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Abstract

Background

Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in

women of reproductive age, and it is affected by both environmental and genetic factors.

Although the genetic component of PCOS is evident, studies aiming to identify susceptibility

genes have shown controversial results. This study conducted a pathway-based analysis

using a dataset obtained through a genome-wide association study (GWAS) to elucidate

the biological pathways that contribute to PCOS susceptibility and the associated genes.

Methods

We used GWAS data on 636,797 autosomal single nucleotide polymorphisms (SNPs) from

1,221 individuals (432 PCOS patients and 789 controls) for analysis. A pathway analysis

was conducted using meta-analysis gene-set enrichment of variant associations

(MAGENTA). Top-ranking pathways or gene sets associated with PCOS were identified,

and significant genes within the pathways were analyzed.

Results

The pathway analysis of the GWAS dataset identified significant pathways related to oocyte

meiosis and the regulation of insulin secretion by acetylcholine and free fatty acids (all nomi-

nal gene-set enrichment analysis (GSEA) P-values < 0.05). In addition, INS, GNAQ,

STXBP1, PLCB3, PLCB2, SMC3 and PLCZ1 were significant genes observed within the

biological pathways (all gene P-values < 0.05).

Conclusions

By applying MAGENTA pathway analysis to PCOS GWAS data, we identified significant

pathways and candidate genes involved in PCOS. Our findings may provide new leads for

understanding the mechanisms underlying the development of PCOS.
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Introduction
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women
of reproductive age, and it is characterized by chronic oligo-anovulation, clinical and/or bio-
chemical hyperandrogenism and polycystic ovaries [1]. PCOS is a heterogeneous disorder with
reproductive and metabolic phenotypes [2]. Studies have revealed family clustering in PCOS,
suggesting genetic factors for the condition. Among first-degree relatives of women with
PCOS, there is an increased prevalence of type 2 diabetes and androgen excess [3, 4]. In addi-
tion, the heritability of PCOS has been identified in a twin study [5].

Previous genetic studies on PCOS have been based mainly on candidate gene identification,
which has revealed many of the genes involved in insulin expression and steroidogenesis [6, 7].
However, results for only a few of these genes have been confirmed through association studies,
and the adopted approaches currently focus on the identification of susceptibility loci through
genome-wide association studies (GWAS).

GWAS is a powerful, unbiased method for screening susceptible genes associated with com-
plex diseases [8, 9]. The first GWAS of PCOS was performed in Han Chinese women and iden-
tified important susceptibility single nucleotide polymorphisms (SNPs) on chromosomes
2p16.3, 2p21 and 9p33.3; these SNPs were located in genes that included the thyroid adenoma-
associated gene (THADA), DENN/MADD domain-containing 1A (DENND1A) and luteinizing
hormone/choriogonadotropin receptor (LHCGR) [10]. In a study with a larger Han Chinese
cohort, eight new loci were discovered [11]. In Korea, a GWAS of PCOS identified one novel
locus with genome-wide significance on chromosome 8q24.2, located upstream of KHDRBS3
(KH domain containing, RNA binding, signal transduction associated 3) associated with telo-
merase activity [12, 13].

One strength of GWAS is the ability to discover significant SNPs and novel genes associated
with a disease. However, GWAS studies primarily focus on individual SNPs that meet a strin-
gent significance criterion, neglecting the interplay of genes. Additionally, most identified
SNPs lack functional relevance, explaining only a small portion of genetic heritability [14, 15].
The method also ignores the genetic interactions of complex diseases, and biological function
cannot be determined. In GWAS, significant SNPs related to a certain disease may not be iden-
tified in other studies of the same disease because of their small effect size. To overcome this
limitation, pathway-based approaches have been introduced and applied to GWAS datasets to
further elucidate the pathogenesis of diseases [16].

