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Abstract

We study the role of rolling tachyons in the cosmological model with dilatonic gravity. In the string frame, flat space solutions
of both initial-stage and late-time are obtained in closed form. In the Einstein frame, we show that every expanding solution is
decelerating.
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1. Introduction

Though the situation seems not to be matured yet,
string cosmology must be an intriguing subject to be
tackled at every step of progress in both string theory
and observational cosmology [1]. Recently, inspired
by string theory D-branes and heterotic M-theory,
brane cosmology attracted much attention. Brane cos-
mology assumes that our universe starts out with
branes embedded in the higher-dimensional space-
time, either stable or unstable. Instability of D3-brane
systems is represented by rolling of tachyon [2] whose
action is of Born–Infeld type [3] and has exponen-
tially decaying potential [4]. Since cosmological evo-
lution of accelerating universe was obtained at the
early epoch of the rolling tachyon [5,6], the cosmol-
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ogy involving the rolling tachyon attracts attention in
relation with various topics, e.g., inflation, dark mat-
ter, and reheating [7], despite stringent difficulty in the
simplest versions of this theory [8]. A nice aspect is
the absence of open string excitations, which results
in the absence of the plane-wave solutions in effective
field theory [2,9] so that classical analysis of late-time
based on homogeneity and isotropy may lead to a solid
prediction.

When we deal with string cosmology, two indis-
pensable fields are gravitons and dilaton among var-
ious degrees of freedom. For unstable branes, tachy-
onic degree of freedom should also be involved. Thus,
from the theory side of string cosmology with unsta-
ble branes, the system of tachyon, dilaton, and gravi-
tons provides a minimal setting. In this Letter, we con-
sider the cosmology of unstable brane dominated by
tachyon and dilaton, based on the effective 4D action.
We assume that our brane is either a 3-brane whose
transverse dimensions are compactified or a space fill-
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ing brane with compactified extra dimensions. To be a
realistic scenario leading to the final radiation, matter,
and dark energy dominated universes, other processes
should also be clarified, including the birth of (sta-
ble or unstable) branes, the compactification of ex-
tra dimensions and the dilaton stabilization. Though
we need to understand physics behind them and their
characteristic time scales to complete the brane world
scenario, most of them rely on physics unknown at
the moment. Hence our purpose in this Letter is re-
stricted to the study of intermediate stage dynamics
when both the dilaton and the tachyon play dominant
roles in the evolution of the universe. We do not in-
troduce the stabilization potential for the dilaton, and
find the evolution of the scale factor and tachyon en-
ergy density while both the dilaton and the tachyon
are rolling. Specifically, in the string frame, we obtain
flat space solutions at both the early epochs and late-
times in closed form. When transformed to the Ein-
stein frame, analysis shows that every expanding uni-
verse of the graviton–tachyon–dilaton system should
be decelerating irrespective of the specific shape of the
tachyon potential.

The Letter is organized as follows. In Section 2,
we consider the effective action of a D3-brane sys-
tem involving graviton, dilaton, and tachyon in the
string frame. For the late stage of tachyon-rolling, all
possible cosmological solutions are obtained in closed
form. In Section 3, we reanalyze the system in the Ein-
stein frame and show that every expanding universe
is decelerating. Section 4 is devoted to concluding re-
marks.

2. Cosmological solutions in the string frame

Let us begin with a cosmological model induced
from string theory, which is confined on a D3-brane
of tensionT3 and includes gravitongµν , dilatonΦ,
and tachyonT . In the string frame, the effective action
of the bosonic sector of the D3-brane system is given
by [3]

(2.1)

S = 1

2κ2

∫
d4x

√−g e−2Φ(
R + 4∇µΦ∇µΦ

)
− T3

∫
d4x e−ΦV (T )

√−det(gµν + ∂µT ∂νT ),

where we turned off an Abelian gauge field on the
D3-brane and antisymmetric tensor fields of second
rank both on the brane and in the bulk, and set the
vanishing cosmological constant. Though there seems
no consensus and no exact computation of tachyon
potentialV (T ) for all T ’s, which measures change of
the tension, except for its maximum (max(V (T ))= 1)
and minimum (min(V (T )) = 0), its specific form
can be chosen, for example, as an exponentially-
decreasing potential

(2.2)V (T )=



exp
(− T 2

8 ln2

)
for smallT butT � 0,

exp
(− T√

2

)
for largeT ,

which connects two asymptotic expressions smoothly
and is consistent with the results of superstring the-
ory [2,4].

