the definition of ω in (C.19), and assuming that C is independent of
γ , we obtain a pair of equations,

(C.32)C − δ1 + δ2 + 2m − 2n = 0, −2C + 2δ1 − 3δ2 − 4m + 6n − 3 = −1.

These imply that δ2 = 2n − 2, which is an even number. But since δ2 can be only 0 or ±1, this
implies

(C.33)δ2 = 0, n = 1.

It follows from (C.32) that

(C.34)C = δ1 − 2m + 2.

The relations (C.33) and (C.27) imply that π
2 < ω < 3π

2 . Hence,

(C.35)δ1 = ±1.

It follows from (C.25) and δ2 = 0 that ω is further restricted to the interval

(C.36)
2π

3
< ω <

4π

3
.

Finally, (C.23) then implies δ1 − 2m = −3, which determines C through (C.34),

(C.37)C = −1.

Similarly, substituting into the second NLIE (C.17) the results (C.26), (C.28), and remembering
that δ2 = 0, we immediately see that

(C.38)Cy = 0.

Note that the definition of ω (C.19) together with (C.36) imply the domain of boundary parame-
ters quoted in the text (3.9).
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