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We explore the physics of supersymmetric Janus gauge theories in four dimensions with spatial

dependent coupling constants e2 and �. For the 8 supersymmetric case, we study the vacuum and

Bogomol’nyi-Prasad-Sommerfield spectrum, and the physics of a sharp interface where the couple

constants jump. We also find less supersymmetric cases either due to additional expressions in the

Lagrangian or to the fact that coupling constants depend on additional spatial coordinates.
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I. INTRODUCTION AND CONCLUSION

There has been some interest in the Janus-type field
theory where the coupling constants are dependent on
space [1]. What is exciting about this subject is that some
of supersymmetry of the original theory can be preserved
even when the coupling constants are spatially dependent
once some corrections are made on the Lagrangian and the
supersymmetric transformation. Such field theories appear
naturally in the context of anti-de Sitter geometry [2].
Recently, a Janus-type field theory has been discovered
in the intersectingD3-ðp; qÞ 5 brane [3,4]. The field theory
on D3 branes can have a spatially dependent complex
coupling � ¼ �=2�þ 4�i=e2, preserving half of original
16 supersymmetries.

In this work we explore further these theories and gen-
eralize them, extending our previous work [5]. We first
study the vacuum and Bogomol’nyi-Prasad-Sommerfield
monopoles (BPS) configurations. We also study the wave
and dyonic physics near a sharp interface, which acts like
an axionic domain wall. We also find additional supersym-
metry breaking Janus theories.

The original Janus solution in Ref. [2] is a 1-parameter
family of dilatonic deformations of AdS5 space without
supersymmetry. The Janus solution is made of two
Minkowski spaces joined along an interface so that the
dilaton field interpolates two asymptotic values at two
spaces. The conformal field theory dual field theory is
suggested to be the deformation of the Yang-Mills theory
where the coupling constant changes from one region to
another region [2].

Further works revealed that one can have supersymmet-
ric Janus geometries with the various supersymmetries and
internal symmetries [6–10]. Starting from the 16 super-
symmetric Yang-Mills theory, the various deformations of
2, 4, 8 supersymmetries have been found [1]. Especially,
the 16 supersymmetric Janus geometries have been found
[9,10], where both dilaton and axion fields vary along a
spatial direction. Also, other aspects of the Janus solutions
have been discussed in Refs. [11–15].

In our previous work [5], we investigated in detail the
vacuum and BPS structure of the supersymmetric Janus
theory for the case where only e2 depends on the spatial
coordinates and found that there can be a new type of
classical vacua, which are characterized by the Nahm
equation when there are planes where the coupling con-
stant e2 vanishes. In a later work [3], such vacua were
shown to arise naturally whenD3 branes intersect withD5
branes. In addition, we have found all supersymmetric
Janus field theories where the coupling constant e2 depends
on other spatial coordinates.
In this work we repeat a similar analysis for the case

where � depends on spatial coordinates. In Refs. [3,4], the
SLð2; ZÞ transformation and the brane picture were an
important tool to explore Janus-type field theories.
Especially the vacuum structure was explored in the detail.
However, one can still ask whether there is nontrivial
classical vacua besides the usual Coulomb vacua in our
case. Our analysis shows that if such vacua exist, they
would break the supersymmetry further to only two.
However, the generalization of the Nahm equation is too
complicated at this moment. The BPS objects are dyonic
objects, and their characterization is equally or more com-
plicated than the previous case. In the presence of the �
term, dyons would carry additional electric charge due to
Witten effect [16].
One interesting simplification is a sharp interface where

the coupling constant � jumps from one constant value to
another in a very small region. As the � angle jumps, such
interface can be interpreted partially as an axionic domain
wall [17,18]. Electromagnetic wave reflected or transmit-
ted through such a wall would have rotated polarization.
We calculate the reflection and transmission coefficient.
We fully investigate the 1=2 BPS dyonic object near the
wall, ignoring the non-Abelian core.
A full classification of four-dimensional Janus gauge

theory with partially conserved supersymmetry with spa-
tial dependent coupling e2ðx; y; zÞ has been done in our
previous paper [5]. We think that the same classification
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works also for the present case with �ðx; y; zÞ, and have
worked out all cases in detail.

One can introduce the interface degrees of freedom on a
sharp interface without further breaking of supersymmetry
as in Ref. [3]. Our result suggests that one could introduce
a more general class of interface Lagrangian to our more
general Lagrangian with more parameters and less super-
symmetries. It would be interesting to explore these
Lagrangians and their properties.

This paper is presented as follows: In Sec. II, we review
the 8 supersymmetric Janus Yang-Mills theories in four
dimensions. In Sec. III, we study the vacuum structure of
this theory. We raise the possibility of vacua preserving
only two supersymmetries. In Sec. IV, we consider 1=2
BPS field configurations. In Sec. V, we focus on the sharp
interface for the coupling constant. The image charges for
the magnetic monopoles and electric charges are found.
The wave propagation and reflection at the interface is
studied. In Sec. VI, less supersymmetric Janus Yang-
Mills theories whose coupling constants may have addi-
tional space-time dependence are explored briefly.

(While this work is written, a paper [19] has appeared
where there is some overlap. We feel some of points raised
here seem new.)