The pathway-based approach integrates GWAS results with genes in biological pathways or
gene sets from predefined human databases, ranking all genes according to their statistical sig-
nificance [15, 17]. This method generates larger effect sizes, showing increased power to detect
genes that may have been missed through GWAS, which improves the interpretability of
genetic studies [17, 18]. In addition, because this approach can utilize genomic data to the max-
imal extent, unexpected or undetermined interactions of genes within a disease can also be
identified. By applying pathway analysis to GWAS datasets, biological pathways associated
with Crohn’s disease and common inflammatory pathways related to type 1 diabetes and rheu-
matoid arthritis can be discovered [19, 20].

Identifying the genetic pathways involved in PCOS may provide a more contextualized
understanding of the mechanism underlying PCOS. The aim of this study was to use a path-
way-based analysis of a GWAS dataset to elucidate the biological pathways involved in PCOS
and the associated genes.
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Study Methods

Subjects
The pathway analysis was conducted using a PCOS GWAS dataset that we generated previously.
The dataset included data from 1,000 patients with PCOS and 1,000 controls. This study was
performed in the Endocrinology and Gynecology Clinics of EwhaWomans University Hospital
from December 2008 through November 2010. PCOS was diagnosed using the National Insti-
tutes of Health (NIH) criteria, which define the disorder as the presence of chronic oligo-anovu-
lation and clinical and/or biochemical hyperandrogenism; the NIH criteria exclude other
disorders, such as Cushing syndrome, adult-onset congenital adrenal hyperplasia and androgen
secreting neoplasm [21]. Oligo-anovulation was defined as fewer than eight menstrual cycles per
year. Biochemical hyperandrogenemia was defined as a total or free testosterone level above the
95th percentile (total testosterone� 67 ng/dL or free testosterone� 0.84 ng/dL) based on the tes-
tosterone levels recorded in 1,120 healthy, regularly cycling women [22]. Clinical hyperandro-
genism was evaluated based on the presence of hirsutism, defined as a modified Ferriman-
Gallwey (mFG) score of 3 or above, which is the cutoff value for East Asian women recom-
mended by the Androgen Excess and Polycystic Ovary Syndrome Society [23, 24].

Anthropometric, biochemical and hormonal measurements
Weight and height were measured in all subjects, and body mass index (BMI) was calculated
(kg/m2). Waist circumference was measured to the nearest 0.1 cm on bare skin during mid-res-
piration at the narrowest indentation between the tenth rib and the iliac crest. Systolic and dia-
stolic blood pressures were also measured. Hirsutism was assessed by a single trained nurse
using the mFG scoring method.

After an overnight fast of at least 8 hours, a venous blood sample was obtained from each
subject on the third day of the follicular phase of the menstrual cycle. Standardized enzymatic
methods were used to analyze lipid profiles, including serum total cholesterol, high-density
lipoprotein (HDL) cholesterol and triglyceride levels. For evaluation of glucose tolerance, a
standard 75 g oral glucose tolerance test (OGTT) was performed in all subjects after an over-
night fast to determine fasting plasma glucose and 2-hour post-load glucose. Total testosterone
levels were measured using the chemiluminescent immunoassay method (commercial kit, Sie-
mens, New York, NY, USA), and sex hormone-binding globulin (SHBG) levels were measured
using immunoradiometric assays (commercial kit, Diagnostic Products Corporation, Los
Angeles, CA, USA). Using the formula from the International Society for the Study of the
Aging Male (http://www.issam.ch/freetestos.htm), free testosterone levels were calculated
using total testosterone, SHBG and albumin levels [22].

The institutional review board of Ewha Womans University Mokdong Hospital approved
the study. Written informed consent was obtained from all participants.

GWAS dataset analyses
Genomic DNA was extracted from individual peripheral blood samples and genotyped in
2,000 samples using the Illumina HumanOmni1-Quad v1 BeadChip (Illumina Inc., San Diego,
CA, USA). Quality control (QC) procedures were applied using PLINK version 1.07 [25],
excluding the samples through the following properties: genotyping calls< 95%,
heterozygosity> 30%, markers with high missing call rate> 1%, minor allele
frequency< 0.05 and significant deviation from Hardy-Weinberg equilibrium < 1 x 10−6. A
total of 636,797 autosomal SNPs representing 1,922 individuals were obtained after the QC
procedures. After excluding individuals with PCOS who did not satisfy the NIH diagnostic
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criteria, the data from 1,221 individuals (432 women with PCOS and 789 controls) were avail-
able. Additive models were used for analysis.

