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In the framework of boundary conformal field theory we consider a flat unstable Dp-brane in the

presence of a large constant electromagnetic field. Specifically, we study the case that the electromag-

netic field satisfy the following three conditions: (i) a constant electric field is turned on along the x1

direction (E1 � 0); (ii) the determinant of the matrix (�þ F) is negative so that it lies in the physical

region (� detð�þ FÞ> 0); (iii) the 11-component of its cofactor is positive to the large electromagnetic

field. In this case, we identify exactly marginal deformations depending on the spatial coordinate x1. They

correspond to tachyon profiles of hyperbolic sine, exponential, and hyperbolic cosine types. Boundary

states are constructed for these deformations by utilizing T-duality approach and also by directly solving

the overlap conditions in BCFT. The exponential type deformation gives a tensionless half brane

connecting the perturbative string vacuum and one of the true tachyon vacua, while the others have

negative tensions. This is in agreement with the results obtained in other approaches.
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I. INTRODUCTION

Type IIA (IIB) string theory supports even-
dimensional (odd-dimensional) stable Bogomol’nyi-
Prasad-Sommerfield (BPS) D-branes and odd-dimensional
(even-dimensional) unstable non-BPS D-branes [1]. The
physics of unstable D-branes involves various nonpertur-
bative aspects of string theory. Specifically, two represen-
tative examples are the tachyon solitons interpreted as
lower-dimensional D-branes [2,3] and the rolling tachyon
describing homogeneous real-time decay process of the D-
brane [4,5].

The instability of a non-BPS Dp-brane in superstring
theory or a Dp-brane in bosonic string theory results in the
appearance of a tachyonic degree. In the context of bound-
ary conformal field theory (BCFT), the tachyon vertex
operator with a single spatial dependence which represents
the exactly marginal deformation is given by a sinusoidal
function with a single multiplicative parameter. When the
parameter has the value 1=2, the deformation is interpreted
as an array of Dðp� 1Þ-branes in bosonic string theory or
as a periodic array of a pair of a Dðp� 1Þ-brane and a
�Dðp� 1Þ-brane in superstring theory [2,3,6]. The homo-
geneous rolling tachyon in BCFT is described by introduc-
ing a marginal deformation corresponding to the tachyon
profiles of hyperbolic sine, exponential, or hyperbolic
cosine type. The physical quantities, like the energy-
momentum tensor, suggest real-time decay of an unstable
D-brane when the tachyon is displaced from the maximum

of the tachyon potential and rolls down towards its
minimum.
Both homogeneous rolling tachyons and lower-

dimensional D-branes from an unstable D-brane have
also been studied in the context of effective field theories
(EFTs) such as Dirac-Born-Infeld (DBI) type EFT [7–10]
and boundary string field theory (BSFT) EFT [11–13].
Compared with the BCFT approach, physical quantities
such as energy-momentum tensor obtained from these
EFTs are qualitatively the same as, but slightly different
from that in BCFT [7–13]. For the case of the half S-brane
with the exponential type of the tachyon profile [14] which
is a special case of homogeneous rolling tachyons, the
energy-momentum tensor based on the formula in
Ref. [5] coincides exactly with that of DBI type effective
action with 1= cosh potential [15].
When the fundamental strings exist in the world volume

of unstable Dp-brane, they couple to the second-rank
antisymmetric tensor field (or equivalently to the electro-
magnetic field strength tensor on the D-brane [16]) and the
string current density is given by the Lorentz-covariant
conjugate momentum of U(1) gauge field [17–19]. Then
one may study the effect of the electromagnetic field. For
rolling tachyons, the three types of deformations men-
tioned above are not changed by the presence of con-
stant electric [20–22], or both electric and magnetic
[23,24] fields as far as they satisfy the physical condition,
� detð�þ FÞ> 0 where F denotes the electromagnetic
field strength tensor.
The situation is more interesting for the case of tachyon

kinks which are identified as lower-dimensional D-branes
of codimension one. The spectrum of the tachyon kink
is not changed when the constant electric field is turned
on with keeping � detð�þ FÞ> 0; only the period of

*ishida@skku.edu,
+cjkim@ewha.ac.kr
‡okabkwon@maths.tcd.ie
xyoonbai@skku.edu

PHYSICAL REVIEW D 77, 126017 (2008)

1550-7998=2008=77(12)=126017(19) 126017-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.77.126017


Dðp� 1Þ �Dðp� 1Þ in the array becomes large as the elec-
tric field increases. However, when the electric field even-
tually reaches the critical value for which the determinant
vanishes, the period becomes infinite and we obtain a
single regular BPS tachyon kink with constant electric
flux. It is interpreted as a thick BPS Dðp� 1Þ-brane in
the background of fundamental string charge density. This
has been checked in various languages including DBI EFT
[9,25], BCFT [26], noncommutative field theory (NCFT)
[27], and BSFT [13].

In the presence of both constant electric and constant
magnetic fields in an unstable Dp-brane with p � 2, it
turns out that other types of deformations are possible.
This is because the 11-component of the cofactor C11 of
ð�þ FÞ�� can have either negative or positive value while
keeping � detð�þ FÞ> 0. (Here, x1 denotes the coordi-
nate on which the tachyon depends.) For small electro-
magnetic fields the cofactor C11 is negative. In this case
the species of tachyon kinks are essentially the same as
those without electromagnetic field. On the other hand,
when p � 2, electromagnetic fields can take large values
for which C11 becomes positive while maintaining the
condition � detð�þ FÞ> 0. In this case, three new
codimension-one objects are supported, which correspond
to tachyon profiles of hyperbolic sine, exponential, and
hyperbolic cosine types. These objects have been obtained
in aforementioned EFTs including DBI EFT [9,25], NCFT
[28], and BSFT [13]. They, however, have not yet been
reproduced in the context of BCFT for type II superstring
theory. The purpose of this paper is to analyze these three
kinks in the context of BCFT.

In Sec. II, we describe new tachyon vertices of hyper-
bolic sine, exponential, and hyperbolic cosine types with
the dependence on a single spatial coordinate, and show
that they give marginal deformations in the context of
BCFT. In addition, these tachyon profiles are obtained
as static solutions of the linearized tachyon equation in
the background of a nontrivial open string metric and a
noncommutativity parameter of open string field the-
ory (OSFT). In Sec. III we construct the boundary states
corresponding to the marginal deformations given in
section II. We utilize Lorentz transformation and
T-duality in subsection III A while the overlap condition
is directly solved in subsection III B to construct the
boundary states. In Sec. IV we read the corresponding
physical quantities, specifically the energy-momentum
tensor T�� and the fundamental string current density

���. For the case of hyperbolic sine and hyperbolic cosine

types of tachyon profiles, they are slightly different from
those in EFTs as expected [9,25,28], but, for the exponen-
tial type, they coincide exactly with the results of EFTs.
They are interpreted as negative tension branes for hyper-
bolic sine and cosine profiles and tensionless half brane for
exponential profile in the huge constant background of
positive energy density. We conclude in Sec. V. In the

appendix, we give an alternative derivation of the energy-
momentum tensor for the exponential type deformation by
calculating the partition function of the world sheet action
following Ref. [29].

II. NEW TACHYON VERTICES AS EXACTLY
MARGINAL DEFORMATIONS

In this section we show that there exist three new
tachyon vertices as marginal deformations in the presence
of the constant electromagnetic field. They are hyperbolic
sine, hyperbolic cosine, and exponential types which de-
pend on a single spatial coordinate. We shall show this
first in the scheme of BCFT and then in the context of
linearized OSFT.
In the BCFT description of bosonic string theory, the

world sheet action of a Dp-brane in the presence of a
background U(1) gauge field A� is given by1

SBCFT ¼ 1

2�

Z
�
d2w@X� �@X� � i

2�

Z
@�
dtA�ðXÞ@tX�;

(2.1)

where � denotes the world sheet and t parametrizes the
boundary of the world sheet. It satisfies the boundary
condition

ð@nX� þ iF��@tX
�Þ j@�¼ 0; (2.2)

where @n and @t denote, respectively, the normal and
tangential derivatives at the boundary @�. The dynamics
of an unstable Dp-brane is described by introducing a
conformally invariant boundary interaction to the world
sheet action,

ST ¼
Z
@�
dtTðXÞ: (2.3)

When there is no background gauge field (A� ¼ 0), it is

well-known that for any spatial direction X the operator

TðXÞ ¼ � cosX (2.4)

is exactly marginal and has been used to describe lower-
dimensional D-branes [2,3]. The relevant boundary state is
given by [30–32]

jBiX ¼ X
j¼0;1=2;1;...

Xj
m¼�j

Dj
m;�mðRÞjj;m;mii; (2.5)

where R is the SU(2) rotation matrix

R ¼ cos�� i sin��
i sin�� cos��

� �
; (2.6)

Dj
m;�mðRÞ is the spin j representation matrix of R in the Jz

eigenbasis, and jj;m;mii is the Virasoro-Ishibashi state

[33] built over the primary state jj;m;mi ¼ jj; mijj; mi.

1Throughout this paper we use the �0 ¼ 1 unit.
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The temporal version of (2.4)

TðX0Þ ¼ � coshX0 (2.7)

describes the dynamics of the rolling tachyon [4,5]. For
example, the relevant boundary state for a Dp-brane with
the deformation (2.7) is given by

jBi ¼ jBiX0 �p
�¼1 jNiX� �25

i¼pþ1 jDiXi � jghosti; (2.8)

where

jNiX� ¼ exp

�
� X1

n¼1

1

n
�
��n ����n

�
j0i;

jDiXi ¼ exp

�X1
n¼1

1

n
�i�n ��i�n

�
j0i;

jghosti ¼ exp

�
� X1

n¼1

ð �b�nc�n þ b�n �c�nÞ
�

� ðc0 þ �c0Þc1 �c1j0i;

(2.9)

and jBiX0 is the boundary state (2.5) in the Wick-rotated
variable X ! �iX0.

In the presence of a constant background electric field
the operator (2.7) is modified by a Lorentz factor [20],

TðX0Þ ¼ � coshð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

p
X0Þ; (2.10)

where E is the magnitude of the electric field. Rolling
tachyons have further been generalized to the case that
both electric and magnetic fields are turned on [23,24].

