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INCLUSION PAIRS SATISFYING ESHELBY’S UNIFORMITY
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Abstract. Eshelby conjectured that if for a given uniform loading the field inside an inclusion
is uniform, then the inclusion must be an ellipse or an ellipsoid. This conjecture has been proved to
be true in two and three dimensions provided that the inclusion is simply connected. In this paper
we provide an alternative proof of Cherepanov’s result that an inclusion with two components can
be constructed inside which the field is uniform for any given uniform loading for two-dimensional
conductivity or for antiplane elasticity. For planar elasticity, we show that the field inside the
inclusion pair is uniform for certain loadings and not for others. We also show that the polarization
tensor associated with the inclusion pair lies on the lower Hashin–Shtrikman bound, and hence the
conjecture of Pólya and Szegö is not true among nonsimply connected inclusions. As a consequence,
we construct a simply connected inclusion, which is nothing close to an ellipse, but in which the field
is almost uniform.
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1. Introduction. Consider a conducting or elastic inclusion subject to a uniform
applied field. For certain shapes of inclusions the field inside the inclusion is also
uniform, and if this is the case, we say the inclusion has Eshelby’s uniformity property.
Eshelby showed in [9] that ellipses and ellipsoids have the uniformity property and
conjectured in [10] that these are the only inclusions with the uniformity property.
See also [15]. This conjecture of Eshelby has been proved to be true within the
class of simply connected inclusions by Sendeckyj [28] for planar elasticity and by
Ru and Schiavone [26] for antiplane elasticity or, equivalently, for two-dimensional
conductivity. Recently, a completely different proof of the Eshelby conjecture in two
dimensions based on the hodographic transformation was given by Kang and Milton
[18]. In the same paper, Eshelby’s conjecture in three dimensions was resolved as
well. They showed that if a simply connected inclusion with Lipschitz boundary has
the uniformity property, then the inclusion must take the shape of an ellipse or an
ellipsoid. Independently, Liu (private communication) also established this. As a
consequence of Eshelby’s conjecture, the conjecture of Pólya and Szegö [25], which
asserts that the domain whose polarization tensor has the minimal trace is a disk or
a ball, is also proved [17].

Finding a structure inside which the field is uniform is important in the study of
composite materials since such a property is required in order to reduce the internal
stress of the structure [31]. In fact, it was proved by Grabovsky and Kohn [12] that
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ellipses are the low volume fraction limit of the periodic Vigdergauz microstructure
[29, 30], which contains a single inclusion per unit cell. The Vigdergauz microstructure
is known to have minimal internal stress among periodic composites. There are also
periodic geometries, based on the construction of Hashin [14], that contain a countable
number of disks in the unit cell, having Eshelby’s uniformity property as follows from
section 4 of [6].

In this paper we continue our investigation on the shape of inclusions with the uni-
formity property. The primary concern of this paper is the construction of inclusions
(structures) with two components having smooth boundaries which satisfy Eshelby’s
uniformity property. This was first solved by Cherepanov [8], and here we provide an
alternative proof of Cherepanov’s results and give explicit numerical computations of
the inclusion shapes.

Another closely related question considered here is whether Eshelby’s conjecture
is true in a “practical” sense: If the field inside the inclusion is very close to being
uniform in some sense, does it follow that the inclusion is very close to an ellipse? (By
close to an ellipse we specifically mean that the symmetric difference of the inclusion
and an ellipse has small measure.) It is a question of stability.

We construct, in a mathematically rigorous way, inclusions with two components
inside which the field is uniform. Figure 2.1 in section 2 shows typical shapes of
the inclusion pair. The field inside the inclusion is uniform for any uniform loading
in the case of antiplane elasticity, as will be proved in section 3. In the case of
linear elasticity, the field is uniform for certain loadings and not for other loadings.
Using these inclusions, we also answer the question of stability. If we connect two
components of the inclusion by a thin bridge, as in Figure 5.1, the field does not
change much while the bridged inclusion is simply connected, but far from the shape
of an ellipse. In order to construct the structures in this paper, we use the Weierstrass
zeta function and the Schwarz–Christoffel formula to solve the free boundary problem.
The method of construction in this paper is similar to that of Vigdergauz [29, 30] and
Grabovsky and Kohn [12], where the Weierstrass P-function is used to construct the
Vigdergauz microstructure.

Eshelby’s uniformity property is closely related to the conjecture of Pólya and
Szegö on the polarization tensor. In [17] Kang and Milton showed that the polar-
ization tensor satisfies the lower Hashin–Shtrikman bound; then the field inside the
inclusion must be uniform, and thus the inclusion is an ellipse provided that it is sim-
ply connected. See section 4 for the Hashin–Shtrikman bounds on the polarization
tensor. The Pólya–Szegö conjecture follows as an immediate consequence of it. It
turns out that the polarization tensor associated with the structure constructed in
this paper satisfies the lower Hashin–Shtrikman bound. Therefore, the Pólya–Szegö
conjecture does not hold among nonsimply connected inclusions. In the same way as
above we are also able to show that stability for the Pólya–Szegö conjecture fails to
hold among simply connected inclusions: the bridged inclusion is nothing close to a
disk, but the trace of its polarization tensor is very close to being minimal.