II. A BRIEF REVIEW OF 8 SUPERSYMMETRIC
JANUS LAGRANGIAN

We start with the ten-dimensional supersymmetric
Yang-Mills Lagrangian

L 0 ¼ � 1

4e2
TrðFMNFMN þ 2i ���MDM�Þ; (2.1)

where M, N ¼ 0; 1; 2 . . . ; 9 and �, � ¼ 0, 1, 2, 3. We use
the ten-dimensional notation for convenience. The gamma
matrices �M are in the Majorana representation, and the
gaugino field � is Majorana and Weyl. The spatial signa-
ture is (�þþþ . . .þ ). The Lagrangian is invariant
under the supersymmetric transformation

�0AM ¼ i ���M�; �0� ¼ 1
2�

MN�FMN; (2.2)

where the supersymmetry (SUSY) parameter � is
Majorana and satisfies the Weyl condition

�012���9� ¼ �: (2.3)

As we consider 1þ 3 dimensional space-time x� ¼ x0, x1,
x2, x3, the remaining spatial gradient @M ¼ 0 with M ¼
4; 5 � � � 9 and the gauge field AM become scalar fields �M

with M ¼ 4; 5 � � � 9. In four-dimensional space-time, one
can have an additional term in the Lagrangian

L � ¼ � �

32�2
Tr ~F��F�� ¼ 1

8�2
W�@��; (2.4)

where the dual field strength is ~F�� ¼ ���	
F	
=2 with

�0123 ¼ 1 and W� is the Chern-Simons term, W� ¼
����	 TrðA�@	A
=2� iA�A�A	=3Þ. As L� is a total de-

rivative, the supersymmetry of the original Lagrangian L0

would be intact.
We are interested in the case where the coupling con-

stants e2, � depend on space-time coordinates. The original
Lagrangian L0 þL� is no longer invariant under the
original supersymmetric transformation modulo a total
space-time derivative. Fortunately, one can maintain
some of supersymmetries if one modifies the supersym-
metric transformation of the gaugino field by �1� and also
the Lagrangian by additional terms, which depend on the
derivatives of the coupling constant. For this work, we need
to take the space-time dependent supersymmetric parame-
ter �ðxÞ. The Lagrangian L0 þL� transforms under the
supersymmetric transformation �0 of Eq. (2.2) nontrivially
as follows:

�0ðL0 þL�Þ ¼ �@�

�
1

4e2

�
TrðFMNi ���MN���Þ

� 1

2e2
TrðFMNi �����MN@��Þ

þ
�
@��

16�2

�
���	
 TrðF�	i ���
�Þ: (2.5)

The additional transformation of the original Lagrangian
due to �1� would be

�1L0 ¼ �@�

�
1

2e2

�
iTrð����1�Þ

� 1

e2
Trði ���MDM�1�Þ: (2.6)

Let us focus on the case where the coupling constants e2,
� depend only on the x3 ¼ z coordinate. It has been shown
recently in Ref. [3] that the half of the original supersym-
metry could be maintained if the spatial dependence of two
coupling constants is constrained so that

1

e2
¼ D sin2c ; � ¼ �0 þ 8�2D cos2c ; (2.7)

with the space-time dependence arising only from c ðzÞ,
which can be an arbitrary function. Note that in the limit
D ! 1, �0 ! �1 and c ðzÞ ! 0, �=2 with the combina-
tions Dc ðzÞ and �0 � 8�2D kept finite, the space-time
dependence appears only in the fine structure constant
4�=e2. Notice also that a constant shift of � by 2� does
not change physics. The complex coupling constant be-
comes

� ¼ �

2�
þ 4�i

e2
¼ �0 þ 4�De2ic ; (2.8)

where �0 ¼ �0=ð2�Þ.
With the coupling constants given by Eq. (2.7), eight of

the original 16 supersymmetries can be preserved [3]. The
condition on the supersymmetric parameter � compatible
with the Weyl condition (2.3) is

�ðzÞ ¼ e�ðc ðzÞ=2Þ�0123
�0; (2.9)
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with a constant spinor �0 such that

�3456�0 ¼ �0: (2.10)

This condition also breaks the global SOð6Þ symmetry,
which rotates 4, 5, 6, 7, 8, 9 indices to SOð3Þ � SOð3Þ,
each of which rotates 4, 5, 6 and 7, 8, 9 indices, respec-

tively. As �012...9� ¼ �, we get �3456ec�0123
� ¼ �. The

condition on �0 is identical to the case with the constant �.
As the SOð6Þ symmetry is broken to SOð3Þ � SOð3Þ, we

split six scalar fields to two sets each of which are made of
three scalar fields. We denote

Xa ¼ ðX1; X2; X3Þ ¼ ð�4; �5; �6Þ;
Ya ¼ ðY1; Y2; Y3Þ ¼ ð�7; �8; �9Þ:

(2.11)

We will also interchangeably use ðX1; X2; X3Þ ¼
ðX4; X5; X6Þ and ðY1; Y2; Y3Þ ¼ ðY7; Y8; Y9Þ. The indices
for �a follow the indices for the scalar field whenever
they are contracted. To cancel some of the terms in the
zeroth order variation of the original Lagrangian (2.5), one
needs to add a correction to the SUSY transformation of
the gaugino field and also corrections to the original
Lagrangian. The correction to the original SUSY trans-
formation (2.2) is

�1AM ¼ 0;

�1� ¼ c 0�3ðð� � XÞ cotc � ð� � YÞ tanc Þ�;
(2.12)

where the prime means d=dz. The correction to the original
Lagrangian is made of two parts. The first correction,
which depends on the first order in the derivative of the
couple constant, is given as

L 1 ¼ c 0

4e2
Tri ��

�
��012 þ 1

sinc
�456 � 1

cosc
�789

�
�

þ 2c 0

e2
Tr

�
� i

sinc
X1½X2; X3� þ i

cosc
Y1½Y2; Y3�

�
:

(2.13)

The second correction is quadratic in the derivatives of c
so that

L2 ¼ � 1

2e2
Tr½ðc 02 � ðc 0 cotc Þ0ÞXaXa

þ ðc 02 þ ðc 0 tanc Þ0ÞYaYa�: (2.14)

The total Lagrangian L ¼ L0 þL� þL1 þL2 is invari-
ant under the corrected SUSY transformation

�AM ¼ ð�0 þ �1ÞAM ¼ i ���M�;

�� ¼ ð�0 þ �1Þ�
¼ 1

2FMN�
MN�þ c 0�3ðcotc ð� � XÞ � tanc ð� � YÞÞ�:

(2.15)

Redefine the scalar fields so that

~X a ¼ Xa sinc ; ~Ya ¼ Ya cosc : (2.16)