In this section we would like to discuss the exactly
marginal deformation ST (2.3) in the background of a
general constant electromagnetic field for which we take
the symmetric gauge,

A� ¼ �1
2F��X

�: (2.11)

As usual [4], we first consider the Wick-rotated theory
obtained by the replacement X0 ! iX0 and make the in-
verse Wick-rotation back to the Minkowski time later.

Under the deformed boundary condition (2.2), the
correlation function on the upper-half plane is obtained
as [34],

hX�ðwÞX�ðw0Þi ¼ ���� lnj w� w0 j þ��� lnj w� �w0 j

� �G�� lnj w� �w0 j2 � ���� ln

�
w� �w0

�w� w0

�
:

(2.12)

Here �G�� and ���� are the Wick-rotated version of the open

string metric G�� and the noncommutativity parameter
��� given as

G�� ¼
�

1

�þ F

�
��

S
¼ C��S

Yp

;

��� ¼
�

1

�þ F

�
��

A
¼ C

��
A

Yp

;

(2.13)

where C
��
S and C

��
A are, respectively, the symmetric and

antisymmetric parts of C��, the cofactor matrix of ð�þ
FÞ��, and Yp � detð�þ FÞ. When w0 is on the boundary,

(2.12) reduces to

X�ðwÞX�ðtÞ � � �G�� lnjw� tj2 � ���� ln

�
w� t

�w� t

�
;

(2.14)

where t represents the boundary. Since the OPE of
the energy-momentum tensor T ¼ �@X�@X� with the

tachyon boundary vertex operator eik�XðtÞ is

TðwÞeik�XðtÞ �
�G��k�k�

ðw� tÞ2 e
ik�XðtÞ þ 1

w� t
@tðeik�XðtÞÞ;

(2.15)

this operator becomes marginal when

�G��k�k� ¼ 1: (2.16)

In this paper we are interested in the operators which
depend on a single spatial coordinate. For definiteness we
take k� / ��1 and denote X ¼ X1 for the sake of simplic-

ity. In this case (2.16) reduces to k21 ¼ 1= �G11. Then the
boundary operator is not only marginal but actually exactly
marginal [32] since the second term containing the non-
commutative parameter in (2.14) plays no role. After
the inverse Wick rotation, the marginality condition then
leads to

k21 ¼
1

G11
¼ Yp

C11
: (2.17)

As an example, let us consider an unstable D2-brane (p ¼
2) with a constant electromagnetic field F0i ¼ Ei (E

2 ¼
E2
i ) and F12 ¼ B. In this case, Y2 ¼ �ð1� E2 þ B2Þ and
C11 ¼ �1þ E2

2 so that the marginality condition (2.17)
becomes

k21 ¼
�ð1�E2 þ B2Þ

�ð1� E2
2Þ

: (2.18)

Before discussing the physical meaning of these mar-
ginal deformations, we extend our analysis to the super-
string case with world sheet fermions,  � and � �,
� ¼ 0; 1; . . . ; 9. The world sheet action with a constant
electromagnetic field is

Sw ¼ 1

2�

Z
�
d2z

�
@X� �@X� þ 1

2
 � �@ � þ 1

2
� �@ � �

�

� i

2�

Z
@�
dtðA�@tX� � F���

���Þ; (2.19)
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where the fermions in the boundary interaction always
appear as the following combination,

�� ¼ 1
2ð � þ � �Þ: (2.20)

In addition to the boundary condition for bosonic degrees
(2.2), we impose that for fermionic degrees,

ð��� � F��Þ �j@� ¼ 	ð��� þ F��Þ � �j@�; (2.21)

where 	 ¼ �. Without the background gauge field, the
following operator which represents the tachyon field

TðxÞ ¼ ffiffiffi
2

p
� cosðx= ffiffiffi

2
p Þ,

� i
ffiffiffi
2

p
� sinðX= ffiffiffi

2
p Þ � 
1 (2.22)

is known to be exactly marginal. Here we have assigned the
Chan-Paton factor 
1 and the relevant boundary state is

jB; 	iX; ¼ X
j¼0;1;...

Xj
m¼�j

Dj
m;�mðRÞjj;m;m; 	ii; (2.23)

where jj;m;m; 	ii is the super-Virasoro-Ishibashi state
built over the primary state jj;m;m; 	i and 	 ¼ � corre-
spond to the two different boundary conditions for the
fermions in (2.21).
Taking the inverse Wick rotation, the deformation (2.22)

describes the rolling tachyon in superstring theory [5]. The
boundary state for the Dp-brane with this interaction is
given by

jBi ¼ jB;þi � jB;�i; (2.24)

where

jB; 	i ¼ jB; 	iX0; 0 �p
�¼1 jN; 	iX�; � �9

i¼pþ1 jD; 	iXi; i
� jghost; 	i: (2.25)

Here jB; 	iX0; 0 is the boundary state (2.23) in the Wick-

rotated variables X ¼ �iX0,  ¼ �i 0, and � ¼ �i � 0,
and the spatial and ghost parts are usual ones, which are,
respectively, given by

jN; 	iX�; � ¼ exp

�
� X1

n¼1

1

n
�
��n ����n � i	

X1
r¼1=2

 
��r � ��r

�
j0i; jD; 	iXi; i ¼ exp

�X1
n¼1

1

n
�i�n ��i�n þ i	

X1
r¼1=2

 i�r � i�r
�
j0i;

jghost; 	i ¼ exp

�
� X1

n¼1

ð �b�nc�n þ b�n �c�nÞ þ i	
X1
r¼1=2

ð��r ���r � ���r��rÞ
�
j�i;

j�i ¼ ðc0 þ �c0Þc1 �c1e�
ð0Þ� �
ð0Þj0i:

(2.26)

Now we consider the marginality condition of the tachyon
vertex operator with momentum k in the presence of the
constant electromagnetic field. The vertex operator in the
zero-picture is given by

� ffiffiffi
2

p
k ��eik�XðtÞ: (2.27)

Since the fermion � has conformal weight 1=2, the mar-
ginality condition becomes

G��k�k� ¼ 1
2: (2.28)

If we consider the operators which depend only on X1, this
condition reduces to

k21 ¼
1

2G11
¼ Yp

2C11
: (2.29)

In the absence of the electromagnetic field, C11 ¼ Yp ¼
�1 and hence k21 ¼ 1 and 1=2, respectively, for the bosonic
and superstring case, as it should be. As the electromag-
netic field is turned onC11 andYp change and so does k

2
1. It

has a positive value as long as both Yp and C11 are

negative. In (2.18), this is the case when E2
2 < 1 with an

appropriate B to keep Y2 negative. The marginal tachyon
vertex operator is then of the trigonometric type: TðXÞ ¼
� cosðk1XÞ or � sinðk1XÞ. If we examine the corresponding
energy-momentum tensor and the R-R coupling, the result-

ing configuration with � ¼ 1=2 for pure tachyon case
(Yp ¼ C11 ¼ �1) is interpreted as an array of D-branes

for the bosonic case or an array of Dðp� 1Þ �Dðp� 1Þ for
superstrings [2,3]. It was also discussed in the presence of
electric field (Y1 ¼ �1þ E2, C11 ¼ �1) [9,25,26].
On the other hand, if the electromagnetic field is suffi-

ciently strong, Yp and/or C
11 can be flipped to be positive.

From the physical ground, the determinant Yp should be

negative and then the question is whether C11 can become
positive while keeping Yp negative. It turns out that this is

possible when p � 2 as we see in (2.18). Note that when
E2
2 > 1, C11 becomes positive while Yp remains negative

as long as the magnetic field B is sufficiently strong.
Then the tachyon profile becomes of the hyperbolic type

TðXÞ ¼ e��X where

� � ik1 ¼
8><
>:

ffiffiffiffiffiffiffiffi�Yp

C11

q
for bosonic string;ffiffiffiffiffiffiffiffi�Yp

2C11

q
for superstrings;

(2.30)

This is in contrast with the rolling tachyons in which k20 ¼
Yp=C

00 is always negative. Actually C00 is positive irre-

spective of the values of constant electromagnetic field and
the dimension p of D-brane. Therefore turning on the
electromagnetic field does not give rise to a new type of
deformation for the case of rolling tachyons.
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Without loss of the generality, the tachyon profile may
be classified into the following three cases depending on
the asymptotic behaviors,

TðXÞ
�

¼
8><
>:
ðiÞ � sinhð�XÞ;
ðiiÞ � expð��XÞ;
ðiiiÞ � coshð�XÞ;

(2.31)

where � ¼ 1 for bosonic string and � ¼ ffiffiffi
2

p
for super-

strings. Note that the coordinate X is a spatial direction
along the D-brane. Nevertheless the form of the operator
looks like that of rolling tachyons thanks to the strong
electromagnetic field. This deformation is however en-
tirely physical and can be obtained through a chain of
maps involving T-duality, Lorentz boost, and rotation
[23] as discussed in subsection III Awhere the correspond-
ing boundary state is constructed.

One comment is in order. For bosonic string, the bound-
ary term is the same as the tachyon profile (2.31). For
superstrings, tachyon vertex operators corresponding to
(2.31) in the �1-picture are of the form e�
TðXÞ. Since
the picture number of the boundary term should be zero,
each boundary term corresponding to the tachyon ver-
tex (2.31) is obtained by picture-changing from �1 to
0-picture,

8>><
>>:
ðiÞ 2i���coshð�XÞ � 
1;

ðiiÞ �2i���expð��XÞ � 
1;

ðiiiÞ 2i���sinhð�XÞ � 
1;

(2.32)

where the Chan-Paton factor 
1 is necessary to describe
GSO-odd states.