This paper is organized as follows: In section 2, we construct inclusions with two
components using the Weierstrass zeta function and the Schwarz–Christoffel formula.
In section 3, we show that these inclusions enjoy the uniformity property for antiplane
elasticity. Section 4 shows that the polarization tensor of the inclusions satisfies the
lower Hashin–Shtrikman bound, and hence the Pólya–Szegö conjecture fails to be true
among nonsimply connected inclusions. In section 5, we discuss the instability of the
uniformity property by connecting the inclusion pair by a thin bridge. In section 6,
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ESHELBY’S UNIFORMITY PROPERTY 579

we analyze the planar elasticity case. We prove that the field inside the inclusion is
uniform for certain types of loadings and then show, by numerical computations, that
the field is not uniform for some other types of loadings.

2. Construction of the inclusions. This paper is concerned with a structure
consisting of two components, each with a smooth (specifically, Lipschitz) bound-
ary, which satisfy Eshelby’s uniformity property in antiplane elasticity or for two-
dimensional conductivity. More precisely, we construct an inclusion with two compo-
nents, B1 and B2, such that the solution u to the problem

(2.1)

{ ∇ · (1 + (k − 1)χ(B1 ∪B2)
)∇u = 0 in R

2,

u(x, y) − a · (x, y) = O(r−1) as r → ∞

is such that ∇u is constant in B1 ∪B2. Here χ(B1 ∪B2) is the indicator function of
B1 ∪B2, a is a constant vector representing the direction of the uniform loading, and
r =

√
x2 + y2. The conductivity coefficient 1 + (k − 1)χ(B1 ∪ B2) in (2.1) indicates

that the conductivity of the inclusion B1 ∪B2 is k �= 1 while that of the background
R

2 \ B1 ∪B2 is 1. It is worth mentioning that since ∇u is constant (and not 0) in
B1 ∪ B2, ∂B1 and ∂B2 are analytic due to a regularity result of Alessandrini and
Isakov [2, Corollary 2.2].

In order to construct such inclusions B1 and B2, we will construct a holomorphic
function f in C \B1 ∪B2 satisfying

(2.2) f(z) = �(cz) + qj , z ∈ ∂Bj ,

for some complex constants c and qj , j = 1, 2, and

(2.3) f(z) = αz +O(1) as |z| → ∞

for some complex number α. Here and afterward, we identify z with x + iy. Let us
first briefly see why it is enough to construct such a function.

Suppose that there are such simply connected inclusions B1 and B2, and let u
be the solution to (2.1). Let ue := u|

R2\B1∪B2
and ui := u|B1∪B2 . Then there exist

holomorphic functions Ue in C \ B1 ∪B2 and U i in B1 ∪ B2 such that �Ue = ue

and �U i = ui. To see the existence of Ue, it suffices to note that
∫

C
∂ue

∂ν ds = 0 for
any closed piecewise C1-curve C in C \ B1 ∪B2, which can be easily verified using
Green’s theorem. By (2.1), the solution u satisfies the transmission conditions along
the interface ∂B1 and ∂B2:

(2.4) u|+ = u|− and
∂u

∂ν

∣∣∣
+

= k
∂u

∂ν

∣∣∣
−

on ∂Bj, j = 1, 2,

where the subscripts + and − denote the limits from outside and inside ∂Bj , respec-
tively. It then follows from the Cauchy–Riemann equation that

(2.5)
k + 1

2
U i − k − 1

2
U i = Ue + iλj on ∂Bj , j = 1, 2,

for some real constant λj . See [16]. Since ui is linear in each Bj , so is U i, say,

U i(z) = bjz + dj , z ∈ Bj , j = 1, 2.
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The constancy of ∇u in B1 ∪B2 implies b1 = b2(= b). Then (2.5) takes the form

(2.6)
k + 1

2
(bz + dj) − k − 1

2
(bz + dj) = Ue(z) + iλj on ∂Bj , j = 1, 2.

If we put

(2.7) f(z) = Ue(z) − kbz,

then f is holomorphic in C \ B1 ∪B2 and satisfies (2.2) and (2.3). By reversing the
previous arguments we see that if B1 and B2 admit a holomorphic function satisfying
(2.2) and (2.3), then B1 ∪B2 has the uniformity property.

For the rest of this section we deal with the problem of constructing two inclu-
sions B1 and B2 which admit a function f holomorphic in C \ B1 ∪B2 satisfying
(2.2) and (2.3). It turns out that this problem was solved by Cherepanov [8] in a
more general setting. Cherepanov showed that there are inclusions with an arbitrary
number of components which admit a holomorphic function (outside the inclusion)
satisfying (2.2) and (2.3), and then constructed such inclusions with single and dou-
ble components. The construction of this paper is different from that of [8], and it is
more elementary using the explicit formula of the Weierstrass zeta function and the
Schwarz–Christoffel formula.

Suppose that f is a holomorphic function in C\B1 ∪B2 satisfying (2.2) and (2.3).
Since such an f maps C \B1 ∪B2 onto the complex plane with two slits, it is natural
to construct an appropriate holomorphic function G on the complex plane with two
slits and then define f as the hodographic transform (or the inverse) of G. The use of
hodographic transforms is a well-known technique for solving free boundary problems.