Pathway-based analysis
A pathway analysis was conducted using meta-analysis gene-set enrichment of variant associa-
tions (MAGENTA) (http://broadinstitute.org/mpg/magenta) to identify biological pathways or
gene sets associated with PCOS [26]. MAGENTA implements gene-set enrichment analysis
(GSEA) associated with GWAS data through pathway annotations from the Gene Ontology
(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Protein Analysis Through Evolu-
tionary Relationships (PANTHER), BioCarta and Reactome databases, which are web-based
databases included in the Pathguide (http://pathguide.org) online resource.

The analytical steps of MAGENTA are as follows [26]. SNP association P-values and chro-
mosome positions obtained from GWAS are mapped with genes that are located at a predeter-
mined boundary. Gene scoring based on regional SNP P-values is completed, and SNPs with
the most significant P-value within the predefined boundary (called the “best SNP P-value”)
are selected. Gene scores are then corrected for confounders, including gene size, SNP numbers
and linkage disequilibrium-related properties. Gene sets enriched with highly ranked gene
scores are analyzed with the selected biological pathway or gene sets, and gene-set enrichment
P-values are calculated. Additional information, including the 95th and 75th percentile cutoffs,
the names of genes within each pathway or gene set, and the nominal GSEA P-value and false
discovery rate (FDR), is analyzed through multiple test correction. Because the 75th percentile
cutoff demonstrates greater power in interpreting complex diseases with high polygenesis, we
used this cutoff value for interpretation [26, 27]. After identifying the top-ranking biological
pathways or gene sets associated with PCOS, significant genes that were observed within the
identified pathways were further analyzed. Genes showing P-values of less than 0.05 were con-
sidered to be significant genes involved in the selected pathways or gene sets.

Results
The clinical and biochemical characteristics of the women with PCOS and controls included in
this study are shown in Table 1. The women with PCOS were younger than the controls, and

Table 1. Clinical and biochemical characteristics of the womenwith polycystic ovary syndrome and controls included in this study.

Characteristc PCOS (n = 432) Controls (n = 789) P-value

Age (years) 24 ± 5 26 ± 4 < 0.001

Body mass index (kg/m2) 24.0 ± 4.7 21.0 ± 2.6 < 0.001

Waist circumference (cm) 79.2 ± 11.4 72.2 ± 7.0 < 0.001

Systolic blood pressure (mmHg) 110.8 ± 10.4 106.9 ± 9.0 < 0.001

Diastolic blood pressure (mmHg) 71.9 ± 9.0 69.4 ± 7.8 < 0.001

mFG score 2 ± 2 1 ± 1 < 0.001

Total testosterone (ng/dL) 76.7 ± 18.6 46.4 ± 15.6 < 0.001

Free testosterone (ng/dL) 1.20 ± 0.43 0.40 ± 0.19 < 0.001

Total cholesterol (mg/dL) 184.2 ± 30.6 174.0 ± 27.9 < 0.001

Triglycerides (mg/dL) 100.1 ± 62.4 73.7 ± 34.9 < 0.001

HDL-cholesterol (mg/dL) 49.5 ± 13.2 50.0 ± 10.6 0.492

Fasting plasma glucose (mg/dL) 87.4 ± 15.8 85.1 ± 6.8 0.006

Post-load 2-hour glucose (mg/dL) 112.3 ± 39.6 95.2 ± 18.5 < 0.001

Data are presented as means ± standard deviations. HDL, high-density lipoprotein; mFG, modified Ferriman-Gallwey.

doi:10.1371/journal.pone.0136609.t001
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their metabolic profiles, including BMI, waist circumference, systolic and diastolic blood pres-
sure, total cholesterol, triglycerides, and fasting and post-load 2-hour glucose levels, were
higher compared with the controls.