The tachyon profiles (2.31) can also be obtained in the
framework of OSFT. Let us consider the linearized equa-
tions of motion in OSFT ignoring the interaction among
various fields except the coupling to constant electromag-
netic field. Near the perturbative string vacuum, the tachy-
onic degree due to the instability of an unstable D-brane
can be described by a real scalar field T and its action in the
presence of the constant electromagnetic field is expressed
in terms of an open string metric G�� and a noncommuta-
tivity parameter ��� in (2.13),

SL ¼
Z
dpþ1x

ffiffiffiffiffiffiffiffi�Gp �
�G��

2
@�T 	 @�T �m2

2
T 	 T

�
;

(2.33)

where G ¼ detG�� and 	 denotes star product between the
tachyon fields. m2 < 0 is the square of the tachyon mass
which is equal to �1 for bosonic string theory and �1=2
for superstring theory in our convention. Since the back-
ground electromagnetic field is constant on the flat D-brane
with the metric ���, both G

�� and ��� in (2.13) are also

constant. In addition, every star product in the action
(2.33), quadratic in the tachyon, can be replaced by an
ordinary product and the equation of motion for the

tachyon field becomes

G��@�@�T ¼ m2T: (2.34)

For the static kink configurations of codimension-one
objects, we assume T ¼ TðxÞ, (x ¼ x1) and then the equa-
tion of motion (2.34) reduces to

� C11T00 ¼ �Ypm
2T; (2.35)

where the prime 0 denotes differentiation of x. To keep the
role of spacetime variables, the determinant Yp should be

nonpositive and, to obtain nontrivial configurations, C11

should be nonvanishing.
As discussed in the previous subsection, the types of the

solution of (2.35) depend on k21 ¼ Yp=C
11jm2j. When C11

is positive, the solution is given by (2.31). In the absence of
the electromagnetic field, �C11 ¼ 1 and although the ob-
tained tachyon configurations (2.31) are static solutions of
the linearized tachyon equation with the coupling of con-
stant electromagnetic field, the linear tachyon system is
obtained through a consistent truncation of full open string
field equations restricting the fields to a universal subspace
and then the obtained solutions (2.31) are expected to be
solutions of full open string equations [4,5,20].

III. CONSTRUCTIONOF BOUNDARY STATES FOR
NEW CODIMENSION-ONE OBJECTS

In this section we construct the boundary state for the
hyperbolic type of marginal deformation (2.31) along a
spatial direction in the presence of a strong constant elec-
tromagnetic field. For definiteness we concentrate on a
D25-brane in bosonic string theory. Then the case of
superstring theory will briefly be discussed. The general-
ization to lower-dimensional D-branes is straightforward.

A. T-duality approach

In the following we shall construct the corresponding
boundary state through a chain of transformations starting
from a well-established configuration which turns out to be
the rolling tachyon in the presence of the constant electric
field. The order of the transformations is as follows. We
begin with a D25-brane where a constant electric field is
turned on along the y1-direction and all the other excita-
tions are set to zero except the rolling tachyon. We com-
pactify the y2-direction on a circle and T-dualize the
D25-brane to a D24-brane. Then we boost it twice: first
along the y1-direction and then along the y2-direction.
Subsequently we rotate it in the y1y2-plane. Finally we
T-dualize it back along the y2-direction. The resulting
configuration will be a D25-brane with the deformation
given in (2.31). The whole procedures are summarized in
Fig. 1.
Let us first consider a flat D25-brane (p ¼ 25) with

rolling tachyon in a constant electric field. We denote the
world sheet fields of the brane by Y� and assume that

NEGATIVE-TENSION BRANES AND TENSIONLESS 1
2 . . . PHYSICAL REVIEW D 77, 126017 (2008)

126017-5



the constant electric field denoted by ~E1 is along the
y1-direction. The rolling tachyon is then described by the
exactly marginal boundary operator2 [20]

�
Z
dt coshð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~E2

1

q
Y0ðtÞÞ: (3.1)

We compactify the y2-direction on a circle of radius R and
wrap the D25-brane on it.

Under the T-dualization of the y2-direction, the right-
moving part of Y2 changes its sign while the other fields
remain unchanged,

T dual: Y2
Rð�zÞ ! �Y2

Rð�zÞ: (3.2)

The D25-brane is then turned into an array of D24-branes
on the dual circle. Taking the decompactification limitR!
1 we get a localized D24-brane with a constant electric
field ~E1 turned on along the y

1-direction. The Y2 part of the
boundary state is given by the Dirichlet state,

jDiY2 ¼ exp

�X1
n¼1

1

n
�2�n ��2�n

�
�ðŷ2Þj0i; (3.3)

where ��n and ���n denote the oscillators of Y�.
Next, we boost the D24-brane along the y1-direction

with a velocity e1 which is followed by another boost along

the y2-direction with a velocity e2. Then we perform a
rotation in the y1y2-plane by an angle tan�1b. Then Y0, Y1,
Y2 are mapped as

Y0

Y1

Y2

0
B@

1
CA !

X0

X1

X2

0
B@

1
CA ¼ ��2�1

Y0

Y1

Y2

0
B@

1
CA: (3.4)

Here the boost transformations, �1 and �2, and the rota-
tion � are

�1 ¼
�1 �1e1 0
�1e1 �1 0
0 0 1

0
@

1
A; �1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e21

q ; e21< 1;

�2 ¼
�2 0 �2e2
0 1 0

�2e2 0 �2

0
@

1
A; �2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e22

q ; e22< 1;

�¼
1 0 0
0 ~� �~�b
0 ~�b ~�

0
@

1
A; ~�¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þb2
p ; 0<b2<1;

(3.5)

and then the resulting transformation matrix is

��2�1 ¼
�1�2 �1�2e1 �2e2

��1�2 ~�e2bþ �1 ~�e1 ��1�2 ~�e1e2bþ �1 ~� ��2 ~�b
�1�2 ~�e2 þ �1 ~�e1b �1�2 ~�e1e2 þ �1 ~�b �2 ~�

0
@

1
A: (3.6)

Now we choose the rotation parameter b as

b ¼ 1

�2e1e2
; (3.7)

so that the 11-component of ��2�1 in (3.6) vanishes.
The delta function �ðŷ2Þ in the boundary state (3.3) then

FIG. 1. The arrows in D25-branes represent electric fields. The gray background in the second D25-brane represents a nonvanishing
magnetic field.

2We display only the cosh-type operator for simplicity.
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becomes

�ðŷ2Þ ¼ �ð��2e2x̂
0 � �2 ~�bx̂

1 þ �2 ~�x̂
2Þ

¼ ð�2 ~�Þ�1�ðx̂2 � ~��1e2x̂
0 � bx̂1Þ: (3.8)

From (3.6), (3.7), and (3.8), we find that within the bound-
ary state

ŷ 0 ¼ �e1�1 ~�
�1x̂1; ŷ1 ¼ e2b

�1

x̂0 þ �1

~�
x̂1: (3.9)

Note that the zero mode ŷ0 in the zeroth direction is
transformed to x̂1 with the help of zero-mode constraint
in (3.3) for the localized D24-brane.

As the last step, we compactify the x2-direction on a
circle and T-dualize back along the x2-direction, which
changes X2

Rð�zÞ to �X2
Rð�zÞ. Finally we decompactify the

x2-direction. The whole transformation can then be written
as

X0
L

X1
L

X2
L

0
BB@

1
CCA ¼ ��2�1

Y0
L

Y1
L

Y2
L

0
BB@

1
CCA;

X0
R

X1
R

X2
R

0
BB@

1
CCA ¼

1 0 0

0 1 0

0 0 �1

0
BB@

1
CCA��2�1

1 0 0

0 1 0

0 0 �1

0
BB@

1
CCA

Y0
R

Y1
R

Y2
R

0
BB@

1
CCA

¼ ��1��1
2 �1

Y0
R

Y1
R

Y2
R

0
BB@

1
CCA: (3.10)

Moreover, the zero-mode part is transformed to

ð�2 ~�Þ�1�ðx̂2 � ~��1e2x̂
0 � bx̂1Þj0i ! ð�2 ~�Þ�1j0i;

(3.11)

yielding the Born-Infeld factor ð�2 ~�Þ�1, since only the
zero-winding sector survives in the decompactification
limit.

After the chain of these transformations, we get a
D25-brane with constant electric and magnetic fields de-
formed by the tachyon field

� coshð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~E2

1

q
e1�1 ~�

�1X1Þ; (3.12)

where (3.9) has been used. The resulting electromagnetic
fields E1, E2, B on the D-brane are related to the boost and
rotation parameters through

~E 1 ¼ E1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

2 þ B2
q ; e1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

2 þ B2
q

E2B
;

e2 ¼ E2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

p ; b ¼ B:

(3.13)

To see this, and also as a check of our calculation, we apply
the transformations (3.10) and (3.11) to the Neumann

boundary state of a static D25-brane with a nonvanishing
constant electric field ~E1 ¼ ~F01 ¼ � ~F10. The nontrivial
part is

jN; ~E1iY0;1;2 ¼ Np

ffiffiffiffiffiffiffiffiffiffiffi
� ~Yp

q
exp

�
� X1

n¼1

1

n
�a�n ���na

�
j0i;

ða; b ¼ 0; 1; 2Þ; (3.14)

where Np is an overall constant and ~Yp is [35]

~Y p ¼ detð�ab þ ~FabÞ ¼ �1þ ~E2
1: (3.15)

The oscillators ���n’s are defined as

�� ¼ ~M �� � �

�
�� ~F

�þ ~F

�
��: (3.16)

From (3.10), the relevant factor in the exponent becomes

�T�n ���n ¼ �T�nð��2�1Þ�1T ~M��1
1 �2� ���n: (3.17)

Using (3.13), it is straightforward to find that this re-
duces to

�T�n�
�
�� F

�þ F

�
���n; (3.18)

where F is the field strength tensor with electric fieldE and
magnetic field B. This gives the correct form of the ex-
ponent for the Neumann boundary state with constant
electric field E and magnetic field B. Furthermore, the
zero mode part becomes

ð�2 ~�Þ�1
ffiffiffiffiffiffiffiffiffiffiffi
� ~Yp

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�E2 þ B2

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detð�ab þ FabÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
�Yp

q
; (3.19)

reproducing the Born-Infeld factor with E and B. This
establishes the relation (3.13). With the identification
(3.13), it is easy to see that the deformation (3.12) precisely
takes the form (2.31) with X ¼ X1.
The relation (3.13) constrains the range of the allowed

electromagnetic fields obtained by the transformation
(3.10). Since the initial electric field ~E1 on the D-brane
and the boost parameters e1, e2 should be less than one,
we get