Let 0 < a < b be two fixed real constants and consider the complex plane with
two slits [−b,−a] and [a, b]. We first construct a holomorphic function F so that its
real parts are constant on each slit while its imaginary part vanishes on the other
parts of the real axis. Once we construct such a function F , then the desired function
G will be defined as G(z) = F (z) + αz for some real constant α, as we shall see
later. For the construction of F , we make use of the Weierstrass zeta function and
the Schwarz–Christoffel formula.

For given positive real numbers c and d, let t1 = 2c and t2 = i2d. Then the
Weierstrass zeta function ζ(w) is defined by

(2.8) ζ(w) :=
1
w

+
∑
t�=0

(
1

w − t
+

1
t

+
w

t2

)
,

where the sum is over all t = n1t1 + n2t2 with integers n1 and n2 not both zero. The
function ζ has the periodicity properties

(2.9) ζ(w + t1) = ζ(w) + η1, ζ(w + t2) = ζ(w) + iη2,

where η1 and η2 are constants satisfying

(2.10) dη1 − cη2 = π.

See [1]. For each t = n1t1 + n2t2, its conjugate t̄ = n1t1 − n2t2 is on the same lattice
of points as t lies on. Thus one can easily see that

(2.11) ζ(w̄) = ζ(w),
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and hence ζ(w) is real when w is real. We also have

(2.12) ζ(−w̄) = −ζ(w),

from which it follows that ζ(w) is purely imaginary when w is purely imaginary. It
then follows from (2.9) that η1 and η2 are real.

Note that by (2.11)

(2.13) ζ(w̄ − 2id) = ζ(w + t2) = ζ(w) + iη2,

and hence

(2.14) ζ(w) − ζ(w̄ − 2id) = −iη2.
Thus we deduce that if w = u− id with u real, then

(2.15) 	ζ(u − id) = −η2
2
.

Similarly, using the first identity in (2.9) and (2.12), one can see that if w = −c+ iv
with v real, then

(2.16) �ζ(−c+ iv) = −η1
2
,

and if w = c+ iv with v real, then

(2.17) �ζ(c+ iv) =
η1
2
.

We will also need the following lemma.
Lemma 2.1. When d > c the following inequality holds:

(2.18) 	ζ(±c+ iv) ≥ η2
2d
v, −d < v < 0.

Proof. Note first that 	ζ(−c + iv) = 	ζ(c + iv) because of the first identity in
(2.9). By scaling we may assume that 2c = 1. Put 2d = τ to shorten notation, and
note that τ > 1. Let

h(v) := 	ζ(c+ iv) − η2
2d
v, −τ

2
< v < 0.

Since h(0) = h(− τ
2 ) = 0, it suffices to show that h is concave in (− τ

2 , 0). Observe
that

h′′(v) = −2	
∑

n1,n2

1
(1
2 + i(v − n2τ) − n1)3

.

From the well-known identity (see [1])

∞∑
m=−∞

1
(z −m)2

=
π2

sin2 πz
,

we have
∞∑

m=−∞

1
(z −m)3

=
π3 cosπz
sin3 πz

.
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Therefore, we get

h′′(v) = −2π3	
∞∑

n2=−∞

cosπ
(

1
2 + i(v − n2τ)

)
sin3 π

(
1
2 + i(v − n2τ)

)
= 2π3

∞∑
n=−∞

sinhπ(v − nτ)
cosh3 π(v − nτ)

= 2π3 sinhπv
cosh3 πv

+ 2π3
∞∑

n=1

sinhπ(v − nτ) cosh3 π(v + nτ) + sinhπ(v + nτ) cosh3 π(v − nτ)
cosh3 π(v − nτ) cosh3 π(v + nτ)

.

Straightforward but tedious computation yields

sinhπ(v − nτ) cosh3 π(v + nτ) + sinhπ(v + nτ) cosh3 π(v − nτ)

=
1
2

sinh 2πv
[
2 + cosh 2πv cosh 2πnτ − cosh2 2πnτ

]
,

and hence

h′′(v) = 8π3 sinhπv

[
1

4 cosh3 πv
+

∞∑
n=1

2 + cosh 2πv cosh 2πnτ − cosh2 2πnτ

(cosh 2πv + cosh 2πnτ)3

]
.

Since v < 0, it is now enough to show that the quantity inside the bracket, which we
call I(v), is positive. Indeed, we have

I(v) >
1

4 cosh3 πv
−

∞∑
n=1

1
cosh 2πv + cosh 2πnτ

.

Since − τ
2 < v < 0 and τ > 1, we now have

I(v) >
1

4 cosh3 πτ
2

− 2
∞∑

n=1

e−2πnτ

=
1

4 cosh3 πτ
2

− 2
1 − e−2πτ

e−2πτ

= 2
[(
e−

1
6 πτ + e−

7
6 πτ

)−3

− 1
1 − e−2πτ

]
e−2πτ

> 2
[(
e−

1
6 π + e−

7
6 π
)−3

− 1
1 − e−2π

]
e−2πτ > 0.

This completes the proof. We remark that the inequality is proved not only when
d > c, but also when τ is such that the second to last line in the above chain of
inequalities is positive.

For a positive real number β, define h by

(2.19) h(w) := β
(
ζ(w − id) − η2

2d
w + i

η2
2

)
.