The correction to the supersymmetric transformation of the
gaugino field can be absorbed as

�� ¼
�
1

2
F���

�� þ 1

sinc
��D�

~X � �

þ 1

cosc
��D�

~Y � �þ � � �
�
�: (2.17)

The L2 can be absorbed into the scalar kinetic energy

L0 þL2 ¼ . . .� 1

2e2

�
1

sin2c
ðD�

~XaÞ2 þ 1

cos2c
ðD�

~YaÞ2
�

þ . . . : (2.18)

The whole Lagrangian L becomes

L ¼ � 1

4e2
Tr

�
F��F�� þ e2�

8�2
~F��F�� þ 2

sin2c
D� ~XaD

� ~Xa þ 2

cos2c
D�

~YaD� ~Ya

�
þ 1

4e2
Tr

�
1

sin4c
½ ~Xa; ~Xb�2

þ 1

cos4c
½ ~Ya; ~Yb�2 þ 8

sin22c
½ ~Xa; ~Yb�2

�
� 1

2e2
Tr

�
i ����D��þ 1

sinc
���a½ ~Xa;�� þ 1

cosc
���p½ ~Yp;��

�

þ c 0

4e2
Tri ��

�
��012 þ 1

sinc
�456 � 1

cosc
�789

�
�þ 2c 0

e2
Tr

�
� i

sin4c
~X1½ ~X2; ~X3� þ i

cos4c
~Y1½ ~Y2; ~Y3�

�
:

(2.19)

The combined SUSY transformation (2.15) becomes
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�A� ¼ i �����; � ~Xa ¼ 1

sinc
���a�; � ~Yp ¼ 1

cosc
���p�

�� ¼
�
1

2
F���

�� þ 1

sinc
D�

~Xa�
�a þ 1

cosc
D�

~Yp�
�p � i

cosc sinc
½ ~Xa; ~Yp��ap � i

2sin2c
½ ~Xa; ~Xb��ab

� i

2cos2c
½ ~Yp; ~Yq��pq

�
�: (2.20)

We can choose the gauge group to be any simple Lie group
G.

III. THE VACUUM STRUCTURE

The energy density from the above Lagrangian (2.19) is
not positive definite. To consider the vacuum, we put A� ¼
0 and � ¼ 0. The scalar fields can depend only on x3 ¼ z
coordinates. The nontrivial part of the energy density is

E ¼ 1

2e2
Tr

� ~X02
a

sin2c
þ ~Y02

a

cos2c
� ½ ~Xa; ~Xb�2

2sin4c
� ½ ~Ya; ~Yb�2

2cos4c

� ½ ~Xa; ~Yb�2
cos2c sin2c

�
þ 2ic 0

e2
Tr

�
1

sin4c
~X1½ ~X2; ~X3�

� 1

cos4c
~Y1½ ~Y2; ~Y3�

�
: (3.1)

We rewrite the above energy density as

E ¼ 1

2e2
Tr

� ~X0
a

sinc
þ i

2
�abcð½Xb; Xc� � ½Yb; Yc�Þ cosc

� i�abc½Xb; Yc� sinc
�
2 þ 1

2e2
Tr

� ~Y0
a

cosc

� i

2
�abcð½Xb; Xc� � ½Yb; Yc�Þ sinc

� i�abc½Xb; Yc� cosc
�
2 þ 1

2e2

�X
a

i½Xa; Ya�
�
2 þ Eb:

(3.2)

The boundary term is

Eb ¼ �2iDTrð ~X1½ ~X2; ~X3�cot2c þ ~Y1½ ~Y2; ~Y3�tan2c Þ0
þ iD�abc Trð ~Xa½ ~Yb; ~Yc� þ ~Ya½ ~Xb; ~Xc�Þ0: (3.3)

Assuming the boundary contributions vanish, the energy
would be non-negative and the classical vacuum would
satisfy the vacuum equations

~X0
a

sinc
þ i

2
�abcð½Xb; Xc� � ½Yb; Yc�Þ cosc

� i�abc½Xb; Yc� sinc ¼ 0;

~Y0
a

cosc
� i

2
�abcð½Xb; Xc� � ½Yb; Yc�Þ sinc

� i�abc½Xb; Yc� cosc ¼ 0:

(3.4)

Of course the obvious vacuum configurations satisfying the

above equations are the Abelian Coulomb vacua

~X0
a ¼ 0; ~Y0

a ¼ 0;

½Xa; Xb� ¼ ½Ya; Yb� ¼ ½Xa; Yb� ¼ 0:
(3.5)

Thus, ~Xa, ~Ya are constant and can be diagonalized. As
�� ¼ 0 of (2.20), these Abelian vacua are fully
supersymmetric.
The interesting question is whether there exist any non-

trivial solution for the vacuum Eq. (3.4). For a constant �
case, this vacuum equation turns out to be the Nahm
equation for the magnetic monopoles, and nontrivial vac-
uum are allowed when e2 vanishes on some planes. This
has nice interpretation as D3 branes intersecting with D5
branes. In the present case, it is not clear at all whether
nontrivial, or non-Abelian, solutions exist. If they do, one
may wonder the number of supersymmetries preserved.
Let us consider the generic case. The SUSY transformation
for the vacuum configuration would be

�� ¼
�

1

sinc
~X0
a�

3a þ 1

cosc
~Y0
p�

3p � i

2
½Xa; Xb��ab

� i

2
½Yp; Yq��pq � i½Xa; Yp��ap

�
�: (3.6)

It vanishes for the vacua satisfying the vacuum Eq. (3.4)
only if the SUSY parameter �0 satisfies the additional
conditions

�3489�0 ¼ �3597�0 ¼ �3678�0 ¼ ��0: (3.7)