�Yp ¼ 1� E2 þ B2 > 0; E2
2 > 1: (3.20)

The first constraint is nothing but the reality condition of
the Born-Infeld factor (3.19). The second constraint E2

2 > 1
is precisely the condition that � in (2.31) is real so that the
deformation is of the hyperbolic type as discussed before.
We note that these conditions are obtained from a series of
boosts and rotations which are not connected to the identity
transformation since E2

2 is necessarily larger than 1.
Now it is a straightforward matter to write down the

boundary state of D25-brane deformed by the boundary
operator (2.31) in the presence of a constant electromag-
netic field with the condition (3.20). We just apply the
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transformations (3.9), (3.10), (3.11), and (3.13) to the boundary state of the rolling tachyon with the electric field ~E1

calculated in [20]. More explicitly, suppose that the matter part of the boundary state with ~E1 is given by

jB; ~E1im ¼ Np

ffiffiffiffiffiffiffiffiffiffiffi
� ~Yp

q
½� ~BðY0ð0ÞÞj0i þ �

�
�1

����1
~A��ðY0ð0ÞÞj0i þ � � �
: (3.21)

Then the matter part of the corresponding boundary state with the electromagnetic field becomes

jB;Fim ¼ Np

ffiffiffiffiffiffiffiffiffiffiffi
�Yp

q
f� ~Bð�e1�1 ~�

�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~E2

1

q
X1ð0ÞÞj0i þ �

�
�1 ��

��1½ð��1
1 ��1

2 ��1ÞT ~Að�e1�1 ~�
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~E2

1

q
X1ð0ÞÞ

� ð��1
1 �2�Þ
��j0i þ � � �g; (3.22)

where (3.19) was used. Using the explicit form of ~A��ðxÞ
and ~BðxÞ given in [20,23] we find that

jB;Fim ¼ Np

ffiffiffiffiffiffiffiffiffiffiffi
�Yp

q
½�BðX1ð0ÞÞj0i

þ �
�
�1 ��

�
�1A��ðX1ð0ÞÞj0i þ � � �
; (3.23)

where

Bðx1Þ ¼ �fð��x1Þ;
A��ðx1Þ ¼ �2

�
�1

2
��� þG�� þ ���

� 1

G11
ðG�1 þ ��1ÞðG�1 � ��1Þ

�
fð��x1Þ

� 1

G11
ðG�1 þ ��1ÞðG�1 � ��1Þð�̂þ 1Þ: (3.24)

Here G�� and ��� are defined in (2.13). The function fðxÞ
and �̂ are given in the following form. For the sinh-type
profile [(i) in (2.31)], they are3

fðxÞ ¼ 1

1þ ex sinh��
þ 1

1� e�x sinh��
� 1;

�̂ ¼ coshð2��Þ:
(3.25)

For the exponential type profile [(ii) in (2.31)],

fðxÞ ¼ 1

1þ 2��e�x
; �̂ ¼ 1: (3.26)

For the cosh-type profile [(iii) in (2.31)],

fðxÞ ¼ 1

1þ ex sin��
þ 1

1þ e�x sin��
� 1;

�̂ ¼ cosð2��Þ:
(3.27)

As mentioned in [23], the generalization to superstrings
is straightforward. Again we start with the boundary state
with the electric field ~E1 in superstring theory,

jB; ~E1; 	im ¼ Np

ffiffiffiffiffiffiffiffiffiffiffi
� ~Yp

q
½� ~BðY0ð0ÞÞj0i

þ i	�
�
�1=2

����1=2
~A��ðY0ð0ÞÞj0i þ � � �
;

(3.28)

where ~A�� and ~B are the same as in the bosonic case except

for the form of the function fðxÞ, and � and �� are the
oscillators of the fermionic partner of Y. After the chain of
the Lorentz transformation and T-duality, we obtain

jB;F; 	im ¼ Np

ffiffiffiffiffiffiffiffiffiffiffi
�Yp

q
½�BðX1ð0ÞÞj0i

þ i	 
�
�1=2

� ��1=2A��ðX1ð0ÞÞj0i þ � � �
;
(3.29)

where A�� and B are already given in (3.24).

For the sinh-type profile [(i) in (2.31)], the function fðxÞ
and �̂ have the form4

fðxÞ ¼ 1

1þ sinh2ð��Þe2x þ
1

1þ sinh2ð��Þe�2x
� 1;

�̂ ¼ coshð2��Þ;
(3.30)

for the exponential type profile [(ii) in (2.31)], they are

fðxÞ ¼ 1

1þ 4�2�2e�2x
; �̂ ¼ 1; (3.31)

and, for the cosh-type profile [(iii) in (2.31)],

fðxÞ ¼ 1

1þ sin2ð��Þe2x þ
1

1þ sin2ð��Þe�2x
� 1;

�̂ ¼ cosð2��Þ:
(3.32)

The above form of the boundary state is enough [5] to
obtain the energy-momentum tensor and the current den-
sity of fundamental strings in Sec. IV. The closed form of
the boundary state can also be obtained from the boundary
state with ~E1 in [20] by applying the transformations as
mentioned above. Instead of doing this, in the next sub-
section, we shall obtain the closed form of the boundary
state by directly dealing with the deformation (2.31).

B. Boundary conformal field theory

In this subsection we shall construct the corresponding
boundary state following the method used in [20]. This cal-
culation will also serve as a consistency check of the
previous approach using T-duality. Then we generalize

3This result can be trusted only for j sinhð��Þj< 1 [1]. 4As in the bosonic case, this is valid only for j sinhð��Þj< 1.
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the result to superstring case. Although we concentrate on
the operator in (iii) of (2.31), it is straightforward to gen-
eralize the result to other tachyon vertices in (i) and (ii) of
(2.31).

In the Wick-rotated theory obtained by the replacement
X0 ! �iX0, we introduce the vielbeins of the open and
closed string metrics and the corresponding local coordi-
nates as follows5

�G�� ¼ Va�V
a
� ¼ ðVTVÞ��; ��� ¼ va�v

a
� ¼ ðvTvÞ��;

Za ¼ Va�X
�; Wa ¼ va�X

�; (3.33)

where a, � ¼ 0; 1; . . . ; 25. Explicitly,6

�G ¼ 1� �F2

¼
1þ �E2

1 þ �E2
2 B �E2 �B �E1

B �E2 1þ B2 þ �E2
1

�E1
�E2

�B �E1
�E1

�E2 1þ B2 þ �E2
2

0
B@

1
CA

(3.34)

and we choose

V ¼
0 �

ffiffiffiffiffiffiffiffiffi
�Y2

1þ �E2
2

r
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Y2ð1þ �E2
2
Þ

1þB2þ �E2
2

r
B �E2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Y2

ð1þ �E2
2
Þð1þB2þ �E2

2
Þ

r
0

� B �E1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þB2þ �E2

2

p �E1
�E2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þB2þ �E2
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þB2þ �E2

2

q

0
BBBBBBB@

1
CCCCCCCA
;

v¼ Vð1� �FÞ�1;

(3.35)

where �Y2 ¼ detð1þ �FÞ ¼ 1þ �E2 þ B2 and v chosen in
this way is indeed an orthogonal matrix. The vielbein V is
chosen in such a way that boundary operator J1

Z0ðtÞ ¼
cosðZ0ðtÞÞ becomes (2.31) with X ¼ X1 after inverse
Wick rotation, i.e.,

�
Z
dtJ1

Z0ðtÞ ¼ �
Z
dt cosðZ0ðtÞÞ¼ �

R
dt cosð ��X1Þ;

�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Y2

1þ �E2
2

vuut ; (3.36)

which describes an exactly marginal deformation. Also the
components in the second row of V are chosen to repro-
duce the relation (3.9). In this way the vielbein V has a
clear interpretation in the T-duality approach. The relation
between the two local frames is given by

Z ¼ ð1� F̂ÞW; F̂ ¼ v �FvT: (3.37)

Nowwe compactify theW0 coordinate on a circle of unit
radius,

W0 �W0 þ 2�: (3.38)

Since the closed string metric is identity in the Wa co-
ordinate system, (3.38) implies that the closed string the-
ory now has enhanced SUð2ÞL � SUð2ÞR gauge symmetry
which can be used to organize the boundary state as in
[32,36]. The left-moving currents are given by

J1
W0
L

¼ cosð2W0
LÞ; J2

W0
L

¼ sinð2W0
LÞ;

J3
W0
L

¼ i@W0
L;

(3.39)

which are all well-defined operators sinceW0 is compacti-
fied on a circle of self-dual radius. From (3.37) and (3.38)
implies that

ðZ0; Z1; Z2Þ � ðZ0 þ 2�; Z1 � 2�F̂10; Z
2 � 2�F̂20Þ;

(3.40)

under which the operator cosðZ0Þ is manifestly invariant.
Therefore, with this compactification, we can obtain the
deformed boundary state jB; �F;�i starting from the un-
perturbed (� ¼ 0) boundary state jB; �Fi which is con-
structed below.
We shall now construct the boundary state jB; �Fi for an

Euclidean D25-brane (p ¼ 25) with an electromagnetic

field F̂�� turned on, and W0 compactified on a circle of

unit radius. From the boundary condition (2.2) the closed
string overlap condition reads

ð@�X þ i �F@
XÞj�¼0 ¼ 0: (3.41)

In terms of the oscillators 
n’s and �
n’s of the coordinates
W, this becomes

ð
n þ M̂ �
�nÞjB; �Fi ¼ 0; n 2 Z; (3.42)

where

M̂ ¼ 1� F̂

1þ F̂
¼ v

1� �F

1þ �F
vT � v �MvT: (3.43)

Then we get

jB; �Fi ¼ Np

ffiffiffiffiffiffiffi
�Yp

q
exp

�
� X1

n¼1

1

n

T�nM̂ �
�n

�
jB; �Fi0

� jghosti; (3.44)

where jB; �Fi0 is the zero mode part of the boundary state.
To construct the zero mode part, we first compactify the

coordinates W1 and W2 on circles with radii Rð1Þ and Rð2Þ,
respectively. We shall take the decompactification limit

later to get the desired result. Let nðaÞ, mðaÞ 2 Z (a ¼ 0,
1, 2) be the momentum and winding numbers, respectively.
Then the overlap condition (3.42) for the zero modes reads