Then h is a meromorphic function with poles at 2n1c+ 2in2d+ id and satisfies

(2.20)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�h(−c+ iv) = −βc0,
�h(c+ iv) = βc0,

	h(u) = 0,
	h(u+ id) = 0
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for u and v real, where

(2.21) c0 =
η1
2

− cη2
2d

=
π

2d

because of (2.10). Since β > 0, we also have from (2.18)

(2.22) 	h(±c+ iy) > 0, 0 < y < d, when d > c.

Since ζ(w) = 1
w +O(1) as w → 0, we have

(2.23) h(w) =
β

w − id
+O(1) as w → id.

Restricting our attention to the rectangle R = {z = x + iy | − c < x < c, 0 <
y < d}, we now construct a conformal mapping from the upper half of the complex
plane onto R. To this end, it is natural to use the Schwarz–Christoffel formula.

For b > a > 0, let

g(z) : = (z2 − a2)−1/2(z2 − b2)−1/2

= (z + b)−1/2(z + a)−1/2(z − a)−1/2(z − b)−1/2,

and define for z in the upper half plane

(2.24) w = Φ(z) := −
∫ z

0

g(ξ)dξ.

The mapping Φ maps the upper half plane onto the rectangle R = {z = x+ iy | −c <
x < c, 0 < y < d}, where

(2.25) c =
∫ a

0

dx√
(a2 − x2)(b2 − x2)

and d =
∫ b

a

dx√
(x2 − a2)(b2 − x2)

.

Note that the intervals [−b,−a] and [a, b] on the real axis get mapped onto the vertical
sides {−c+ iy | 0 ≤ y ≤ d} and {c+ iy | 0 ≤ y ≤ d} of R, [−a, a] onto the bottom of
R, and (−∞,−b) ∪ (b,∞) into the top of R. The point ∞ is mapped to w = id, and

(2.26) Φ(z) = id+O

(
1
|z|

)
as |z| → ∞.

To see this, we have

Φ(z) = −
∫ z

0

g(ξ)dξ = −
∫ ∞

0

g(ξ)dξ +
∫ ∞

z

g(ξ)dξ

= id+
∫ ∞

z

g(ξ)dξ = id+
∫ ∞

z

O(|ξ|−2)dξ

= id+O(|z|−1)

as |z| → ∞.
We now define F in the upper half of C by

(2.27) F (z) := (h ◦ Φ)(z),
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where Φ is defined by (2.24). It then follows from (2.20) that

(2.28)

⎧⎪⎨⎪⎩
�F (x+ i0) = −βc0, x ∈ (−b,−a),
�F (x+ i0) = βc0, x ∈ (a, b),
	F (x+ i0) = 0, x ∈ (−∞,−b) ∪ (b,∞) ∪ (−a, a),

and from (2.22) that

(2.29) 	F (x+ i0) ≥ 0, x ∈ (−b,−a) ∪ (a, b).

It also follows from (2.23) and (2.26) that

(2.30) F (z) = βz +O(1) as |z| → ∞.

Because of (2.28), F has an obvious extension as a holomorphic function in C \
([−b,−a] ∪ [a, b]) satisfying

(2.31) F (z̄) = F (z).

For a positive real number α, define G by

(2.32) G(z) := F (z) + αz,

and then define curves C+
j , j = 1, 2, by

C+
1 :=

{
lim

y→0+
G(x + iy) | − b ≤ x ≤ −a

}
,(2.33)

C+
2 :=

{
lim

y→0+
G(x + iy) | a ≤ x ≤ b

}
.(2.34)

Observe from (2.29) that, at least when d > c and β > 0, the curves C+
j (except the

endpoints) lie in the upper half plane and their endpoints lie on the real axis. In fact,
the endpoints of C+

1 are

(2.35) G(−b) = −β π
2d

− αb and G(−a) = −β π
2d

− αa,

and those of C+
2 are

(2.36) G(a) = β
π

2d
+ αa and G(b) = β

π

2d
+ αb.

The positivity of α is necessary to ensure that G(b) > G(a). We now define C−
j to be

the reflection of C+
j about the real axis, i.e.,

(2.37) C−
j := {z | z ∈ C+

j }, j = 1, 2.

Assuming d > c, we then define the domain Bj to be the domain whose boundary is
C±

j for j = 1, 2. These domains are determined by the choice of the four parameters a,
b, α, and β. However if we replace a, b by k1a, k1b, then the corresponding inclusions
are just rescaled by the factor k1. The reason is as follows.
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−6 0 6
−3

0

3
a = 1, b = 2, α = 1, β = 1

−20 0 20
−10

0

10
a = 1, b = 10, α = 1, β = 1

−30 0 30
−15

0

15
a = 1, b = 20, α = 1, β = 1

−10 0 10
−5

0

5
a = 1, b = 50, α = 0.1, β = 0.1

Fig. 2.1. The typical shapes of inclusions. The scales for the figures are different. In the
bottom right figure α = β = 0.1, and the figure for α = β = 1 is a similar one magnified ten times.
In all figures, c < d.

Let h1, Φ1, F1, and G1 be the functions defined by (2.19), (2.24), (2.27), (2.32),
corresponding to k1a, k1b. Let h0, etc., be those functions corresponding to a, b. Then
we can see the following relations easily:

h1(w) = k1h0(k1w),

Φ1(z) =
1
k1

Φ0

(
z

k1

)
.