The top ten significant biological pathways or gene sets associated with PCOS are displayed
in Table 2. Pathways related to ovulation and insulin secretion, including oocyte meiosis
(KEGG), the regulation of insulin secretion by acetylcholine (ACh) (Reactome) and the regula-
tion of insulin secretion by free fatty acids (FFAs) (Reactome), were the top-ranking pathways
associated with PCOS. Other pathways were also identified (all nominal GSEA P-
values< 0.05), including neural tube closure (GO term), other kinases (PANTHER), the cal-
cium signaling pathway (KEGG), acyltransferase (PANTHER), the negative regulation of oste-
oclast differentiation (GO term), cytoskeletal protein binding (GO term) and developmental
processes (PANTHER). The FDR values for oocyte meiosis, the regulation of insulin secretion
by ACh and FFAs and calcium signaling pathways were 0.078, 0.152, 0.110 and 0.222,
respectively.

The genes involved in the biological pathways were further evaluated. The significant genes
involved in the pathway of oocyte meiosis were SMC3 (structural maintenance of chromosome
3), CCNE2 (cyclin E2), PPP2R5D (protein phosphatase 2, regulatory subunit B, delta), INS
(insulin), PPP2R5C (protein phosphatase 2, regulatory subunit B, gamma), PLCZ1 (phospholi-
pase C, zeta 1), PPP2R5A (protein phosphatase 2, regulatory subunit B, alpha), PPP1CB (pro-
tein phosphatase 1, catalytic subunit, beta isozyme) and SPDYA (speedy/RINGO cell cycle
regulator family member A) (all gene P-values< 0.05). The genes INS, STXBP1 (syntaxin bind-
ing protein 1), PLCB3 (phospholipase C, beta 3), GNAQ (guanine nucleotide binding protein,
q polypeptide) and PLCB2 (phospholipase C, beta 2) were identified in the pathways related to
the regulation of insulin secretion by ACh and the regulation of insulin secretion by FFAs (all
gene P-values< 0.05) (Table 3). In the calcium signaling pathway, genes such as LHCGR,

Table 2. Top ten significant biological pathways or gene sets associated with polycystic ovary syndrome.

Database Biological pathway or
gene set

95% cutoff (Top 5%) 75% cutoff (Top 25%)

Nominal
GSEA
P-value

FDR Expected #
of genes

Observed #
of genes

Nominal
GSEA
P-value

FDR Expected #
of genes

Observed #
of genes

KEGG Oocyte meiosis 2.67E-1 1.000 5 7 5.00E-4 0.078 26 42

Reactome Regulation of insulin
secretion by acetylcholine

1.92E-2 0.705 1 4 7.00E-4 0.152 6 13

GO term Neural tube closure 1.33E-1 0.733 1 3 1.10E-3 1.000 6 14

Reactome Regulation of insulin
secretion by free fatty

acids

1.56E-2 0.725 1 4 1.50E-3 0.110 5 12

PANTHER Other kinase 1.72E-1 1.000 2 4 2.00E-3 0.336 11 20

KEGG Calcium signaling pathway 1.27E-1 1.000 8 12 2.10E-3 0.222 42 58

PANTHER Acyltransferase 9.00E-4 0.236 5 13 2.60E-3 0.212 24 37

GO Term Negative regulation of
osteoclast differentiation

1.77E-2 0.538 1 3 2.90E-3 0.901 3 8

GO Term Cytoskeletal protein
binding

3.05E-1 0.791 2 3 2.90E-3 1.000 10 18

PANTHER Developmental processes 1.22E-1 1.000 22 28 3.20E-3 0.761 112 137

FDR, false discovery rate; GO, gene ontology; GSEA, gene-set enrichment analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; PANTHER,

Protein Analysis Through Evolutionary Relationships.

doi:10.1371/journal.pone.0136609.t002
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PLCB3, PLCZ1, GNAQ, EGFR (epidermal growth factor receptor) and PLCB2 were significant.
Detailed information on the genes identified in other biological pathways is shown in S1 Table.
All pathway information was downloaded from the Pathguide online resource.