As only two of the above conditions are independent, any
generic non-Abelian vacuum, if exist, would break the
number of supersymmetries to two.
When � is constant, it is known that there may be non-

trivial vacua when the e2ðzÞ vanishes at some points [5].
When D3 branes are connecting D5 branes, the dilation
field vanishes at the location of D5 branes and so the
coupling constant e2ðzÞ in the theory on D3 branes varies,
while vanishing at the D5 locations. The vacua of the
theory characterize D3 branes. After T-dual transforma-
tion to D1-D3, the vacuum structure characterizes how D1
branes end on D3 branes. As D1 branes ending on D3
branes appear as magnetic monopoles, we know that the
Nahm equation characterizes D1 branes ending on D3
branes. The S-dual version of the above vacuum configu-
ration, which appears as the boundary field theory, has
been studied by Gaiotto and Witten [4].
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IV. BPS EQUATIONS

Similar to the constant � case, we can introduce two
possible 1=2 BPS conditions:

�1234�0 ¼ �0; �70�0 ¼ �0: (4.1)

The first one was for magnetic monopoles and the second
one was for the charged massive particles in the Coulomb
phase. With nontrivial �, both conditions become the 1=2
BPS condition for dyons. If we impose both conditions, we
would get 1=4 BPS configurations. If there is nontrivial
non-Abelian vacuum of only two supersymmetries (3.7),
the above BPS condition would be incompatible, implying
that there would be no BPS dyons in such a non-Abelian
vacuum.

With the first condition of (4.1) in the Coulomb vacuum,
one can read the 1=2 BPS equations for dyons from the
supersymmetric transformation to be Ya ¼ 0. The remain-
ing 1=2 BPS equations are

Ei �Di
~X1 ¼ 0;

ðB1 þ iB2Þ � cotc ðD1 þ iD2Þ ~X1 ¼ 0;

B3 � cotcD3
~X1 � i

sin2c
½ ~X2; ~X3� ¼ 0;

ðD1 þ iD2Þð ~X2 þ i ~X3Þ ¼ 0;

D3ð ~X2 þ i ~X3Þ � cotc ½ ~X1; ~X2 þ i ~X3� ¼ 0;

(4.2)

where the electric and magnetic components of the field
strength are

Ei ¼ Fi0; Bi ¼ 1
2�ijkFjk: (4.3)

These equations are consistent with the Gauss law

Di

�
1

e2
Ei þ �

8�2
Bi

�
þ i

e2
ð½Xa;D0Xa� þ ½Ya;D0Ya�Þ ¼ 0:

(4.4)

One could impose a further constraint ~X2 ¼ ~X3 ¼ 0, and
then the above BPS equations become

Bi � cotcDi
~X1 ¼ 0; Ei �Di

~X1 ¼ 0: (4.5)

These equations can also be obtained from the energy
functional, which can be reshuffled to

H ¼
Z

d3x
1

2e2
Tr

�
ðEi �Di

~X1Þ2 þ ðB1 � cotcD1
~X1Þ2 þ ðB2 � cotcD2

~X1Þ2 þ
�
B3 � cotcD3

~X1 � i

sin2c
½ ~X2; ~X3�

�
2

þ 1

sin4c
jD1ð ~X2 þ i ~X3Þ þ iD2ð ~X2 þ i ~X3Þj2 þ

�
i

sin2c
½ ~X2; ~X3� � cotcD3

~X2 þD0
~X3

�
2

þ
�

i

sin2c
½ ~X2; ~X3� þ cotcD3

~X3 þD0
~X2

�
2
�
þ

Z
@i Tr

1

e2
~X1

�
Ei � tancBi þ �i3

i

sin2c
½ ~X2; ~X3�

�

� 2D

sin2c
Tr ~X1½ ~X2; ~X3�

��������
z¼1

z¼�1
þ2D

Z
@i TrBi

~X1 þ ðY-dependent termsÞ; (4.6)

where we have used the Gauss law in completing the
squares. Note that there are three boundary terms.
Among these, the first term vanishes on imposing the
BPS equations and the second term is zero for Coulomb
vacua. Therefore, for the half-BPS configurations the en-
ergy is proportional to the magnetic charge

H ¼ 2D
Z

d3x@i TrBi
~X1: (4.7)

Thus, the 1=2 BPS configuration with nonzero energy
would be those with X2 ¼ X3 ¼ 0 and satisfies Eq. (4.5).

The 1=2-BPS equations for the supersymmetric condi-
tion �70�0 ¼ �0 can be obtained in a similar manner. The
resulting equations and the energy are exactly the same as
Eqs. (4.2) and (4.7) with ~Xa and c replaced by ~Ya and
�=2� c , respectively. After imposing both conditions,

we get the 1=4 BPS equations, which are complicated
and mixed version of the above 1=2 BPS equations. One
novel aspect of 1=4 BPS equations is that the electric and
magnetic fields are not parallel to each other.
Since the solution of the BPS equation is a dyonic object

in the presence of � term, we would like to briefly discuss
the Witten effect [16] in this case. Assume that the vacuum
is given by

Tr�� ¼ ~v2; (4.8)

where � ¼ ~X1 or � ¼ ~Y1 depending of the supersymmet-
ric condition. The Noether charge n generating the gauge
transformation around the direction � is
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n ¼
Z

d3x
@L

@ð@0Aa
i Þ
�Aa

i

¼
Z

d3xTr

�
1

e2
Ei þ �

8�2
Bi

�
1

~v
Di�: (4.9)

This is quantized as an integer. Using Eqs. (2.7) and (4.5),
we find

n ¼
�
�0
8�2

�D

�Z
d3x@i TrðBi�=~vÞ ¼

�
�0
8�2

�D

�
QM

¼ ð�0 � 4�DÞnm; (4.10)

where the upper (lower) sign is for � ¼ ~X1ð ~Y1Þ. QM is the
magnetic charge quantized as QM ¼ 4�nm with nm being
an integer. Therefore, for 1=2-BPS solutions to survive
quantum mechanically, the parameters in the coupling
should be quantized. Note, however, that there is no simple
relation between the electric charge and the magnetic
charge if the couplings are not constants. For example,
with Eq. (4.5),

QE ¼
Z

d3x@i Tr

�
1

e2 ~v
Ei

~X1

�

¼ 2D
Z

d3x@i Tr

�
sin2c

~v
Bi

~X1

�
: (4.11)

The electric charge would have been a sum of Noether
charge and that of the Witten effect if � is constant.