Therefore, we have

G1(z) = k1G0

(
z

k1

)
.

This relation shows that the image of [k1a, k2b] under G1 is k1C
+
2 , where C+

2 is the
image of [a, b] under G0 as given in (2.34).

If we replace α, β by k2α, k2β, then the corresponding inclusions are just rescaled
by k2. This is more obvious. Thus without loss of generality one can choose α = β = 1.
If we just replace α by k3α, one can check that (2.28) implies that the boundary of
each inclusion undergoes a linear stretching in the x-direction by a factor of k3 (which
is not in proportion to the change in the distance 2G(a) separating the inclusion pair).
Thus, among all variations of the four parameters, changing only the ratio a/b leads
to a nontrivial change in the inclusion shape. Figure 2.1 shows the shapes of B1 and
B2, which are obtained numerically for various ratios a/b. Figure 2.2 shows a shape
when c > d.

The following proposition shows that the inclusion constructed above enjoys the
desired property.

Proposition 2.2. Let B = B1 ∪ B2 be the inclusion constructed above. Then
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−15 0 15−15
−7.5

0

7.5−7.5
a = 1, b = 1.2, α = 5, β = 5

Fig. 2.2. A shape when c < d. In this figure, c = 1.7227 and d = 1.4310.

there is f holomorphic in C \B satisfying

(2.38) f(z) = z +O(|z|−1) as |z| → ∞

and

f(z) = px+ q1 for z = x+ iy ∈ ∂B1,(2.39)
f(z) = px+ q2 for z = x+ iy ∈ ∂B2,(2.40)

for some real constant p and complex constants q1 and q2.
Proof. One can see from (2.33) and (2.34) that G is a homeomorphism from

[−b,−a] ∪ [a, b] onto C+
1 ∪ C+

2 . One can also see that G is monotonically increasing
on (−∞,−b], [−a, a], and [b,+∞). Thus G is a homeomorphism from ∂Π+ onto
∂(Π+ \ B1 ∪B2), where Π+ is the complex upper half plane. Let ϕ and ψ be the
conformal mappings from the unit disc Δ onto Π+ and Π+ \ B1 ∪B2, respectively.
Then ψ−1 ◦ G ◦ ϕ : Δ → Δ is holomorphic and a homeomorphism on ∂Δ. Thus by
Rado’s theorem [27, p. 4], ψ−1 ◦ G ◦ ϕ : Δ → Δ is conformal, and hence univalent.
Therefore, G : Π+ → Π+ \ B1 ∪B2 is univalent. Since G(z̄) = G(z) and C+

j lies on
the upper half plane, we conclude that G is univalent from C \ ([−b,−a]∪ [a, b]) onto
C \ B1 ∪B2. We emphasize that in order for G to be univalent, the upper part of
∂Bj , C+

j should lie on the upper half plane, as we proved before under the assumption
that d > c. When c < d, the mapping G can sometimes be univalent and thus lead
to other inclusion shapes, but we do not explore this possibility here.

Since G is univalent, G−1 is holomorphic in C \B1 ∪B2 and satisfies

(2.41) G−1(z) =
1

α+ β
z +O(1) as |z| → ∞,

and

G−1(z) =
1
α
x+

βd

2πα
for z = x+ iy ∈ ∂B1,(2.42)

G−1(z) =
1
α
x− βd

2πα
for z = x+ iy ∈ ∂B2.(2.43)

Let

(2.44) f(z) := (α + β)[G−1(z) − γ],
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Fig. 3.1. ux and uy are solutions corresponding to the e1 and e2 fields, respectively. The top
figures are |∇ux| and |∇uy|, and the bottom figures are equipotential lines of ux and uy.

where γ is chosen so that f satisfies (2.38). By putting

(2.45) p =
α+ β

α
, q1 = (α+ β)

[
βd

2πα
− γ

]
, q2 = (α+ β)

[
− βd

2πα
− γ

]
,

we have (2.39) and (2.40). This completes the proof.
We note that the most important property of f is that

(2.46) −p
2
z + f(z) =

p

2
z + qj on ∂Bj ,

so that the function on the left-hand side of this equation, which is antiholomorphic
outside the inclusion, can be extended inside Bj as a linear holomorphic function.

3. The uniformity property for antiplane elasticity. We now show that
the inclusions B1 and B2 have the uniformity property for antiplane elasticity (or for
two-dimensional conductivity): For any uniform loading the field inside the inclusions
is uniform. Before proving this, it may be helpful to the reader to refer to Figure 3.1,
which clearly exhibits the uniformity property. This figure was obtained by solving
(2.1) numerically using the boundary integral method.

We now prove the following theorem, which is a precise statement of the unifor-
mity property for two-dimensional conductivity.

Theorem 3.1. Let B = B1 ∪ B2 be the inclusion constructed in section 2 with
α > 0 and β > 0. Let k �= 1. For each nonzero constant vector a, let u be the solution
to (2.1). Then ∇u is constant in B.