Discussion
In this study, a pathway-based approach was applied to a GWAS dataset of patients with
PCOS. The study identified significant pathways involved in ovulation and insulin secretion,
including oocyte meiosis and the regulation of insulin secretion by ACh and FFAs.

Pathway analysis is a post-GWAS analysis method that can be applied to further interpret
GWAS results. Early pathway-based approaches employed raw genotype data for GSEA, which
are not provided in all GWAS, and required intensive computational permutations [16]. To
simplify the application of GSEA to GWAS data, pathway approaches using SNP P-values such
as MAGENTA have been introduced; these approaches analyze the statistical power of GWAS
by integrating the P-values for variant associations into gene scores [26]. Through MAGENTA
pathway analysis, important pathways associated with triglycerides, low-density lipoprotein
(LDL) cholesterol, BMI and type 2 diabetes can be identified [26, 27].

In the present study, oocyte meiosis was identified as the top-ranking biological pathway
associated with PCOS. Oocyte quality, maturation and fertilization are affected by factors such
as hyperandrogenemia and insulin resistance, which are important phenotypes of PCOS and
can lead to premature follicular luteinization and anovulation [28, 29]. The regulation of insu-
lin secretion by ACh was another top-ranking biological pathway associated with PCOS. Pan-
creatic ß-cells are regulated by various hormones and neurotransmitters; ACh is an important
neurotransmitter that is released by intrapancreatic nerve endings and promotes glucose-stim-
ulated insulin secretion through muscarinic ACh receptors [30]. Variation in this biological

Table 3. Significant genes within the biological pathways or gene sets associated with polycystic ovary syndrome.

Biological pathway or gene set (database) Genes (P <0.05) Best SNP CHR SNP P-value

Oocyte meiosis (KEGG) SMC3 rs3828047 10 7.85E-05

CCNE2 rs4364818 8 2.96E-03

PPP2R5D rs1091000 6 3.00E-03

INS rs4648808 11 1.07E-03

PPP2R5C rs1274976 14 3.62E-03

PLCZ1 rs1075339 12 5.55E-03

PPP2R5A rs1112082 1 8.54E-03

PPP1CB rs1158747 2 9.83E-03

SPDYA rs161811 2 1.01E-02

Regulation of insulin secretion by acetylcholine (REACTOME) INS rs4648808 11 1.07E-03

STXBP1 rs1870516 9 5.80E-03

PLCB3 rs1908490 11 4.02E-03

GNAQ rs7539775 9 2.30E-03

PLCB2 rs2029490 15 4.11E-03

Regulation of insulin secretion by free fatty acids (REACTOME) INS rs4648808 11 1.07E-03

STXBP1 rs1870516 9 5.80E-03

PLCB3 rs1908490 11 4.02E-03

GNAQ rs7539775 9 2.30E-03

PLCB2 rs2029490 15 4.11E-03

CHR, chromosome; KEGG, Kyoto Encyclopedia of Genes and Genomes; SNP, single nucleotide polymorphism.

doi:10.1371/journal.pone.0136609.t003
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pathway could result in abnormal insulin regulation and glucose intolerance, which are impor-
tant phenotypes of PCOS. The biological pathway related to the regulation of insulin secretion
by FFAs was also associated with PCOS. Chronic FFA exposure can have a detrimental effect
on insulin secretion and ß-cell function, with elevated FFA levels enhancing hepatic gluconeo-
genesis and insulin resistance in the liver and peripheral tissues [31]. In addition, obesity can
increase fat deposition in islet cells, leading to insulin resistance and hyperinsulinemia, which
are important metabolic features of PCOS [32].

INS was observed in all three top ranking pathways associated with PCOS. Previous studies
showed an association of this gene with insulin resistance, obesity and type 2 diabetes through
variation of the VNTR (variable number of tandem repeats) locus at class III allele [33–35].
INS was also associated with anovulation in PCOS, although there are conflicting studies [36–
38]. These inconsistencies could be due to different diagnostic criteria used for PCOS, as well
as different study groups or ethnicities. In our study, we used the NIH criteria for PCOS, which
is a strict diagnostic method compared to Rotterdam or Androgen Excess Society criteria [21].
Severe metabolic abnormalities are seen in this group; studies show worse phenotypes for met-
abolic profiles and higher insulin resistance compared to non-NIH groups [2, 39, 40]. More
studies on NIH-PCOS groups will be needed to further elucidate the association between INS
and PCOS.