�
nðaÞ

RðaÞ þmðaÞRðaÞ
�
þ M̂a

b

�
nðaÞ

RðaÞ �mðaÞRðaÞ
�
¼ 0; (3.45)

with Rð0Þ ¼ 1. With (3.43), this reduces to

5We put bars (�) to denote quantities in Wick-rotated theory.
6For simplicity, we will not explicitly display the components

in the trivial directions a, � ¼ 3; 4; . . . ; 25.
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nðaÞ ¼ �RðaÞF̂abRðbÞmðbÞ ðno sum over aÞ: (3.46)

Thus nðaÞ’s are not independent and the sum can be taken

over mðaÞ’s only. We get

jB; �Fi0 ¼
X

mðaÞ2Z

exp

�X2
a¼0

ði
a0waL þ i �
a0w
a
RÞ
�
j0i; (3.47)

where


1
0 ¼ �F̂01R

ð1Þmð1Þ � F̂02R
ð2Þmð2Þ þmð0Þ;


2
0 ¼ �F̂10m

ð0Þ � F̂12R
ð2Þmð2Þ þmð1ÞRð1Þ;


3
0 ¼ �F̂20m

ð0Þ � F̂21R
ð1Þmð1Þ þmð2ÞRð2Þ;

(3.48)

and we replace mðaÞ in the last term of each line by �mðaÞ
to get �
a0 in this expression. The decompactification limit

Rð1Þ, Rð2Þ ! 1 is obtained by keeping only the mð1Þ ¼
mð2Þ ¼ 0 terms in (3.47). This gives

jB; �Fi0 ¼
X

m2Z=2

exp½�2imðw0
L � w0

RÞ

þ 2imðF̂10w
1 þ F̂20w

2Þ
j0i: (3.49)

Inserting the zero mode part into (3.44), we obtain

jB; �Fi ¼ Np

ffiffiffiffiffiffiffi
�Yp

q
exp

�
� X1

n¼1

1

n

a�n ��a�n

�

� X
m2Z=2

exp

�
�2imðw0

L � w0
RÞ þ 2imðF̂10w

1

þ F̂20w
2Þ
�
j0i �25

i¼3 jNiXi � jghosti; (3.50)

where the oscillators ��n are defined by

�� n ¼ M̂ �
n ¼ v�1 ��n; n � 0; (3.51)

with ��n being the oscillators of X. Using the Virasoro-
Ishibashi state jj;m;mii of (2.5), this can be written as

jB; �Fi ¼ Np

ffiffiffiffiffiffiffi
�Yp

q X
j;m

jj;�m;miið0Þ�� � exp

�
� X1

n¼1

1

n

� ð
1�n ��1�n þ 
2�n ��2�nÞ þ 2imðF̂10w
1

þ F̂20w
2Þ
�
j0i �25

i¼3 jNiXi � jghosti; (3.52)

where jj;�m;miið0Þ�� is the state obtained by replacing the
�
 oscillators by the corresponding �� oscillators on the
right-part of the state appearing in the expansion of

jj;�m;miið0Þ.
Now turn on the deformation (3.36). Using the boundary

condition, we see that Z0ðtÞ ¼ 2W0
LðtÞ on the boundary and

hence, on the boundary,

cosðZ0ðtÞÞ ¼ cosð2W0
LðtÞÞ ¼ J1

W0
L

ðtÞ: (3.53)

Then with the SUð2ÞL charge Q1
W0
L

defined by

Qi
W0
L

¼
I du

2�i
Ji
W0
L

ðuÞ; (3.54)

the boundary state jB; �F; �i in the presence of the bound-
ary deformation (3.36) is obtained as [32]

jB; �F; �i ¼ expð�2�i~�Q1
W0
L

ÞjB; �Fi

¼ Np

ffiffiffiffiffiffiffi
�Yp

q X
j;m;m0

Dj
m0;�mjj;m0; miið0Þ��

� exp

�
� X1

n¼1

1

n
ð
1�n ��1�n þ 
2�n ��2�nÞ

þ 2imðF̂10w
1 þ F̂20w

2Þ
�
j0i �25

i¼3 jNiXi
� jghosti; (3.55)

where Dj
m0;m is the spin j representation of

expð�2�i�Q1
W0
L

Þ.
As the final step, we can take the decompactification

limit by removing all the winding sector states. In this limit
only the state with m0 ¼ m survives [36] and we get the
desired boundary state

jB; �F; �i ¼ Np

ffiffiffiffiffiffiffi
�Yp

q X
j;m

Dj
m;�mjj;m;miið0Þ�� � exp

�
� X1

n¼1

1

n

� ð
1�n ��1�n þ 
2�n ��2�nÞ þ 2imðF̂10w
1

þ F̂20w
2Þ
�
j0i �25

i¼3 jNiXi � jghosti: (3.56)

From (3.37) and (3.51) it is readily seen that, after the
inverse Wick rotation, this precisely reproduces the state
(3.23) we have obtained in subsection III A. This also
verifies the consistency of the whole calculations per-
formed in this subsection.
Based on the obtained result for bosonic string, we

discuss the case of superstrings as in [5,20]. With the
choice of the vielbein V (3.35), the boundary operator

�i ffiffiffi
2

p
��0

Z sinðZ0=
ffiffiffi
2

p Þ � 
1 becomes the boundary opera-
tor (iii) in (2.32) after the inverse Wick rotation, i.e.,

� i
ffiffiffi
2

p
�
Z
dt�0

Z sin

�
Z0ðtÞffiffiffi

2
p

�
� 
1

¼ �2i�
Z
dt ���1 sinð ��X1Þ � 
1; (3.57)

where �Z ¼ V� and �� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Y2=2ð1þ �E2

2Þ
q

.

Similar to the bosonic case, we compactify W0 on a

circle of radius
ffiffiffi
2

p
,

W0 �W0 þ 2
ffiffiffi
2

p
�: (3.58)

Then we have an enhanced SUð2ÞL � SUð2ÞR symmetry.
The left-moving SUð2Þ currents are given by
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J1
W0
L

¼ �i ffiffiffi
2

p
 0
W sinð ffiffiffi

2
p
W0
LÞ � 
1;

J2
W0
L

¼ i
ffiffiffi
2

p
 0
W cosð ffiffiffi

2
p
W0
LÞ � 
1; J3

W0
L

¼ i
ffiffiffi
2

p
@W0

L;

(3.59)

where  W ¼ v . Then the SUð2Þ charges are defined as

Qi
W0
L

¼
I dz

2�i
Ji
W0
L

ðzÞ: (3.60)

It is known that a GSO-invariant boundary state is given
by the linear combination of the two boundary states
corresponding to the different boundary condition for the
fermions,

jB; �F; �i ¼ jB; �F; �;þi � jB; �F; �;�i: (3.61)

First we construct the boundary state for a D9-brane (p ¼
9) in the absence of the boundary interaction (3.57). We
obtain the overlap condition for  W and � W in the closed
string channel from (2.21),

½ð1þ F̂Þ W þ i	ð1� F̂Þ � W
j�¼0 ¼ 0; (3.62)

and in terms of the oscillators, this becomes

ð�r þ i	M̂ ���rÞjB; �F; 	i ¼ 0; r 2 Zþ 1=2; (3.63)

where �r and ��r denote the oscillators of  W and � W
respectively. Solving (3.63) and combining the result in
the bosonic case, we have

jB; �F;	i ¼Np

ffiffiffiffiffiffiffi
�Yp

q
exp

�
�X1

n¼1

1

n

T�nM̂ �
�n� i	

� X1
r¼1=2

�T�rM̂ ���r
�
jB; �Fi0 � jghost; 	i; (3.64)

where jB; �Fi0 is the zero mode of the boundary state. Since
the difference between the bosonic and the superstring case
is only the compactified radius of W0, we obtain the zero

mode of the unperturbed boundary state by replacing the

winding number in the bosonic case as mð0Þ ! ffiffiffi
2

p
mð0Þ,

jB; �Fi0 ¼
X
m2Z

exp½�i ffiffiffi
2

p
mðw0

L � w0
RÞ

þ i
ffiffiffi
2

p
mðF̂10w

1 þ F̂20w
2Þ
j0i: (3.65)

Thus we obtain the boundary state with � ¼ 0,

jB; �F; 	i ¼ Np

ffiffiffiffiffiffiffi
�Yp

q X
j;m

jj;�m;m; 	iið0Þ
��; ��

� exp

�
� X1

n¼1

1

n

� ð
1�n ��1�n þ 
2�n ��2�nÞ � i	
X1
r¼1=2

ð�1�r ��1�r

þ �2�r ��2�rÞ þ
ffiffiffi
2

p
imðF̂10w

1 þ F̂20w
2Þ
�
j0i

�9
i¼3 jN; 	iXi; i � jghosti; (3.66)

where �� ¼ M̂ �� and jj;�m;m; 	iið0Þ
��; ��

is the state obtained

by replacing the �
 and �� oscillators by the corresponding ��
and �� oscillators on the right-part of the state appearing in

the expansion of jj;�m;m; 	iið0Þ.
Let us turn on the boundary interaction (3.57). On the

boundary, we see Z0 ¼ 2W0
L and�0

Z ¼  0
W , and hence the

boundary term is expressed in terms of the left-moving SU
(2) current,

� i
ffiffiffi
2

p
�0
Z sin

�
Z0ðtÞffiffiffi

2
p

�
� 
1

¼ �i ffiffiffi
2

p
 0
W sinð ffiffiffi

2
p
W0
LðtÞÞ � 
1

¼ J1
W0
L

ðtÞ: (3.67)

Then the boundary state with the boundary deformation
becomes

jB; �F; �; 	i ¼ expð�2�i�Q1
W0
L

ÞjB; �F; 	i

¼ Np

ffiffiffiffiffiffiffi
�Yp

q X
j¼0;1;...