For cosmological solutions in the string frame,
we try a spatially-homogeneous but time-dependent
solution

ds2 = −dt2 + a2(t) dΩ2
k ,

(2.3)Φ =Φ(t), T = T (t),

wheredΩ2
k corresponds, at least locally, to the metric

of S3, E3, or H 3 according to the value ofk =
1,0,−1, respectively. From the action (2.1), we obtain
the following equations:

(2.4)3

(
ȧ2

a2
+ k

a2

)
− 2

(
3
ȧ

a
Φ̇ − Φ̇2

)
= κ2eΦρT ,

(2.5)

2
ä

a
+ ȧ2

a2
+ k

a2
− 2

(
Φ̈ + 2

ȧ

a
Φ̇ − Φ̇2

)
= −κ2eΦpT ,

4

(
Φ̈ + 3

ȧ

a
Φ̇ − Φ̇2

)
− 6

(
ä

a
+ ȧ2

a2
+ k

a2

)

(2.6)= κ2eΦpT ,

(2.7)
T̈

1− Ṫ 2
+

(
3
ȧ

a
− Φ̇

)
Ṫ + 1

V

dV

dT
= 0,

where tachyon energy densityρT and pressurepT
defined byT Tµ

ν ≡ diag(−ρT ,pT ,pT ,pT ) are

(2.8)

ρT = T3
V (T )√
1− Ṫ 2

and pT = −T3V (T )
√

1− Ṫ 2.
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The tachyon equation (2.7) is equivalent to the follow-
ing conservation equation

(2.9)ρ̇T + (3H − Φ̇)Ṫ 2ρT = 0,

where H = ȧ/a is the Hubble parameter. In the
absence of detailed knowledge ofV (T ), we will
examine characters of the solutions based on the
simplicity of tachyon equation of state

(2.10)pT =wT ρT , wT = Ṫ 2 − 1.

By defining the shifted dilatonφ = 2Φ− 3 lna, we
rewrite Eqs. (2.4)–(2.7) as

(2.11)φ̇2 − 3H 2 + 6
k

a2 = 2κ2eφ/2a3/2ρT ,

(2.12)2(Ḣ −Hφ̇)+ 4
k

a2 = κ2eφ/2a3/2pT ,

(2.13)φ̇2 − 2φ̈ + 3H 2 + 6
k

a2 = −κ2eφ/2a3/2pT ,

(2.14)
T̈

1− Ṫ 2
+ 1

2
(3H − φ̇)Ṫ = − 1

V

dV

dT
.

Note that
√−g, or a3 is not a scalar quantity even

in flat spatial geometry, the shifted dilatonφ is not
a scalar field in 3+ 1 dimensions. The conservation
equation (2.9) becomes

(2.15)ρ̇T + 1

2
(3H − φ̇)Ṫ 2ρT = 0.

Now Eqs. (2.11)–(2.13) and Eq. (2.10) are summa-
rized by the following two equations:

(2.16)2φ̈ − φ̇2 + 2Hφ̇ − 3H 2 − 2Ḣ = −10
k

a2
,

(2.17)

wT φ̇
2 + 4Hφ̇ − 3wTH

2 − 4Ḣ = −(8+ 6wT )
k

a2 .

Let us consider only the flat metric(k = 0) in the rest
part of the Letter. If we express the dilatonφ as a
function of the scale factora(t), φ(t) = φ(a(t)), we
can introduce a new variableψ such as

(2.18)ψ ≡ aφ′ = φ̇

H
,

where the prime denotes the differentiation with re-
spect toa, and the second equality shows thatψ is the
ratio betweenφ̇ andH . Then Eqs. (2.16) and (2.17)

are combined into a single first-order differential equa-
tion forψ :

(2.19)4aψ ′ + (
ψ2 − 3

)
(wT ψ + 2−wT )= 0.

From now on we look for the solutions of Eq. (2.19).
Above all one may easily find a constant solution
ψ = ∓√

3 which is consistent with Eqs. (2.11)–(2.13)
only whenρT = 0:

a(t)= a0(1∓ √
3H0t)

∓1/
√

3,

(2.20)H(t)= H0

1∓ √
3H0t

,

(2.21)Φ(t)=Φ0 − 1± √
3

2
ln(1∓ √

3H0t),

where H0 = H(t = 0), a0 = a(t = 0), and Φ0 =
Φ(t = 0) throughout this section. However, exactly-
vanishing tachyon densityρT = 0 from Eq. (2.11) re-
stricts strictly the validity range of this particular solu-
tion to that of vanishing tachyon potential,V (T )= 0,
which leads toT = ∞. The tachyon equation (2.14)
forces T̈ = 0 and Ṫ = 1 so that the tachyon decou-
ples(wT = pT = 0). Therefore, the obtained solution
(2.20), (2.21) corresponds to that of string cosmology
of the graviton and the dilaton before stabilization but
without the tachyon.