From the genes identified in the pathway of regulation of insulin secretion by acetylcholine
and FFA, GNAQ, a Gq protein encoding gene, is a known candidate gene of PCOS that medi-
ates the insulin induced translocation of GLUT4 in adipocytes and is associated with insulin
resistance and obesity in PCOS [41]. Other genes such as STXBP1, PLCB2 and PLCB3 have not
been identified in PCOS yet. However, published studies have demonstrated abnormal expres-
sion in these genes, leading to abnormal insulin secretion and disordered glucose homeostasis
[42, 43].

Calcium signaling pathway might have an association with androgen excess. Calcium is cru-
cial in gonadotropin secretion, and studies have shown that calcium signaling is affected by
androgen levels [44, 45]. LHCGR was identified in this pathway, which is a known susceptibil-
ity loci of PCOS discovered through GWAS, having an association with hyperandrogenism
[10, 46, 47]. Other genes such as EGFR and PLCZ1 were also observed in this pathway. Abnor-
mal expression of EGFR was related with oocyte incompetence in PCOS women [48]. PLCZ1 is
expressed in sperm, and variations of this gene lead to low fertilization and male infertility [49,
50]. Variation in these genes could be the cause leading to androgen excess in PCOS, although
extensive studies proving this association are necessary.

Although there is a lack of studies on the genes identified in the biological pathways of
oocyte meiosis and PCOS, many genes have been studied in other human diseases. Mutation of
SMC3 is related with Cornelia de Lange syndrome, characterized by features such as growth
and mental retardation with abnormal limb formation, and associated with the development of
atopic asthma and myeloid neoplasms [51–55]. Inactivation of PPP1CB caused chronic lym-
phocytic leukemia, whereas CCNE2 was related to the development of non-small cell lung can-
cer and breast cancer [56–58]. Mutations in the PP2A regulatory subunit B family of genes
resulted in features associated with overgrowth, and because it is an important gene in the
phosphorylation of tau protein, which is crucial in neurofibrillary tangle formation, it could
lead to Alzheimer’s disease [59–61].

We used a pathway-based approach to identify multiple biological pathways or gene sets
that are involved in the pathogenesis of PCOS. To our knowledge, this was the first GWAS
dataset-based pathway analysis study to be conducted for PCOS. One of the strengths of this
study is that the subjects were accurately selected, and homogenous PCOS groups were
recruited using well-defined diagnostic criteria. Although the identified pathways did not show
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an FDR of less than 0.05, significant pathways associated with ovulation and insulin secretion
were discovered at an FDR of less than 0.2. Because ovulatory dysfunction and abnormal insu-
lin secretion are major features of PCOS, the biological pathways identified in this study may
be important. However, validation of these pathways using other pathway approaches will be
necessary.

There are some limitations of this study. First, the number of women with PCOS included
in the GWAS dataset is relatively small. Second, the pathway analysis tools applied in the study
are biased toward detecting well-defined pathways. However, the majority of the genes in the
genome are relatively unknown, and their biological function still needs to be established.
Third, our study is confined to Korean women only. Because different phenotypes of PCOS are
seen in women with different ethnic backgrounds, our results may not be generalizable to
other ethnic groups. However, genes such as LHCGR have been identified as susceptibility loci
in Han Chinese, Hui Chinese and Egyptian populations [10, 57, 62]. Therefore, similar biologi-
cal pathways and genes may be found in these ethnicities, although pathway analysis will be
required.

In conclusion, by applying pathway analysis to a GWAS dataset for PCOS, significant bio-
logical pathways and genes associated with ovulation and insulin secretion were identified. Our
results may contribute to understanding the mechanisms underlying PCOS.
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