Xj
m0¼�j

Xj
m¼�j

Dj
m0;�mjj;m0; m; 	iið0Þ

��; ��
� exp

�
� X1

n¼1

1

n
ð
1�n ��1�n þ 
2�n ��2�nÞ

� i	
X1
r¼1=2

ð�1�r ��1�r þ �2�r ��2�rÞ þ i
ffiffiffi
2

p
mðF̂10w

1 þ F̂20w
2Þ
�
j0i �9

i¼3 jN; 	iXi; i � jghost; 	i: (3.68)

Taking the decompactification limit, only the states with m ¼ m0 survive and we obtain

jB; �F; �; 	i ¼ Np

ffiffiffiffiffiffiffi
�Yp

q X
j¼0;1;...

Xj
m¼�j

Dj
m;�mjj;m;m; 	iið0Þ��; �� � exp

�
� X1

n¼1

1

n
ð
1�n ��1�n þ 
2�n ��2�nÞ

� i	
X1
r¼1=2

ð�1�r ��1�r þ �2�r ��2�rÞ þ i
ffiffiffi
2

p
mðF̂10w

1 þ F̂20w
2Þ
�
j0i �9

i¼3 jN; 	iXi; i � jghost; 	i: (3.69)
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IV. PHYSICAL QUANTITIES AND
INTERPRETATION

In Sec. II, we obtained new tachyon vertices (2.31)
which are exactly marginal deformations in the BCFT’s
for bosonic string and superstrings. The corresponding
boundary states were constructed through the direct BCFT
calculation and the construction via T-duality in Sec. III,
which result in the same boundary states. We shall address
physics issues in this section. In subsection IVAwe calcu-
late the energy-momentum tensor and the fundamental
string current density. In subsection IVB a plausible inter-
pretation about the obtained codimension-one configura-
tions is discussed.

A. Energy-momentum tensor and string
current density

Given the boundary states (3.23) and (3.29), or equiva-
lently, (3.56) and (3.69), it is straightforward to calculate
the corresponding energy-momentum tensors and the cur-
rent densities of fundamental strings [5,20]. From (3.23),
(3.24), and (3.29), we obtain the energy-momentum tensor,

T�� ¼ T p

ffiffiffiffiffiffiffiffiffiffiffi
�Yp

q ��
�G�� þ 1

G11
ðG�1G�1 � ��1��1Þ

�

� fð��x1Þ � 1þ �̂

2G11
ðG�1G�1 � ��1��1Þ

�
; (4.1)

which satisfies the conservation law, @�T
�� ¼ 0, and the

current density of fundamental strings,

��� ¼ T p

ffiffiffiffiffiffiffiffiffiffiffi
�Yp

q ��
��� þ 1

G11
ðG�1��1 �G�1��1Þ

�

� fð��x1Þ � 1þ �̂

2G11
ðG�1��1 �G�1��1Þ

�
: (4.2)

A remark is in order. The function fðxÞ in (3.25), (3.26),
and (3.27) can have singularities in the bosonic case.
Explicitly, it diverges at

x¼
� sgnð�Þ lnj sinh��j; ðfor sinhcaseÞ;
� lnj2��j; if�< 0; ðfor exponential caseÞ;
� lnj sin��j; if� 1

2<�< 0; ðfor coshcaseÞ:
(4.3)

Then it is easy to see that at these singularities the tachyon
has a negative value. [In sinh case, (3.25) is valid only
when j sinh��j< 1 as noted before.] This is consistent
with the fact that the effective tachyon potential is un-
bounded from below in the region TðxÞ< 0 in the bosonic
theory. On the other hand, the positive region TðxÞ> 0
corresponds to the instability to the decay of an unstable
D-brane. For the superstring case there is no singularity in
fðxÞ and hence T�� and ��� are regular everywhere.

Note that T�� and��� in (4.1) and (4.2) have essentially
the same x-dependence, since their local parts are governed
by the function fðxÞ. For later use, we give explicit ex-

pressions for the case of an unstable D2-brane: most of the
components of T�� and ��� are constants,

�01

E1

¼ ��12

B
¼ � T01

E2B
¼ T11

E2
2 � 1

¼ T02

E1B
¼ � T12

E1E2

¼ T 2ð1þ �̂Þ
2

ffiffiffiffiffiffiffiffiffiffiffi�Y2

p > 0; (4.4)

while the remaining three components are given by the
sums of an x-dependent piece (x ¼ x1) and a constant,

T00 ¼ �T 2

ffiffiffiffiffiffiffiffiffiffiffi�Y2

p
E2
2 � 1

fþ E2
2B

2 � E2
1

E2
2 � 1

�01

E1

; (4.5)

T22 ¼ T 2

ffiffiffiffiffiffiffiffiffiffiffi�Y2

p
E2
2 � 1

f� B2 � E2
1E

2
2

E2
2 � 1

�01

E1

; (4.6)

�02

E2

¼ �T 2

ffiffiffiffiffiffiffiffiffiffiffi�Y2

p
E2
2 � 1

fþ B2 � E2
1

E2
2 � 1

�01

E1

: (4.7)

Here it is important to note that the constant piece of
the energy density T00 in (4.5) is positive, while its
x-dependent piece is negative everywhere since both
C11 ¼ �1þ E2

2 and fðxÞ in (3.26) and (3.27) are always
positive for the physical region of positive �. This is also
the same for the fundamental string charge density �02 in
(4.7) which is parallel to the codimension-one object. We
will discuss more on this in the subsequent subsection.

B. Physical interpretation of codimension-one objects

In this subsection, we discuss physical properties of the
codimension-one objects found in the previous section by
investigating the energy-momentum tensor and the funda-
mental string current density. Then we also compare them
to the corresponding kink profiles found in DBI EFT,
NCFT, and BSFT.
Let us first remark that, in the T-duality approach of

subsection III A, we started from rolling tachyons (3.1).
Nevertheless after a series of transformations the resulting
profiles in (2.31) are static ones. This formal relationship
with the homogeneous rolling tachyons has also been men-
tioned in DBI EFT, NCFT, and BSFT [9,13,25,27,28].
However, these objects are different from the rolling tachy-
ons in that they only exist provided that the dimension p of
the unstableDp-branes is larger than 1 (p � 2) and that the
background electromagnetic field is strong enough for the
condition (3.20) to be satisfied.
Now we study the detailed properties of the states in the

presence of the tachyon given in (i)–(iii) of (2.31). Since
there are singularities in bosonic theory as discussed
above, we mainly discuss the superstring case. Then fðxÞ
in (3.30) and (3.32) is an even function of � and we assume
� is positive. Also for the sake of simplicity we consider
the D2-brane case only.
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(i) Hyperbolic sine: The tachyon profile in (i) of (2.31)
is hyperbolic sine type connecting two true dis-
connected vacua at T ¼ �1. One may call the
monotonically increasing configuration connecting
Tðx ¼ �1Þ ¼ �1 and Tðx ¼ þ1Þ ¼ þ1 as a
kink and the monotonically decreasing configura-
tion connecting Tðx ¼ �1Þ ¼ 1 and Tðx ¼
þ1Þ ¼ �1 as an antikink.
As noted before, each quantity in (4.5), (4.6), and
(4.7) consists of an x-dependent part and a constant
part. The latter comes from the fluid state of fun-
damental strings on the brane in the presence of
constant electromagnetic field when the tachyon is
condensed [18,19,37]. Because of the condition
(3.20) on the electromagnetic field, the constant
pieces of T00 and �02=E2 are all positive.
To understand the character of the new objects, we
examine the localized part of the physical quanti-
ties (4.5), (4.6), and (4.7). We consider only the
case sinh2��< 1, since the form of fðxÞ can be
trusted only for this case [1]. Then fðxÞ is positive
definite. It has a maximum at x ¼ 0 and vanishes
exponentially as jxj ! 1. Since E2

2 > 1, the multi-
plicative factor in front of the localized piece of the
energy density in (4.5) is negative and it makes a
hollow in the energy density. The depth of the
hollow becomes deeper as E2

2 approaches unity as
shown in the left figure of Fig. 2. (T00 can still be
shown to be positive definite.)
As � becomes smaller, the hollow becomes almost
flat up to the region x� j ln�j (the right figure of
Fig. 2). In the vanishing � limit, the energy density
at x ¼ 0 approaches the value

T00ð0Þ ! T 2ffiffiffiffiffiffiffiffiffiffiffi�Y2

p 1þ B2

E2
2 � 1

; (4.8)

which is just the energy density of the unstable
D2-brane in the presence of the electromagnetic
field without the deformation, i.e., for the case

TðxÞ ¼ 0. It is quite surprising that the energy
density at T ¼ 0, which is supposed to be the
unstable point, is actually smaller than the value
at T ¼ �1. This does not mean, however, that
T ¼ �1 has higher vacuum energy (which is
zero) since there is an additional contribution to
the energy by the nonvanishing slope of the
tachyon field. Furthermore, the reason that a hol-
low is formed is because of the factor E2

2 � 1 in
(4.5) which flips the sign of the x-dependent term
to negative when E2

2 > 1. This implies that the
object has a negative tension and the accumulated
(condensed) constant fundamental strings in the
fluid state are repelled (decondensed) along the
1-dimensional brane. The integration of the local-
ized piece of energy density (4.5) and the funda-
mental string charge density (4.7) gives its tension
~T 1 and fundamental string charge per unit length
QF1 along the x2-direction

~T 1 ¼ QF1

E2

¼ �
ffiffiffiffiffiffiffiffiffiffiffi�Y2

p
E2
2 � 1

T 2

Z 1

�1
dxfð��xÞ

¼
ffiffiffi
2

p
T 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
2 � 1

q lnðsinh2��Þ; (4.9)

which is negative as it should be.
According to the profiles of negative energy
density, the configuration near the origin x ¼ 0
resembles a hole in condensed matter physics,
created in the background of strong constant elec-
tromagnetic field.