V. SHARP INTERFACE

Here, we consider the 1=2-BPS case that the coupling
constants e2ðzÞ, �ðzÞ change from one value to another at a
sharp interface so that

ðe; �; c Þ ¼
� ðe1; �1; c 1Þ for z > 0
ðe2; �2; c 2Þ for z < 0

: (5.1)

As there is no matter source at the interface, we get various
continuity conditions from the equations of motion. The
following quantities are continuous at the interface z ¼ 0:

Ei;

�
1

e2
E3 þ �

8�2
B3

�
; B3;

�
1

e2
Bi � �

8�2
Ei

�
;

~Xa; Di
~Xa; cotcD3

~Xa;

~Yp; Di
~Yp; tancD3

~Yp; ði ¼ 1; 2Þ: (5.2)

From this boundary condition we see that, if � is not
constant, electric charge is induced on the boundary, which
is proportional to the magnetic flux � through the bound-
ary

Qinduced
E ¼

Z
@i

�
1

e2
Ei

�
¼ �2 � �1

8�2
�: (5.3)

A. Reflection and transmission of waves

Let us consider now a massless wave propagating to-
ward the interface of the two coupling constants from z >
0 region. The fields and their derivatives in (5.2) should be
continuous across the interface z ¼ 0. A part of the inci-
dent wave will be reflected and the rest may get refracted or
transmitted. Let us call the electromagnetic field of the
incident wave to be E, B, the reflected wave to be E00, B00,
and the transmitted wave to be E0, B0. The continuity
equations at z ¼ 0 are

ðEþE00 �E0Þ � ẑ ¼ 0;

ðBþ B00 � BÞ � ẑ ¼ 0;�
EþE00

e21
� E0

e22
þ �1

8�2
ðBþB00Þ � �2

8�2
B0
�
� ẑ ¼ 0;

�
Bþ B00

e21
� B0

e22
� �1

8�2
ðEþE00Þ þ �2

8�2
E0
�
� ẑ ¼ 0:

(5.4)

The space-time dependence waves would be e�iwtþik�x,
e�iwtþik00�x, and e�iwtþik0�x for the incident, reflected, and
transmitted waves, respectively. The wave equation at each
region and the above continuity equations imply that

w ¼ jkj ¼ jk00j ¼ jk0j; k ¼ k0;

ðkþ k00Þ � ẑ ¼ 0:
(5.5)

Thus the transmitted wave is not refracted at all. After
taking out the space-time dependence, we can express the
electric fields of the reflected and transmitted waves in
terms of the the incident wave. The amplitudes of the
transmitted electric fields is given by

E0
0 ¼

sin2c 1

sinðc 1 þ c 2Þ ½cosðc 1 � c 2ÞE0 � sinðc 1 � c 2ÞB0�:
(5.6)

Note that the polarization direction is rotated. For the
reflected electric field, the expression explicitly depends
on the incident angle and will not be shown here since it is
rather complicated. However, if the incident electric field
has the form E0 ¼ E0ðcos2c 1m̂þ sin2c 1n̂Þ, where m̂ is
the unit vector normal to the plane formed by ẑ and k and

n̂ ¼ k̂� m̂, it can be written in a simple form

E 00
0 ¼ E0

sinðc 1 � c 2Þ
sinðc 1 þ c 2Þ m̂

¼ sinðc 1 � c 2Þ
sinðc 1 þ c 2Þ ð� cos2c 1E0 þ sin2c 1B0Þ: (5.7)

The expression in the second line also holds when the
incident wave is normal to the xy plane. The corresponding
magnetic fields can be obtained from the relation B ¼ k

w �
E. The reflection and the transmission coefficients defined
as E00

0 ¼ rE0, E
0
0 ¼ tE0 are however independent of the
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details of the incident wave and are always given by

r ¼
��������
sinðc 1 � c 2Þ
sinðc 1 þ c 2Þ

��������; t ¼
��������

sin2c 1

sinðc 1 þ c 2Þ
��������:
(5.8)

B. Gauge fields of a single dyon in the Abelian limit

For simplicity, we consider the SU(2) gauge theory,
which is broken spontaneous to U(1) subgroup by the
Higgs expectation values at the vacuum

h ~X1i ¼ 
3ffiffiffi
2

p ~v: (5.9)

The diagonal components of the fields will be massless,
and off-diagonal ones will be massive. We solve the 1=2
BPS Eq. (4.5) in the Abelian limit where the non-Abelian
core size vanishes. For definiteness, we work with the first
condition of Eq. (4.1). For a single dyon with charge (q, g)
at z ¼ a > 0, electric and magnetic fields would have the
form

B ¼
8><
>:

g
4�

ðx;y;z�aÞ
r3þ

þ g0
4�

ðx;y;zþaÞ
r3�

; z > 0

g00
4�

ðx;y;z�aÞ
r3þ

; z < 0;

E ¼
8><
>:

e2
1
q

4�
ðx;y;z�aÞ

r3þ
þ e2

1
q0

4�
ðx;y;zþaÞ

r3�
; z > 0

e2
2
g00

4�
ðx;y;z�aÞ

r3þ
; z < 0;

(5.10)

where r2� ¼ x2 þ y2 þ ðz� aÞ2, and the group factor


3=
ffiffiffi
2

p
is omitted for simplicity. The image charges

ðq0; g0Þ and ðq00; g00Þ are to be determined from the BPS
equations and the boundary conditions. The configuration
of scalar field ~X1 may be obtained by integrating the
electric field through Ei ¼ Di