Proof. Define Ue and U i by

Ue(z) : =
(
k +

1 − k

p

)−1 (
kz +

1 − k

p
f(z)

)
, z ∈ C \B1 ∪B2,(3.1)

U i(z) : =
(
k +

1 − k

p

)−1

(z + cj), z ∈ Bj , j = 1, 2,(3.2)
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where f is defined by (2.44). Choosing the complex constants cj for j = 1, 2 properly,
one can easily see that Ue and U i satisfy (2.5) and Ue(z) = z+O(|z|−1) as |z| → ∞.
Let u := �Ue in R2 \ B1 ∪B2 and u := �U i in B1 ∪ B2. Then u satisfies (2.4), and
hence u is the solution to (2.1) with a = (1, 0). Note that we have

(3.3) ∇u =
α+ β

α+ kβ
e1 in Bj , j = 1, 2,

where e1 = (1, 0). Thus for the uniform loading e1 = (1, 0), the field inside B1 and
B2 is given by (3.3).

One can show that the field inside the inclusion due to the loading e2 = (0, 1)
is also uniform using Keller’s duality argument [19]. In fact, for a given k �= 1, let
k0 = 1/k and let u0 be the solution to (2.1) with a = e1 and k replaced with k0. Let
ve be the harmonic conjugate of u0 in C \B1 ∪B2 so that

(3.4) ve(x, y) − y = O(r−1) as r → ∞.

The existence of such a harmonic conjugate is proved in [5]. Let vi be the harmonic
conjugate of u0 in B1 ∪B2. Define w by

(3.5) w(x, y) =

{
ve(x, y), (x, y) ∈ R

2 \B1 ∪B2,

k0v
i(x, y) + C, (x, y) ∈ B1 ∪B2,

where the constant C is chosen so that w is continuous across ∂Bj, j = 1, 2. Then
using the Cauchy–Riemann equations one can show (see [5]) that w is the solution
to (2.1) with a = (0, 1). We also have from (3.3) and the Cauchy–Riemann equation
that

(3.6) ∇w =
α+ β

kα+ β
e2 in Bj , j = 1, 2.

This completes the proof.
So far we have shown that the inclusions B := B1 ∪ B2 have the uniformity

property for the antiplane elasticity model: Given the applied field e1, the field inside
B is uniform and given by α+β

α+kβ e1, and for the applied field e2, the field inside B is
uniform and given by α+β

kα+β e2.

4. Polarization tensors: Polyá–Szegö conjecture. In this section we com-
pute the polarization tensor associated with B = B1 ∪B2 and show that the Polyá–
Szegö conjecture fails to be true among inclusions with multiple components. To
explain the polarization tensor associated with the inclusion B consisting of m com-
ponents B1, . . . , Bm, we consider the following problem: For a vector ξ ∈ R2,

(4.1)

{ ∇ · (1 + (k − 1)χ(B)
)∇u = 0 in R

2,

u(x, y) − ξ · (x, y) = O(r−1) as r → ∞.

The solution u to (4.1) admits the asymptotic expansion

(4.2) u(x, y) = ξ · (x, y) +
1
2π
ξ ·M (x, y)T

r2
+O(r−2) as r → ∞

for some 2×2 matrixM . This matrix M = M(B) is the polarization tensor associated
with B. It should be noted that the polarization tensor associated with the inclusion
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consisting of multiple components B1, . . . , Bm is not the sum or a combination of the
polarization tensors of individual inclusions. It incorporates the interactions among
components.

It is known that the eigenvalues of the polarization tensor must be confined within
the so-called Hashin–Shtrikman bounds [21, 7] (see also [20, 23]):

(4.3) Tr(M) ≤ (k − 1)
(

1 +
1
k

)
|B|

and

(4.4) Tr(M−1) ≤ 1 + k

(k − 1)|B| ,

where Tr denotes the trace and |B| is the area of B. If M has minimal trace, then
M satisfies (4.4) and M is diagonal. These bounds are known to be optimal in the
sense that all the points inside the bound, except the upper bound, are realized as
the pair of eigenvalues of the polarization tensor associated with a certain shape—
coated ellipses [7] and crosses [3]. The lower bound (4.4) is attained by ellipses. Thus
a conjecture, which implies the Polyá–Szegö conjecture, is that if (4.4) holds for an
inclusion, then that inclusion must be an ellipse.

Kang and Milton [18] proved this new conjecture affirmatively in two dimensions
(and three dimensions) within the class of simply connected inclusions with Lipschitz
boundaries. In fact, in [17], they showed that if the polarization tensor M(B) satisfies
the lower bound (4.4), then B must have the uniformity property and is therefore an
ellipse by Eshelby’s conjecture. The Pólya–Szegö conjecture, which asserts that the
inclusion whose polarization tensor has the minimal trace is a disk, follows from this.

We now show that the polarization tensor associated with the inclusion con-
structed in section 2 satisfies (4.4), and hence the Pólya–Szegö conjecture is not true
among nonsimply connected inclusions. To do that, let u1 and u2 be solutions to (2.1)
with a = e1 and a = e2, respectively, and put u := (u1, u2). Then, the polarization
tensor M is given by

(4.5) M = (k − 1)
∫

B

∇u dxdy,

where ∇u is the Jacobian matrix. See [4], for example, for the proof of (4.5). As an
immediate consequence of (3.3) and (3.6) we obtain the following corollary.

Corollary 4.1. The polarization tensor associated with the inclusion con-
structed in section 2 is given by

(4.6) M = (k − 1)|B|

⎛⎜⎝
α+ β

α+ kβ
0

0
α+ β

kα+ β

⎞⎟⎠ .