Since it is difficult to solve Eq. (2.19) with dynami-
calwT , let us assume thatwT is time-independent (or
equivalentlya(t)-independent). We can think of the
cases where the constantwT can be a good approxi-
mation. From the tachyon potential (2.2), the first case
is onset of tachyon rolling around the maximum point
and the second case is late-time rolling at largeT re-
gion. In fact we can demonstrate that those two cases
are the only possibility as far as no singularity evolves.

WhenwT is a nonzero constant, Eq. (2.19) allows
a particular solution

(2.22)ψ = wT − 2

wT

≡ β.

This provides a consistent solution of Eqs. (2.11)–
(2.13)

a(t)= a0

(
1+ w2

T + 2

2wT

H0t

)2wT /(w
2
T +2)

,

(2.23)H(t)=H0

(
1+ w2

T + 2

2wT

H0t

)−1

,
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(2.24)

Φ(t)=Φ0 + 2(2wT − 1)

w2
T + 2

ln

(
1+ w2

T + 2

2wT

H0t

)
.

From Eq. (2.11) and Eq. (2.15), the tachyon energy
densityρT is given by

ρT (t)= 2− 2wT −w2
T

w2
T κ

2eΦ0
H 2

0

(2.25)

×
(

1+ w2
T + 2

2wT

H0t

)−2(1+wT )
2/(w2

T +2)

.

Since the obtained solution is a constant solution of
ψ , it has only three initially-undetermined constants.
Specifically, the solution should satisfẏΦ = [(2wT −
1)/wT ]H so that the initial conditions also satisfy a
relation Φ̇0 = [(2wT − 1)/wT ]H0. Once we assume
general solutions ofa(t)-dependentψ with keeping
constant nonzerowT , they should be classified by
four independent parameters(a0,H0,Φ0, Φ̇0) instead
of three in Eq. (2.24).

According to the aforementioned condition for
valid wT values, the obtained solution in Eq. (2.24)
may be physically relevant as the onset solution of
wT = −1 (ψ = 3). In this case,ρT (t) is reduced
to a constantρT (t) = 3e−Φ0H 2

0/κ
2. Comparing this

with the definition ofρT in Eq. (2.8), the initial Hub-
ble parameterH0 is related to the dilaton asH0 =
±κeΦ0/2

√
T3/3. Then, with T (t) = 0, the tachyon

equation of motion is automatically satisfied and
hence Eq. (2.24) becomes an exact solution of the
whole set of equations of motion (2.4)–(2.7). Since the
tachyon field remains as constant at the maximum of
the potential, this solution describes the expanding or
shrinking solution depending on the initial Hubble pa-
rameter, with a constant vacuum energy corresponding
to brane tension due to tachyon sitting at the unstable
equilibrium point.1

In order to study the behavior of the tachyon
rolling down from the top of the potential, now we
slightly perturb this solution, i.e., look for a solution
with nonzero but smallT dependence. So we treat

1 The interpretation as expanding or shrinking solution needs to
be more careful, since we are working in the string frame. Actually
the behaviors are reversed in the Einstein frame as we will see in
Section 3.

T as a small expansion parameter and work up to
the first-order inT . Since the unperturbed solution
satisfies 3H = Φ̇, the tachyon equation of motion
(2.7) becomes, to the first-order inT ,

(2.26)T̈ = − 1

V

dV

dT
.

This can easily be integrated to

(2.27)
1

2
Ṫ 2 = − lnV + const= T 2

8 ln2
+ const,

where we used the form of the potential near the
origin (2.2). Given the initial condition thatT = T0
andṪ = 0 att = 0, we can solve Eq. (2.27) and obtain

(2.28)T (t)= T0 coshαt,

where α = 1/2
√

ln2. Therefore tachyon starts to
roll down the potential as a hyperbolic cosine func-
tion. Taking derivative, we finḋT = αT0 sinhαt . The
range for whichṪ remains small is thent � tr ≡
2
√

ln2sinh−1(2
√

ln2/T0), during which the approx-
imationwT � −1 is good. Unless the initial valueT0
is fine-tuned, the tachyon follows the onset solution
(2.24), (2.25) fort � tr and enters into rolling mode.