~X1. From the BPS equation
Ei ¼ tancBi, it immediately follows that

q ¼ g

e21
tanc 1; q0 ¼ g0

e21
tanc 1; q00 ¼ g00

e22
tanc 2:

(5.11)

In addition, we have four equations from the boundary
conditions Eq. (5.2). Since we have only four unknowns
it may look over constrained. However, with the help of the
relation Eq. (2.7) between e2 and �, we can find a solution
satisfying all the equations,

g0 ¼ �g
sinðc 1 � c 2Þ
sinðc 1 þ c 2Þ

g00 ¼ 2g
sinc 1 cosc 2

sinðc 1 þ c 2Þ
q0 ¼ �2gD

sin2c 1 sinðc 1 � c 2Þ
sinðc 1 þ c 2Þ

q00 ¼ 4gD
sinc 1sin

2c 2 cosc 2

sinðc 1 þ c 2Þ :

(5.12)

The magnetic and electric fluxes to the northern and south-
ern hemispheres are, respectively,

�N
M ¼ 1

2ðgþ g0Þ; �S
M ¼ 1

2g
00;

�N
E ¼ 1

2ðqþ q0Þ; �S
E ¼ 1

2q
00;

(5.13)

and the charges QM and QE in Eqs. (4.10) and (4.11) are
given by the total fluxes

QM ¼ 1
2ðgþ g0 þ g00Þ ¼ g;

QE ¼ 1
2ðqþ q0 þ q00Þ ¼ 2gD sinc 1 sinc 2 cosðc 1 � c 2Þ;

(5.14)

which satisfy Eq. (4.11) as it should be.
One may wonder whether this object has nonzero field

angular momentum. At a first look this has to be the case
because a dyon produces nonzero angular momentum in
the background of an axionic domain wall [18] for which �
changes from zero to 2�, while the coupling e2 remains a
constant. For the present case, however, the electric field is
proportional to the magnetic field thanks to the half-BPS
equation and hence the field angular momentum defined by

M ¼
Z

d3xr� ðE�BÞ (5.15)

is identically zero.
The magnetic flux through the xy plane is

�a>0
M ¼ ��S

M ¼ �1
2g

00; (5.16)

which induces electric charge on the boundary as in
Eq. (5.3). If the dyon is on the negative z axis (a < 0),
the corresponding magnetic flux on the xy plane would be

�a<0
M ¼ 1

2g
00j1$2: (5.17)

Let us now consider the situation that a dyon with charge
(~q, g) at z < 0 region passes from the xy plane to z > 0,
where ~q ¼ g tanc 2=e

2
2 as given in (5.11). Since the cou-

pling constants change from ðe2; �2Þ to ðe1; �1Þ, the charge
should change to (q, g), accordingly. It is interesting to
check how the conservation of electric charge works. In
fact, as the dyon passes the xy plane the induced electric
charge (5.3) should also change due to the change of
magnetic flux, which is given by

�� ¼ �a>0
M ðq; gÞ ��a<0

M ð~q; gÞ

¼ �g
sinc 1 cosc 2

sinðc 1 þ c 2Þ � g
sinc 2 cosc 1

sinðc 1 þ c 2Þ ¼ �g:

(5.18)

Then,
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�Qinduced
E ¼ �1 � �2

8�2
g: (5.19)

This is to be compared with the change of the electric
charge of the dyon

�q ¼ q� ~q ¼ g

e21
tanc 1 � g

e22
tanc 2; (5.20)

where we have used Eq. (5.11). On using Eq. (2.7), this is
precisely cancelled by �Qinduced

E in Eq. (5.19). Usually the
induced charge on the axion domain wall is due to the
polarization of fermions, which led the photon-axion in-
teraction. In our case, a further study is needed to clarify
the exact nature of the sharp interface.

If the 1=4-BPS configurations are considered, the elec-
tric and magnetic fields are not parallel to each other in
general, and more richer configurations with nonzero an-
gular momentum would appear near a sharp interface. The
detail will be left as an exercise.

VI. ADDITIONAL SUSY BREAKING JANUS

Let us consider the further supersymmetry breaking
Janus configurations. This could happen two ways. First
is to have additional terms in the Lagrangian while keeping
the coupling constant �ðzÞ depending only on one spatial
coordinate. Another is to introduce additional space-time
dependence to the coupling constant and then correct the
Lagrangian. We have done a full classification in Ref. [5]
without the � term, and the same classification works for
the present case as long as we keep the supersymmetric
condition on �0, which we describe in the following.

A. The �ðzÞ case
In this subsection we are still interested in the case where

the coupling constant e2ðzÞ, �ðzÞ depends only on one
spatial coordinate. We can impose additional constraints
on the SUSY parameters �0, which is compatible with what
we have already imposed. We then find the corrections to
the Lagrangian and SUSY transformation, which needs
several undetermined parameters. Depending on the value
of these parameters, the number of preserved supersym-
metry would be 8, 4, or 2.

We impose on the ten-dimensional Majorana Weyl
spinor �, the four conditions including one in (2.10),

�3456�0 ¼ �0; �3489�0 ¼ ��0;

�3597�0 ¼ ��0; �3678�0 ¼ ��0:
(6.1)

As the product of the above four conditions is an identity,
there are only three independent conditions, breaking the
supersymmetry to 1=8th or two supersymmetries.