Note that this tensor satisfies

(4.7) Tr(M−1) =
k + 1

(k − 1)|B| ,

which is the lower Hashin–Shtrikman bound. It is quite interesting to observe that the
polarization tensor (4.6) is the same as that for the ellipse x2

α2 + y2

β2 ≤ 1. In particular,
the inclusion in Figure 2.1, which has α = β, has the same polarization tensor as that
of a circular disk.
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Fig. 5.1. Bridged inclusion.

5. Instability of the uniformity property. For a given ε > 0, let δ be a
positive number such that the rectangle (−δ, δ)× (ε, ε) is contained in the convex hull
of B1 and B2. Let Bε := B ∪ ((−δ, δ) × (ε, ε)). Bε is B1 and B2 connected by a thin
bridge. Figure 5.1 shows the bridged inclusion.

Let γ and γε be the conductivity distributions with inclusions B and Bε, respec-
tively, namely,

(5.1) γ = 1 + (k − 1)χ(B), γε = 1 + (k − 1)χ(Bε).

Let h(x, y) be a harmonic function in R2, e.g., h(x, y) = x or y. Let u be the solution
to

(5.2)

{ ∇ · γ∇u = 0 in R
2,

u(x, y) − h(x, y) = O(r−1) as r → ∞

and uε be the solution to (5.2) with γ replaced with γε. Then a standard regularity
theory of elliptic equations shows that

(5.3) ‖∇(u− uε)‖2 → 0 as ε→ 0.

Here ‖ · ‖2 is the norm of the square integral. In fact, if we put w = u − uε, then w
satisfies

(5.4)

{ ∇ · γε∇w = ∇ · (γε − γ)∇u in R
2,

w(x, y) = O(r−1) as r → ∞.

Thus it follows from a regularity theorem for the elliptic operator ∇ · γε∇ (see [11])
that provided k is strictly positive

(5.5) ‖w‖H1(R2) ≤ C

(∫
Rε

|∇u|2
)1/2

for some constant C independent of ε, where Rε = Bε \ B. In particular, we have
(5.3).

If h(x, y) = x or y, ∇u is constant in B1 and B2, as we have seen in section 3.
Therefore, by (5.3), ∇uε is almost uniform (in the H1 sense) if ε is small. It is obvious
that Bε is simply connected but nothing similar to an ellipse. Figure 5.2 shows the
absolute value of the gradient of uε.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ESHELBY’S UNIFORMITY PROPERTY 591

Fig. 5.2. The graph of the absolute value of the gradient of the solutions corresponding to the
bridged inclusion.

We note that (5.5) implies that

(5.6) ‖M(B) −M(Bε)‖ ≤ Cε,

where M(B) is the polarization tensor of B and M(Bε) is that of Bε. In the case
when α = β, this equation shows that from a practical standpoint the Polyá–Szegö
conjecture is false in two dimensions: a simply connected inclusion can have a polar-
izability tensor arbitrarily close to that of a circular disk yet not resemble a disk at
all. We remark that in the extreme cases not treated here, when k = 0 or k = ∞,
the insertion of even an infinitesimal bridge drastically changes the polarization ten-
sor. So it is still an open question whether a void or perfectly conducting region is
necessarily close in shape to an ellipse if it is simply connected and almost has the
polarizability tensor of an ellipse.

6. Uniformity property: The elasticity case. In this section we consider
the uniformity property of the inclusion B1 ∪ B2 for planar elasticity and show that
for a certain loading the field inside B1 ∪B2 is uniform while for other loadings it is
not uniform.

Let C = (Cijkl) be the elasticity tensor of the inclusion-matrix composite, namely,

Cijkl :=
(
λχ(R2 \B) + λ̃ χ(B)

)
δijδkl+

(
μχ(R2 \B) + μ̃ χ(B)

)
(δikδjl + δilδjk),

whereB = B1∪B2. The elasticity tensor C indicates that the matrix (the background)
has Lamé parameters (λ, μ), while the inclusion has parameters (λ̃, μ̃). It is always
assumed that

μ > 0, dλ+ 2μ > 0, μ̃ > 0, and dλ̃ + 2μ̃ > 0

for ellipticity. For given constants aij , i, j = 1, 2, consider the following linear elastic
problem:

(6.1)

⎧⎪⎪⎨⎪⎪⎩
∇ · (C(∇u + ∇uT )

)
= 0 in R2,

u(x) −
2∑

i,j=1

aijxiej = O(|x|−1) as |x| → ∞,

where ej , j = 1, . . . , d, denotes the standard basis for R2. The uniform applied loading
is determined by the matrix (aij).

Let us first seek a type of loading which yields a uniform field inside the inclusions.
The existence of such a loading is expected due to the link between conductivity
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problems and elasticity problems in composites when the field in one phase is uniform
[13]. We first invoke the following complex representation of the solution to (6.1) from
[24, 4]: Let u = (u, v) be the solution of (6.1) and let ue := u|

C\B and ui := u|B.
Then there are unique functions ϕe and ψe holomorphic in C \ B and ϕi and ψi

holomorphic in B such that

2μ(ue + ive)(z) = κϕe(z) − zϕ′
e(z) − ψe(z), z ∈ C \B,(6.2)

2μ̃(ui + ivi)(z) = κ̃ϕi(z) − zϕ′
i(z) − ψi(z), z ∈ B,(6.3)

where

(6.4) κ =
λ+ 3μ
λ+ μ

, κ̃ =
λ̃+ 3μ̃

λ̃+ μ̃
.