For more general solutions, the first-order differen-
tial equation (2.19) can be integrated to

(2.29)

a = C

[
ψ2 − 3

(ψ − β)2

(
ψ − √

3

ψ + √
3

)β/
√

3
](β−1)/(β2−3)

,

where C is an integration constant. Note that this
algebraic equation does not provide a closed form of
ψ in terms of the scale factora(t) except for a few
cases, e.g.,wT = 0,−1/(

√
3− 1/2),−2/(3

√
3− 1).

Fortunately, for the late-time case of vanishingwT ,
we can obtain the solution in closed form

(2.30)ψ = √
3
C+

(
a
a0

)√
3/2 +C−

(
a
a0

)−√
3/2

C+
(
a
a0

)√
3/2 −C−

(
a
a0

)−√
3/2

.

Then the scale factora and the dilatonΦ are explicitly
expressed as functions of timet by solving Eqs. (2.12),
(2.13):

a(t)= a0

(
C−t + 2

C+t + 2

)1/
√

3

,

(2.31)H(t)= 4H0

(C−t + 2)(C+t + 2)
,
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(2.32)Φ(t)=Φ0 + ln

[
2
(C−t + 2)(

√
3−1)/2

(C+t + 2)(
√

3+1)/2

]
,

whereC± = (3 ∓ √
3)H0 − 2Φ̇0. We also read the

tachyon densityρT from Eq. (2.11)

(2.33)ρT = C+C−e−Φ0
(C+t + 2)(

√
3−1)/2

(C−t + 2)(
√

3+1)/2
.

Note thatC± should have the same sign from the
positivity of the tachyon density (2.33). Let us first
consider that bothC+ and C− are positive. When
C− > C+ or equivalentlyH0 > 0, the scale factor
a is growing but saturates to a finite value such as

a(∞) = a0(C−/C+)1/
√

3 in the string frame. When
C− < C+, it decreases. WhenC− = C+, H0 = 0 so
that the scale factor is a constant,a(t)= a0. For all of
the cases, the dilatonΦ approaches negative infinity.
Note thatwT = 0 means late-time, the tachyon density
decreases likeρT ∼ 1/t ast → ∞. Consistency check
by using Eq. (2.15) or equivalently by Eq. (2.14)
provides us the expected result,Ṫ → 1. If bothC+ and
C− are negative, there appears a singularity at finite
time irrespective of relative magnitude ofC+ andC−.

3. Analysis in the Einstein frame

In the previous section, it was possible to obtain
the cosmological solutions analytically in a few simple
but physically meaningful limiting cases. To study the
physical implications of what we found, however, we
need to work in the Einstein frame. In this section,
we will convert the cosmological solutions obtained
in the string frame to those in the Einstein frame and
discuss the physical behaviors. In the Einstein frame,
the metric has the form2

(3.34)ds2 = e2Φ(−dt2 + a2(t) dΩ2
k

)
,

and hence the timet and the scale factora are related
to those in the string frame as

(3.35)as = aeΦ, dts = eΦdt.

2 In this section all the quantities are in the Einstein frame except
the variables with subscripts which denote the quantities in the
string frame.

Then the equations of motion for the flat case(k = 0)
in the string frame (2.4)–(2.7) are converted to

(3.36)H 2 = 1

3
Φ̇2 + 1

3
κ2e3ΦρT ,

(3.37)Ḣ = −Φ̇2 − 1

2
κ2eΦρT Ṫ

2,

(3.38)Φ̈ + 3HΦ̇ = −1

2
κ2e3Φ(ρT − 2pT ),

T̈

1− e−2ΦṪ 2
+ 3HṪ + Φ̇Ṫ

1− 2e−2ΦṪ 2

1− e−2ΦṪ 2

(3.39)+ e2Φ 1

V

dV

dT
= 0.

Tachyon energy densityρT and pressurepT in the
Einstein frame are obtained by the replacementṪs =
e−ΦṪ in Eq. (2.8) according to Eq. (3.35), and
therebywT is given aswT ≡ pT /ρT = e−2ΦṪ 2 − 1.
Demanding constantwT is nothing but asking a
strong proportionality condition between the dilaton
and tachyon,Ṫ ∝ eΦ . Note that the pressurepT as
shown in Eq. (2.8) is always negative irrespective of
both specific form of the tachyon potential(V (T )� 0)
and the value of the kinetic term(e−2ΦṪ 2 � 1), and
the value ofwT interpolates smoothly between−1
and 0.