To cancel the supersymmetric variation (2.5) we add to
the Lagrangian the following three terms:

L1 ¼ i
c 0

4e2
��

�
��012 þ 1

sinc
ðc0�456 � c1�

489 � c2�
597

� c3�
678Þ � 1

cosc
ðc0�789 � c1�

567 � c2�
648

� c3�
459Þ

�
�;

L2 ¼ �i
2c 0

e2 sinc
Trðc0�4½�5; �6� � c1�4½�8; �9�

� c2�5½�9; �7� � c3�6½�7; �8�Þ

þ i
2c 0

e2 cosc
Trðc0�7½�8; �9� � c1�5½�6; �7�

� c2�6½�4; �8� � c3�4½�5; �9�Þ;

L3 ¼
X9
I¼4

rI Tr�
2
I ; (6.2)

where

rI ¼ Dc 02½cIðcI þ sin2c Þ cotc
þ ð1� cIÞð1� cI þ cos2c Þ tanc �
�Dc 00ðcI � sin2c Þ; (6.3)

and cI’s are real constants satisfying

c0 þ c1 þ c2 þ c3 ¼ 1; c4 ¼ c0 þ c1;

c5 ¼ c0 þ c2; c6 ¼ c0 þ c3; c7 ¼ c2 þ c3;

c8 ¼ c1 þ c3; c9 ¼ c1 þ c2: (6.4)

The correction of the supersymmetric transformation is

�1� ¼ �c 0ðcotc� � X� tanc� � YÞ�3�; (6.5)

where

� � X � c0
X

a¼4;5;6

�a�a þ c1
X

a¼4;8;9

�a�a þ c2
X

a¼5;9;7

�a�a

þ c3
X

a¼6;7;8

�a�a;

� � Y � c0
X

p¼7;8;9

�p�p þ c1
X

p¼5;6;7

�p�p þ c2
X

p¼6;4;8

�p�p

þ c3
X

p¼4;5;9

�p�p: (6.6)

Then the total Lagrangian L0 þL� þL1 þL2 þL3 is
invariant under the corrected supersymmetric transforma-
tion. For a generic values of constants cI, the number of
supersymmetry is two. If two of c0, c1, c2, c3 vanish, it is
enhanced to four. If only one of them is nonvanishing, we
will have eight supersymmetries as in the previous
sections.
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B. The �ðy; zÞ case
In our previous work [5], we classified all supersymmet-

ric theories with compatible intersecting Janus interface,
both in the two-dimensional and three-dimensional case.
One can work out a similar analysis to the current case with
the nontrivial � term. Let us first focus on the case where
the coupling constants are functions of two coordinates
e2ðy; zÞ and �ðy; zÞ. As before, compatible supersymmetric
conditions can be expressed by introducing a constant
Majorana Weyl spinor �0 defined by

�ðy; zÞ ¼ e�ð1=2Þc ðy;zÞ�0123
�0: (6.7)

One can impose three compatible supersymmetry condi-
tions

�2789�0 ¼ �3456�0 ¼ �0; (6.8)

� �2459�0 ¼ �3456�0 ¼ �0; (6.9)

� �2567�0 ¼ �3456�0 ¼ �0; (6.10)

which implies

�2648�0 ¼ �3489�0 ¼ �3597�0 ¼ �3678�0 ¼ ��0: (6.11)

Each condition breaks the supersymmetry to 1=2 and
imposing the three at the same time breaks the supersym-
metry to the minimal one 1=16.
With these supersymmetric conditions we consider the

following interface Lagrangian:

L1 ¼ �i
@3c

4e2
Trð ���012�Þ þ i

@2c

4e2
Trð ���013�Þ

þ i
@3c

4e2
Trð ��ðcsccM3 � seccN3Þ�Þ

þ i
@2c

4e2
Trð ��ðcsccM2 � seccN2Þ�Þ; (6.12)

and

L2 ¼ �2i
@3c

e2
cscc Trðc0�4½�5; �6� � c1�4½�8; �9� � c2�5½�9; �7� � c3�6½�7; �8�Þ

þ 2i
@3c

e2
secc Trðc0�7½�8; �9� � c1�5½�6; �7� � c2�6½�4; �8� � c3�4½�5; �9�Þ

� 2i
@2c

e2
cscc Trðb0�7½�8; �9� � b1�5½�6; �7� � b2�6½�4; �8� � b3�4½�5; �9�Þ

þ 2i
@2c

e2
secc Trðb0�4½�5; �6� � b1�4½�8; �9� � b2�5½�9; �7� � b3�6½�7; �8�Þ; (6.13)

where Mm, Nm, (m ¼ 2, 3) are matrices defined by

M3 � c0�
456 � c1�

489 � c2�
597 � c3�

678

N3 � c0�
789 � c1�

567 � c2�
648 � c3�

459

M2 � b0�
789 � b1�

567 � b2�
648 � b3�

459

N2 � �ðb0�456 � b1�
489 � b2�

597 � b3�
678Þ;

(6.14)

and ci, bi are real parameters satisfying

X3
i¼0

ci ¼
X3
i¼0

bi ¼ 1; (6.15)

so that there are six independent parameters. For conve-
nience we also denote cð2Þa ¼ ba and cð3Þa ¼ ca. Note that
the following properties hold for Mm and Nm:

�0123Mm� ¼ Nm�; ðcoscMm þ sincNmÞ� ¼ �m�:

(6.16)

Now we define the correction to the supersymmetric
transformation (2.2) �1� as

�1� ¼ �@3cB3�
3�� @2cB2�

2�; (6.17)

where

Bm ¼ cotc
X9
a¼4

cðmÞ
a �a�a � tanc

X9
a¼4

cðmÞ
aþ3�

a�a;

ðm ¼ 2; 3Þ: (6.18)

In this expression cðmÞ
4 ; . . . ; cðmÞ

9 are given in terms of cðmÞ
1 ,

cðmÞ
2 , cðmÞ

3 as

c4 � c0 þ c1; c5 � c0 þ c2; c6 � c0 þ c3;

c7 � c2 þ c3; c8 � c1 þ c3; c9 � c1 þ c2;

(6.19)

and

b4 � b2 þ b3; b5 � b1 þ b3; b6 � b1 þ b2;

b7 � b0 þ b1; b8 � b0 þ b2; b9 � b0 þ b3:

(6.20)

The index a is understood to be cyclic in 4; 5; . . . ; 9, i.e.,
c10 ¼ c4, c11 ¼ c5, and so on. With these, it is not difficult
to show that
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ðcoscMm � sincNmÞBn�

¼
�
�Bn þ 2

X9
a¼4

cðmÞ
a ðcðnÞa cotc � cðnÞaþ3 tanc Þ�a�a

�
�m�:

(6.21)

Also note that for a ¼ 4; 5; . . . ; 9,

ca þ caþ3 ¼ 1; cabaþ3 � bacaþ3 ¼ ca � ba;

caþ3 � baþ3 ¼ �ðca � baÞ: (6.22)

We are ready to find the supersymmetric Langrangian.
First, one can show that the zeroth variation �0ðL0 þ
L1 þL2Þ is cancelled by the first order terms from
�1L1. The only nonvanishing terms are �1L1 and the
second order terms from �1L0, which should be cancelled
by introducing another term L3 in the Lagrangian.
Utilizing the above properties among the parameters and
matrices, it can readily be shown that the desired term is

L3 ¼ � X
m¼2;3

ð@mc Þ2
e2

X9
a¼4

½cðmÞ
a ð1þ cðmÞ

a csc2c Þ þ cðmÞ
aþ3ð1þ cðmÞ

aþ3sec
2c Þ��2

a

þ X
m¼2;3

@2mc

2e2
X9
a¼4

½cðmÞ
a cotc � cðmÞ

aþ3 tanc ��2
a � @2c @3c

e2
ðcsc2c � sec2c Þ

� X
a¼4;5;6

ðca � baÞTrð�a�aþ3Þ þ @2@3c

e2
ðcotc þ tanc Þ X

a¼4;5;6

ðca � baÞTrð�a�aþ3Þ: (6.23)

Then the full Lagrangian L ¼ L0 þL� þL1 þL2 þ
L3 is invariant under the suupersymmetric transformation
ð�0 þ �1ÞL ¼ 0.

C. The �ðx; y; zÞ case
When the coupling constants depend on all three coor-

dinates, e2ðx; y; zÞ and �ðx; y; zÞ, there are two independent
supersymmetry conditions:

�1467�0 ¼ �2475�0 ¼ �3456�0 ¼ �0;

�1458�0 ¼ �2468�0 ¼ �3478�0 ¼ �0:
(6.24)

As in the previous section, we define

M1 � a1�
467 þ a2�

458; N1 � a1�
589 þ a2�

679;

M2 � b1�
475 þ b2�

468; N2 � b1�
689 þ b2�

597;

M3 � c1�
456 þ c2�

478; N3 � c1�
789 þ c2�

569;

(6.25)

where parameters satisfy the relation

a1 þ a2 ¼ b1 þ b2 ¼ c1 þ c2 ¼ 1: (6.26)

The correction to the supersymmetric transformation is

�1� ¼ �@1cB1�
1�� @2cB2�

2�� @3cB3�
3�; (6.27)

where Bm (m ¼ 1, 2, 3) are given by

Bm ¼ cotc

�
�4�4 þ

X8
i¼5

cðmÞ
i �i�i

�

� tanc

�
�9�9 þ

X8
i¼5

ð1� cðmÞ
i Þ�i�i

�
; (6.28)

and here we introduced the notations as before,

a5 ¼ a2; a6 ¼ a1; a7 ¼ a1; a8 ¼ a2;

b5 ¼ b1; b6 ¼ b2; b7 ¼ b1; b8 ¼ b2;

c5 ¼ c1; c6 ¼ c1; c7 ¼ c2; c8 ¼ c2;

cð1Þi � ai; cð2Þi � bi; cð3Þi � ci ði ¼ 5; 6; 7; 8Þ:
(6.29)

Then the correction terms to the Lagrangian again turn out
to consist of three terms:

L1 ¼ � i

4e2
Tr½@1c ���023�þ @2c ���031�þ @3c ���012�� @1c ��ðcsccM1 � seccN1Þ�

� @2c ��ðcsccM2 � seccN2Þ�� @3c ��ðcsccM3 � seccN3Þ��; (6.30)
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L 2 ¼ �2i
@1c

e2
Trfcscc ða1�4½�6; �7� þ a2�4½�5; �8�Þ � secc ða1�5½�8; �9� þ a2�6½�7; �9�Þg

� 2i
@2c

e2
Trfcscc ðb1�4½�7; �5� þ b2�4½�6; �8�Þ � secc ðb1�6½�8; �9� þ b2�5½�9; �7�Þg

� 2i
@3c

e2
Trfcscc ðc1�4½�5; �6� þ c2�4½�7; �8�Þ � secc ðc1�7½�8; �9� þ c2�5½�6; �9�Þg; (6.31)

and

L3 ¼ � X3
m¼1

ð@mc Þ2
2e2

Tr½ð1þ csc2c Þ�2
4 þ ð1þ sec2c Þ�2

9�

� X3
m¼1

ð@mc Þ2
2e2

X8
i¼5

Tr½1þ ðcðmÞ
i Þ2csc2c þ ð1� cðmÞ

i Þ2sec2c ��2
i

þ X3
m¼1

@2mc

2e2
Tr

�
cotc

�
�2

4 þ
X8
i¼5

cðmÞ
i �2

i

�
� tanc

�
�2

9 þ
X8
i¼5

ð1� cðmÞ
i Þ2�2

i

��

� 1

e2
½@1c @2c ðcsc2c � sec2c Þ � @1@2c ðcotc þ tanc Þ�Tr½ða2 � b1Þ�5�6 þ ða1 � b1Þ�7�8�

� 1

e2
½@2c @3c ðcsc2c � sec2c Þ � @2@3c ðcotc þ tanc Þ�Tr½ðb2 � c1Þ�6�7 þ ðb1 � c1Þ�5�8�

� 1

e2
½@3c @1c ðcsc2c � sec2c Þ � @3@1c ðcotc þ tanc Þ�Tr½ðc2 � a1Þ�5�7 þ ðc1 � a1Þ�6�8�: (6.32)

It is straightforward to show that the full Lagrangian is
invariant,

ð�0 þ �1ÞðL0 þL� þL1 þL2 þL3Þ ¼ 0: (6.33)
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