Moreover, the following hold on ∂Bj , j = 1, 2:

1
2μ

(
κϕe(z) − zϕ′

e(z) − ψe(z)
)

=
1
2μ̃

(
κ̃ϕi(z) − zϕ′

i(z) − ψi(z)
)
,(6.5)

ϕe(z) + zϕ′
e(z) + ψe(z) = ϕi(z) + zϕ′

i(z) + ψi(z) + c,(6.6)

where c is a constant. Equation (6.5) expresses continuity of displacement, and (6.6)
expresses continuity of traction.

Let f be the function in (2.44) and let

(6.7) ϕe(z) = Aez, ψe(z) = Ce

[
−p

2
z + f(z)

]
, z ∈ C \B,

where Ae and Ce are complex and real constants, respectively. As was observed in
(2.46), ψ on ∂Bj has an extension to Bj as the linear holomorphic function Ce(p

2z+qj).
Therefore, on ∂Bj, j = 1, 2, (6.5) and (6.6) now take the forms(

κ̃ϕi(z) − zϕ′
i(z) − ψi(z)

)
=
μ̃

μ

(
κAe −Ae − Cep

2

)
z +Dj,(6.8)

ϕi(z) + zϕ′
i(z) + ψi(z) =

(
Ae +Ae +

Cep

2

)
z + Ej(6.9)

for some constants Dj and Ej . Equations (6.8) and (6.9) force us to take ϕi(z) =
Aiz + constant and ψi = constant, and the complex number Ai should satisfy

(6.10)

⎧⎪⎪⎨⎪⎪⎩
κ̃Ai −Ai =

μ̃

μ

(
κAe −Ae − Cep

2

)
,

Ai +Ai = Ae +Ae +
Cep

2
.

Let Ae = a1 + ia2. Equation (6.10) has a solution Ai if and only if

(6.11) Ce =
4
p

[
1 +

2μ̃
μ(κ̃− 1)

]−1 [
μ̃(κ− 1)
μ(κ̃− 1)

− 1
]
a1,

and in this case

(6.12) 2μ
(
ue

ve

)
=
(

(κ− 1)a1 − Ce(1 − p
2 ) −(κ+ 1)a2

(κ+ 1)a2 (κ− 1)a1 + Ce(1 − p
2 )

)(
x
y

)
+O(r−1)
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Fig. 6.1. Equipotential lines of the solution u = (u1, u2) for the loading (x, 0) (top) and (0, y)
(bottom). ∇u2 is not uniform for the top, while ∇u1 is not uniform for the bottom.

as r → ∞. Putting t = (κ−1)a1
2μ and s = (κ+1)a2

2μ and simplifying expressions using
(2.45) and (6.4), we arrive at the following: If the loading (aij) is of the form

(6.13) (aij) =
(

(1 − θ)t −s
s (1 + θ)t

)
,

where t and s are real constants and

(6.14) θ =
(α− β)(λ̃ + μ̃− λ− μ)

(α+ β)(μ+ λ̃+ μ̃)
,

then ∇u is constant in B where u is the solution to (6.1). In particular, when α = β,
this corresponds to a hydrostatic loading. We mention that the inclusions constructed
in this paper depend on the parameters α and β. In summary, we have proved the
following theorem.

Theorem 6.1. If the (aij) are given by (6.13) for some real numbers s and t
where θ is defined by (6.14), then the solution u to (6.1) has the property that ∇u is
constant in B.

We do not have a complete characterization of those loadings which yield a uni-
form strain field inside the inclusion, but numerical computations show that for certain
loadings the field is not uniform. Figure 6.1 shows the equipotential lines for the so-
lution u = (u1, u2) for the loadings (x, 0) and (0, y). It is worthwhile to compare
the result of this paper with that for the simply connected inclusion in [28, 18]. For
a simply connected inclusion, if the field inside the inclusion is uniform for a single
loading, then the inclusion is of elliptical shape, and hence the field is uniform for
any loading. Here we established that it is not the case for an inclusion with multiple
components. It is an open question whether the uniformity of the interior field for all
uniform applied loadings forces the inclusion (with possibly multiple components) to
be an ellipse or not.

Conclusion. Providing an alternative proof to that of Cherepanov [8], we con-
structed a family of inclusions with two components which have the uniformity prop-
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erty for antiplane elasticity: for any loading the field inside the inclusions is uniform.
In the case of planar elasticity the field is uniform for certain types of loadings but not
uniform for other loadings. These results show that the conjectures of Eshelby and
Pólya–Szegö are not true among nonsimply connected inclusions. By connecting two
inclusions by a thin bridge we showed that these conjectures do not hold in a practical
sense even for simply connected inclusions: even if the field inside an inclusion is very
close to being uniform, the inclusion need not be close to an ellipse.

Acknowledgments. The authors are grateful to the referees for comments and
in particular to one referee for drawing our attention to the work of Cherepanov. Also,
after this work was submitted, the authors became aware of the beautiful paper of
Liu [22], which treats multiple inclusions with the Eshelby property not only in two
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