First we observe that the right-hand side of
Eq. (3.36) is always positive, which means that the
Hubble parameterH(t) is either positive definite or
negative definite for allt and it cannot change the sign
in the Einstein frame. Obviously it is a natural conse-
quence of the weak energy condition. Let us first con-
sider the case of positive Hubble parameter,H(t) > 0.
Eq. (3.37) showsḢ consists of two terms both of
which are negative definite for allt . SinceH > 0 by
assumption, the only consistent behavior ofH in this
case is thatḢ vanishes ast → ∞, which, in turn im-
plies thatΦ̇ andeΦρT Ṫ 2 go to zero, separately. It also
means thatH should be a regular function for allt . In
order to find the larget behavior ofH(t), one has to
studye−ΦṪ in larget limit which appears in the def-
inition of wT in the Einstein frame. Knowing that the
functions are regular, it is not difficult to show that the
only possible behavior ise−ΦṪ → 1 ast → ∞ after
some straightforward analysis of Eqs. (3.36)–(3.38).
Combining it with the fact thatΦ̇ andeΦρT Ṫ 2 van-
ish, we can immediately conclude from Eq. (3.36) that
H(t) should go to zero in larget limit.
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The asymptotic behavior of fields in case of the
positive Hubble parameter can be found from the
solution (2.32) sincewT is essentially zero for large
t as we just have seen above. The only thing to do
is to transform the expressions in the string frame to
those in the Einstein frame, using the relation (3.35).
Therefore, for larget , we find

a(ts)= as(ts)e
−Φ(ts)

� 1

2
as0e

−Φ0(C+ts + 2)(
√

3+1)/(2
√

3)

× (C−ts + 2)(
√

3−1)/(2
√

3),

(3.40)

t =
∫
dts e

−Φ

� 2e−Φ0

∫
dts

(C+ts + 2)(
√

3+1)/2

(C−ts + 2)(
√

3−1)/2
.

One can also identify the initial Hubble parameterH0
in terms ofC± as

(3.41)

H0 = 1

4
eΦ0

[(
1− 1√

3

)
C− +

(
1+ 1√

3

)
C+

]
.

Note that C± have the same sign as the Hubble
parameterH . Now, with C± > 0, one can easily
confirm from Eq. (3.40) that all the functions indeed
behave regularly. Ints → ∞ limit, a ∼ ts and t ∼ t2s
so that the asymptotic behavior of the scale factor
becomesa ∼ t1/2. This power law expansion in flat
space is contrasted with the result of Einstein gravity
without the dilatonΦ, where ultimately the scale
factor ceases to increase, limt→∞ a(t) → const. The
behavior of tachyon densityρT can be read from
Eq. (2.33) with t replaced byts , which shows that
ρT ∼ t−1/2. SincewT also goes to zero, the fluid of
condensed tachyon becomes pressureless. Differently
from ordinary scalar matter where matter domination
of pressureless gas is achieved for the minimum
kinetic energy(Ṫ → 0), it is attained for the maximum
value of time dependence(e−ΦṪ → 1 asT → ∞) for
the tachyon potential given in Eq. (2.2).

When the Hubble parameterH is negative, the
situation is a bit more complicated. SincėH < 0
always,H becomes more and more negative and there
is a possibility that eventuallyH diverges to negative
infinity at some finite time. Indeed, it turns out that
all solutions in this case develop a singularity at some

finite time at whichH → −∞ anda → 0. These big
crunch solutions may not describe viable universes in
the sense of observed cosmological data. Depending
on initial conditions, the dilatonΦ diverges to either
∞ or −∞ and Ṫ goes to either∞ or zero with
the factore−ΦṪ remaining finite. It is rather tedious
and not much illuminating to show this explicitly,
so here we will just content ourselves to present a
simple argument to understand the behavior. Since
the tachyon fieldT rolls down from the maximum
of the potential to the minimum at infiniteT , it is
physically clear thaṫTs = e−ΦṪ would eventually go
to one unless there is a singularity at some finite time.
Suppose that there appeared no singularity until some
long time had passed so thate−ΦṪ approached to
one sufficiently closely. Then Eq. (3.40) should be a
good approximate solution in this case. However, we
know that bothC± are negative whenH < 0 and
Eq. (3.40) is clearly singular in this case. We have
also verified the singular behavior for various initial
conditions using numerical analysis.