(ii) Exponential: For the exponential type of deforma-
tion (2.31), the unstable vacuum at T ¼ 0 is con-
nected to the true vacuum at T ¼ 1. In this sense,
one may call the configuration as a half tachyon
kink and an anti-half tachyon kink, respectively, for
the positive and negative sign in the exponential. It
is convenient to rewrite the corresponding function
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FIG. 2. The energy density of nonBPS D-brane T00=T 2 with negative tension for various E2
2 (equivalently �01=T 2) and �. We

choose E1 ¼ 0:1 and B ¼ 0:9. The left figure has a fixed � ¼ 0:05 and three E2’s: E2 ¼ 1:05 (�01=T 2 ¼ 0:123) for the dot-dashed
line, E2 ¼ 1:1 (�01=T 2 ¼ 0:133) for the solid line, and E2 ¼ 1:2 (�01=T 2 ¼ 0:171) for the dashed line from the above. The right
figure has a fixed E2 ¼ 1:02 and three �’s: � ¼ 0:15 for the dot-dashed line, � ¼ 0:05 for the solid line, and � ¼ 0:00001 for the
dashed line from the above.
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fðxÞ in (3.31) as

fð��xÞ ¼ 1

1þ e�2�ðx�x0Þ ; �x0 ¼ � lnð2��Þ;
(4.10)

where x0 may be considered as the position of the
(anti-)half tachyon kink.
From the shape of fðxÞ, we see that the energy
density for the half tachyon kink is monotonically
increasing as shown in Fig. 3. In this sense the half
tachyon kink is a phase boundary stretched along
the x2-direction. In addition, the fundamental string
charge density �02 (4.7) is also monotonic.
A naive computation of tension of the half tachyon
kink by integrating the energy density (4.5) from
x ¼ �1 to x ¼ þ1 leads to a divergence due to
the contribution from the background energy pro-
portional to

R1
x0
dx. Therefore, it is reasonable to

subtract it and we obtain the tension of the half
tachyon kink as

~T 1 ¼
Z 1

�1
dx

�
T00 � E2

2B
2 � E2

1

E2
2 � 1

�
�01

E1

��

�
Z 1

x0

dx

�
�T 2

ffiffiffiffiffiffiffiffiffiffiffi�Y2

p
E2
2 � 1

�

¼ �T 2

ffiffiffiffiffiffiffiffiffiffiffi�Y2

p
E2
2 � 1

�Z 1

x0

dx

�
1

1þ e2�ðx�x0Þ
� 1

�

þ
Z x0

�1
dx

1

1þ e2�ðx�x0Þ

�
¼ 0: (4.11)

Therefore the half tachyon kink is an object of

vanishing energy and then is identified as a tension-
less half brane ( 12 brane) with thickness 1=2�. The

profile of �02ðxÞ (4.7) is almost the same as the
energy density (4.5). Suppose the low energy (T ¼
0) configuration from x ¼ �1 and the high energy
(T ¼ 1) configuration from x ¼ þ1 are glued at
x0 with a sharp boundary. Then the formation of a
smooth half tachyon kink suggests that the half
phase boundary in the lower energy side gains
both energy density and condensation of the fun-
damental string charge density, and the other half
phase boundary in the high energy side loses ex-
actly the same amount of the energy density and
condensed fundamental string charge density. Note

that this composite of tensionless 1
2 brane and fun-

damental strings has already been obtained as a
half tachyon kink in DBI EFT, NCFT, and BSFT
[9,13,28].

(iii) Hyperbolic cosine: The hyperbolic cosine type
tachyon profile in (iii) of (2.31) starts from T ¼
þ1, turns at a positive point �, and then goes back
to T ¼ þ1, which may be called a tachyon bounce
(or a tachyon breather) in the classification of soli-
tons. It could be interpreted as a composite of half
tachyon kink and anti-half tachyon kink. Since the
function fðxÞ (3.32) is periodic in �, we may as-
sume 0 � � � 1=2. The shape of the energy den-
sity is similar to that of the hyperbolic sine case as
shown in Fig. 4 and we omit the details.
On integrating the localized part of the energy
density, we obtain

~T 1 ¼ QF1

E2

¼
ffiffiffi
2

p
T 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
2 � 1

q lnðsin2��Þ< 0: (4.12)

This object may be interpreted as a negative-
tension brane of codimension-one, generated
through decondensing the background fundamental
strings with a positive constant energy density. The
hyperbolic cosine type tachyon profile also sug-
gests an interpretation as a composite of half brane
and anti-half brane. As D �D is unstable, this com-
posite of 1

2 brane and anti- 12 brane may also be

unstable. This possible instability is classically ex-
pressed in terms of increase of the minimum value
of the tachyon field in the tachyon bounce configu-
ration. The parallel component of localized funda-
mental string charge (4.7) is also negative, and it
means that the fundamental strings are repelled at
the site of composite as shown in the right graph of
Fig. 3. Therefore, the obtained object is nothing but
a composite of 1

2 brane and anti- 12 brane accompa-

nying decondensation of the background funda-
mental strings.

FIG. 3. The energy density of tensionless half D-brane
T00=T 2 for various E2

2 (equivalently �01=T 2). We choose

E1 ¼ 0:1 and B ¼ 0:9, and due to translation, we can choose
� ¼ 1=

ffiffiffiffiffiffiffi
2�

p
. The figure has three E2’s: E2 ¼ 1:02ð�01=T 2 ¼

0:115Þ for the dot-dashed line, E2 ¼ 1:04ð�01=T 2 ¼ 0:118Þ for
the solid line, and E2 ¼ 1:2ð�01=T 2 ¼ 0:167Þ for the dashed
line from the above.
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Let us briefly discuss the bosonic string case. The cases
of exponential tachyon profile for positive � (3.26) and
hyperbolic cosine profile (3.27) for 0< � � 1=2 show
qualitatively the same regular behavior as those of super-
strings, however the case of hyperbolic sine always in-
volves singularity. As mentioned previously, this can
easily be understood by unbounded nature of the tachyon
potential in bosonic string theory for the region of negative
tachyon in (2.31).

Though we considered only the case of D1 from
an unstable D2, but the extension to the higher dimensional
case of Dðp� 1Þ from Dp is straightforward. The afore-
mentioned negative-tension branes and tensionless half
brane are obtained only with a component of overcritical
electric field. As we have discussed, such configurations
with overcritical electric field seem to be unavoidable in
the context of BCFT and may need further study in the
context of string theory beyond BCFT. Recently the
topic of marginal deformations is systematically dealt in
the OSFT [38,39], so will be the case of the obtained
new tachyon vertices with the development of constant
electromagnetic field. When the quantum radiations are
taken into account including perturbative closed string
modes such as gravitons, dilatons, and antisymmetric ten-
sor fields, dynamical evolution of the negative-tension
branes and tensionless half brane may become a more
intriguing topic.

Finally, let us comment on the results in other ap-
proaches such as DBI EFTand NCFTwith 1= cosh tachyon
potential [9,25,28]. If we compare the physical quan-
tities T��ðxÞ and ���ðxÞ in the BCFT for superstrings
with those in DBI EFT and NCFT with 1= cosh tachyon
potential, the BCFT results coincide exactly with the
EFT results for the case of exponential type tachyon profile
[(ii) of (2.31)] [9,25,28]. For hyperbolic sine [(i) of (2.31)]
and hyperbolic cosine [(iii) of (2.31)] cases, the
x-dependent part of physical quantities match qualitatively
but do not exactly coincide with those of DBI EFT and
NCFT.

V. CONCLUSIONS

In this paper, we considered a flat unstable Dp-brane
(p � 2) in the presence of a large constant electromagnetic
field in the framework of BCFT. Specifically, we studied
the case that the electromagnetic field satisfies the follow-
ing three conditions: first, a constant electric field is turned
on along the x1 direction (E1 � 0); second, the deter-
minant of the matrix ð�þ FÞ is negative so that it lies
in the physical region (� detð�þ FÞ> 0); third, the
11-component of its cofactor is positive to the large elec-
tromagnetic field (C11 > 0). For the simplest case, p ¼ 2,
these conditions reduce to E1 � 0, 1� E2

1 � E2
2 þ B2 > 0,

and jE2j> 1, respectively. In the background of such
electromagnetic fields, we identified exactly marginal de-
formations depending on the spatial coordinate x1, which
correspond to tachyon profiles of hyperbolic sine, expo-
nential, and hyperbolic cosine types. The corresponding
boundary states were constructed by utilizing T-duality
approach and also by directly solving the overlap condi-
tions in BCFT.
For these boundary states, we calculated the energy-

momentum tensor and the fundamental string current den-
sity. Boundary states for the tachyon profiles of hyperbolic
sine, exponential, and hyperbolic cosine correspond to
non-BPS topological kink, half kink, and bounce in the
effective field theories (DBI, NCFT, BSFT), respectively.
In superstring theories, the first and third configurations
have negative tensions and the second configuration gives
tensionless half brane connecting the perturbative string
vacuum and one of the true tachyon vacua.
The result obtained here in the BCFT description

completes identifying all possible codimension-one static
solutions on an unstable Dp-brane in the presence of a
constant electromagnetic field. Without an electromagnetic
field, there exists a unique static solution of which the
tachyon profile is sinusoidal with the period 2� [1,3].
When a constant electromagnetic field is turned on, the
spectrum of static solutions becomes rich; there are five

FIG. 4. The energy density of tachyon bounce T00=T 2 with negative tension for various E2
2 (equivalently �01=T 2) and �. We

choose E1 ¼ 0:1 and B ¼ 0:9. The left figure has a fixed � ¼ 0:05 and three E2’s: E2 ¼ 1:05ð��01=T 2 ¼ 0:117Þ for the dot-
dashed line, E2 ¼ 1:1ð��01=T 2 ¼ 0:127Þ for the solid line, and E2 ¼ 1:2ð��01=T 2 ¼ 0:163Þ for the dashed line from the above.
The right figure has a fixed E2 ¼ 1:05 and three �’s: � ¼ 0:25 for the dot-dashed line, � ¼ 0:05 for the solid line, and � ¼ 0:00001
for the dashed line from the above.
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types of solutions for p � 2, as summarized in the Table I.
This result coincides with that from DBI type EFT [9,25],
NCFT [28], and BSFT [13]. The detailed forms of the
energy-momentum tensor and the fundamental string cur-
rent density in the BCFT are qualitatively in agreement
with those of the EFTs for cosine (sine), hyperbolic sine,
and hyperbolic cosine types of tachyon profiles. For the
linear and the exponential types, the physical quantities in
the BCFT are exactly the same as those in the EFTs.
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APPENDIX: EXPONENTIAL TYPE TACHYON
VERTEX OPERATOR IN BCFT

FOR SUPERSTRINGS

In 
-model approach to string theory, partition function
of the world sheet action gives the spacetime action and the
couplings are interpreted as spacetime fields [40]. In rela-
tion to the static tachyon configuration, exact tachyon
potential and tension of the lower-dimensional D-brane
were obtained from the disk partition function in BSFT
[11]. The similar procedure was adapted to the world sheet
action (2.1) with exactly marginal tachyon vertex opera-
tors. By identifying the world sheet partition function with
the spacetime action in bosonic string and superstring
theory, the spacetime energy-momentum tensor without
electromagnetic fields was obtained [29].

In this appendix we revisit BCFT for superstrings with
the exponential type tachyon profile in (2.31) by employing
the 
-model approach. The calculation in bosonic string
theory was given in [41]. According to the procedure
suggested by Ref. [29], we read the energy-momentum
tensor and fundamental string current density of the un-
stable system with exponential type tachyon vertex opera-
tor by equating the spacetime action with the disk partition
function of world sheet theory.
The BCFT for superstrings is distinguished from that for

bosonic string theory by introduction of world sheet fer-
mions and the form of world sheet action is given in (2.19).
Here we use the coordinate z on the unit disk,

z ¼ 1þ iw

1� iw
: (A1)

From the action (2.19), we again read the world sheet
energy-momentum tensor

TðzÞ ¼ �@X�@X�ðzÞ � 1
2 

�@ �ðzÞ: (A2)

Under the deformed boundary conditions, (2.2) and
(2.21), the correlation functions on the unit disk are
given by

hX�ðz1ÞX�ðz2ÞiA ¼���� lnj z1 � z2 j þ��� lnj z1 �z2 � 1 j
�G�� lnj z1 �z2 � 1 j2

� ��� ln

�
z1 �z2 � 1

�z1z2 � 1

�
; (A3)

h �ðzÞ �ðz0Þi ¼ ���

z� z0
; h � �ð�zÞ � �ð�z0Þi ¼ ���

�z� �z0
;

(A4)

h �ðzÞ � �ð�z0Þi ¼
�

1

�� F
ð�þ FÞ��1

�
�� 1

z� �z0
: (A5)

The two-point function of � at the boundary is the usual
one with the open string metric (2.13),

h��ðt1Þ��ðt2Þi ¼ G��

t1 � t2
; (A6)

where t1 and t2 represent the boundary coordinates on the
unit disk, and the operator product expansion (OPE) for  

TABLE I. List of all of the static solutions depending on a single spatial coordinate in the presence of constant electromagnetic field.
When the spatial coordinate is x1, the electric field along that direction should be turned on, E1 � 0.

range of electromagnetic field tachyon profile interpretation

C11 < 0, � detð�þ FÞ> 0 cosine (sine) array of Dðp� 1ÞðFÞ �Dðp� 1ÞðFÞ
C11 < 0, � detð�þ FÞ ! 0þ linear single BPS Dðp� 1ÞðFÞ
C11 > 0, � detð�þ FÞ> 0 hyperbolic sine negative tension brane

C11 > 0, � detð�þ FÞ> 0 exponential tensionless half brane

C11 > 0, � detð�þ FÞ> 0 hyperbolic cosine negative tension brane
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and � becomes

 �ðzÞ��ðtÞ � ðG�� � ���Þ 1

z� t
: (A7)

We turn on a real tachyon field of exponential type,
which is represented by the boundary interaction,

ST ¼
Z
@�
dtd�TðXÞ;

TðXÞ ¼ ffiffiffi
2

p
� expðik�X�Þ � 
1;

(A8)

where we introduced the superfield X� ¼ X� þ i
ffiffiffi
2

p
���

with boundary Grassmann coordinate � and 
1 is the
Chan-Paton factor in (2.22). The corresponding vertex in
the zero-picture is obtained by integrating over �,

VT ¼ �2�k ��expðik�X�Þ � 
1: (A9)

The marginality condition for the configurations with
single spatial coordinate dependence (2.29) determines
the value of k� in the tachyon vertex operator (A9), which
is the same as (2.30) for superstrings.

For later convenience, we write the two-point function
of the superfield X1 on the boundary from (A3) and (A5),

hX1ðz1; �1ÞX1ðz2; �2Þi ¼ �G11 lnjz12j2; (A10)

where z12 ¼ z1 � z2 � i
ffiffiffiffiffiffiffiffiffi
z1z2

p
�1�2.

From now on we compute the energy-momentum tensor
and the fundamental string current density according to the
procedure of Ref. [29]. The energy-momentum tensor in
BCFT can be read from partition function of world sheet
theory coupled to background gravity [29],

S ¼ Zdisk �
Z
½dX
½d 
e�Sw�ST ; (A11)

where Zdisk is the disk partition function, and we replaced
the flat metric ��� to Sw with the generic curved spacetime

metric g��. Then we have the energy-momentum tensor in

flat spacetime:

T�� � � 2ffiffiffiffiffiffiffi�gp �S

�g��

��������g��¼���

¼ K
ffiffiffiffiffiffiffiffiffiffiffi
�Yp

q
½���BðxÞ þ Að��ÞðxÞ
; (A12)

where Að��Þ denotes the symmetric part of A�� and

Bðx1Þ ¼ � 1ffiffiffiffiffiffiffiffiffiffiffi
�Yp

q Z
½dX0
½d 
P expð�S0 � SA � STÞ

¼ �hP expð�STÞiA; (A13)

A��ðx1Þ ¼ � 1ffiffiffiffiffiffiffiffiffiffiffi
�Yp

q Z
½dX0
½d 
:ð2@X0� �@X0�ð0Þ

þ  � �@ �ð0Þ þ � �@ � �ð0ÞÞ:P expð�S0
� SA � STÞ

¼ � 1ffiffiffiffiffiffiffiffiffiffiffi
�Yp

q h:ð2@X0� �@X0�ð0Þ þ  � �@ �ð0Þ

þ � �@ � �ð0ÞÞ:P expð�STÞiA: (A14)

Note that we split X� into the center of mass coordinate x�

and fluctuation X0�, i.e., X� ¼ x� þ X0�, and h� � �iA de-
notes the vacuum expectation value in the presence of the
U(1) gauge field on the unit disk with normalization

h1iA ¼
ffiffiffiffiffiffiffiffiffiffiffi
�Yp

q
: (A15)

In the calculation of A�� in (A13), we follow the Ref. [5]
and suppose that only the even part in 
1 contributes to the
result,

h� � �P expð�STÞiA ¼ h� � �P expð�STÞiAj
1-even: (A16)

First we calculate Bðx1Þ. Using the two-point function
(A10), we have

Bðx1Þ ¼ � X1
n¼0

ð2 ffiffiffi
2

p
��e�x

1Þ2n
Z Y2n

i¼1

dti
2�

d�i�ðt1

� t2Þ � � ��ðt2n�1 � t2nÞ
Y
i<j

jeiti � eitj

� ieði=2ÞðtiþtjÞ�i�j j

¼ � X1
n¼0

ð�4�2�2e2�x
1Þn ¼ �fð�x1Þ: (A17)

Then we compute the function A��. Since the second and
third terms in (A14) vanish, (A14) becomes

A��ðx1Þ ¼ �2ffiffiffiffiffiffiffiffiffiffiffi
�Yp

q h:@X� �@X�ð0Þ:P expð�STÞi: (A18)

For the calculation of A��ðxÞ in (A18), we introduce a
different normal ordering for convenience,

: @X�ðzÞ �@X�ðz0Þ: ¼ @X�ðzÞ �@X�ðz0Þ � @ �@0hX�ðzÞX�ðz0ÞiA:
(A19)

The relationship between the ordinary normal ordering and
the new ordering (A19) is given by

:@X�ð0Þ �@X�ð0Þ: ¼ :@X�ð0Þ �@X�ð0Þ:þG��

þ ��� � 1
2�

��; (A20)

and this leads to
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A��ðx1Þ ¼ �2ffiffiffiffiffiffiffiffiffiffiffi
�Yp

q
	�

:@X� �@X�ð0Þ:�
�
1

2
��� �G�� � ���

��
P expð�STÞ




¼ �2

�
1ffiffiffiffiffiffiffiffiffiffiffi
�Yp

q h:@X� �@X�ð0Þ:P expð�STÞi �
�
1

2
��� �G�� � ���

�
fð�x1Þ

�
: (A21)

The first term is calculated as follows,

1ffiffiffiffiffiffiffiffiffiffiffi
�Yp

q h:@X� �@X�ð0Þ:P expð�STÞi ¼
X1
n¼1

ð2 ffiffiffi
2

p
��e�x

1Þ2n
Z Y2n

i¼1

dti
2�

d�i�ðt1 � t2Þ � � ��ðt2n�1 � t2nÞ�2ðG�1 þ ��1Þ

� ðG�1 � ��1Þ
�X
k;l

e�tk�tl
�Y
i<j

jeiti � eitj � ieði=2ÞðtiþtjÞ�i�j j

¼ 2�2ðG�1 þ ��1ÞðG�1 � ��1Þ X1
n¼1

ð�4�2�2e2�x
1Þn ¼ � 1

G11
ðG�1 þ ��1Þ

� ðG�1 � ��1Þ½fð�x1Þ � 1
: (A22)

Finally we obtain

A�� ¼ 2

�
1

G11
ðG�1 þ ��1ÞðG�1 � ��1Þ½fð�x1Þ � 1


þ
�
1

2
��� �G�� � ���

�
fð�x1Þ

�
: (A23)

As in the bosonic case [41], we determine the normaliza-
tion constant in (A12) as K ¼ T p=2. Substituting (A17)
and (A23) into (A12), we get the energy-momentum tensor
(4.1). Similarly we obtain the fundamental string current
density (4.2) which is proportional to the antisymmetric
part of A�� (A23).

For the sine and cosine type profiles, the above path

integral method in BCFT is not well-defined due to singu-

larities in OPE between two vertices. To obtain meaningful

results for these cases, we have to adopt appropriate regu-

larization schemes which await further development. This

situation may have some similarity to the recently-obtained

exactly marginal solutions in OSFT [38]. The exponential

type marginal solution is well-defined since every OPE

between two vertex operators is regular, while the sine

and cosine type marginal solutions encounter singular

behaviors of OPE between vertex operators.
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