As mentioned in the previous section, the tachyon
T is decoupled whene−ΦṪ = 1 andT = ∞. In this
decoupling limit, characters of the Einstein equations
(3.36) and (3.37) thatH 2 > 0 and Ḣ < 0 do not
change so that all the previous arguments can be
applied. Well-known cosmological solution of the
dilaton gravity before stabilization of the dilaton is

a(t)= a0(1+ 3H0t)
1/3,

(3.42)H(t)= H0

1+ 3H0t
,

(3.43)Φ(t)=Φ0 ± 1√
3

ln(1+ 3H0t),

where the (±) sign in Eq. (3.43) is due to the
reflection symmetry(Φ ↔ −Φ) in Eqs. (3.36)–(3.38).
This solution can also be obtained throughout a
transformation (3.35) from Eqs. (2.20), (2.21). For
H0 < 0, it is a big crunch solution(a → 0) which
encounters singularity(H → ∞, Φ → ∓∞) as
t → 1/3|H0|. For H0 > 0, it is an expanding but
decelerating solution. Sincea ∼ t1/3, the power of
expansion rate is increased from 1/3 to 1/2 by the
tachyonic effect as expected.

So far we discussed generic properties and asymp-
totic behaviors of solutions in the Einstein frame. Now
we consider the behavior at the onset. The solution
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(2.24) obtained by assuming constantwT is trans-
formed to the Einstein frame as

a(t)= a0

[
1+ (wT − 2)2

2(1−wT )
H0t

]2(1−wT )/(wT −2)2

,

(3.44)

eΦ(t) = eΦ0

[
1+ (wT − 2)2

2(1−wT )
H0t

]2(2wT −1)/(wT −2)2

,

where the initial Hubble parameterH0 is related to
that in the string frame byH0 = eΦ0H0s(1−wT )/wT .
Note that H0 and H0s have opposite signs since
wT < 0. Therefore the expanding (shrinking) solution
in the string frame corresponds to the shrinking (ex-
panding) solution in the Einstein frame. For the onset
solution withwT = −1, the tachyon energy density
ρT is a constant as before,ρT (t) = 3e−3Φ0H 2

0/4κ
2.

Then the initial Hubble parameter is given byH0 =
±2κe3Φ0/2

√
T3/3, which describes the exact solution

that tachyon remains at the origin as explained in
Section 2. Under a small perturbation tachyon starts
rolling down according to Eq. (2.28) witht replaced
by ts . The rest of the discussion on the rolling behav-
ior is the same as in the string frame and the details
will not be repeated here.

In conclusion the cosmological solution can be
classified into two categories depending on the value
of the Hubble parameterH(t) in the Einstein frame.
When the initial Hubble parameterH0 is positive, the
solution is regular and the universe is expanding but
decelerating asa(t)∼ √

t while eΦ(t) vanishes. When
H0 is negative, there appears a singularity at some
finite time t at which the universe shrinks to zero.

4. Concluding remarks

In this Letter we have discussed cosmological so-
lutions of the effective theory of rolling tachyon cou-
pled to gravitons and dilaton. In the study of homoge-
neous and isotropic universes, we found initial-stage
and late-time solutions in closed form in addition to
the known solution of the gravitons and dilaton in the
decoupling limit of the tachyon. Those obtained solu-
tions included expanding universes, big crunch solu-
tions, and even the static universe in the string frame.
The dilatonic part of those also indicated that the dila-

ton could not be stabilized in the system of our interest
without the dilaton potential.

We have also provided a description of cosmologi-
cal solutions in the Einstein frame. Einstein equations
were summarized by the positivity of square of the
Hubble parameter and the negativity of derivative of
the Hubble parameter irrespective of specific shape of
the rolling tachyon potential. This implies that once
the universe starts expanding, then it continues ex-
panding eternally but decelerating.

We conclude with the list of intriguing questions for
further study. One would like to generalize this to that
with the Abelian gauge field on the brane [10] and ask
whether or not radiation dominated era is possible. As
was the original string cosmology, stabilization mech-
anism of dilaton should be understood and its positive
effect to our unsatisfactory decelerating universe so-
lutions is carefully investigated [11]. Various topics
for the rolling tachyons asked in the Einstein grav-
ity should be addressed again in the context of dila-
ton gravity such as existence of inflationary era, pos-
sibility as a source of quintessence, reheating without
oscillating tachyon modes, cosmological perturbation
and structure formation, and so on.
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