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We consider a deformed single-field inflation model in terms of three SO(3) symmetric moduli fields.
We find that spatially linear solutions for the moduli fields induce a phase transition during the early stage
of the inflation and the suppression of scalar power spectrum at large scales. This suppression can be an
origin of anomalies for large-scale perturbation modes in the cosmological observation.
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I. INTRODUCTION

Recent measurements of the cosmic microwave
background (CMB) by the WMAP and Planck collabora-
tions [1,2] support the inflationary scenario. Most of the
inflationary models predict a nearly Gaussian and scale-
invariant power spectrum of adiabatic perturbation modes,
which can be realized by the single-field slow-roll infla-
tionary model. However, the most recent data released by
the Planck collaboration [1] reported statistically signifi-
cant anomalies at low multipoles, which corresponds a
power deficit 5%–10% at a multipole range l≲ 40 with the
2.5–3σ level. Therefore, the usual single-field inflation
model needs some modification to express the large-scale
scalar power suppression. This suppression of the scalar
power spectrum was then used to explain the observed low
quadrupole in the CMB anisotropy.
There are several interesting approaches that address the

scalar power suppression and are relevant to the suppres-
sion method pursued in this paper. The first one is the
mechanism studied by Hazra et al. [3], who introduced a
steep potential during the first few e-foldings of inflation. It
is followed by a fast-roll phase during the large-scale
modes cross the horizon, and the resulting scalar power
spectrum is suppressed since it is inversely proportional to
the inflaton velocity. See also Refs. [4,5]. The second one is
related to a nonzero spatial curvature in a single-field
inflation model. In this case, one can also induce the
suppression of the scalar power spectrum on large scales
[6,7]. In the same line of thought, recently White et al.
revisited the open inflation model [8], which gives rise to a
suppression of the scalar power on large scales. Here, the
main source of the suppression is also the steepening of the

potential due to the barrier that separates the true and
false vacua.
In this paper, we consider a modification of the

canonical single-field inflation model, which induces
large negative running of ns and results in a suppression
of the scalar power spectrum on large scales.1 As a
specific model, we consider a deformation of a single-
field inflation model by adding kinetic terms for a number
of scalar moduli fields,
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We also consider a background solution with spatially
linear configurations, σa ∼ xa ða ¼ 1; 2; 3Þ and σi ¼ 0

(i ¼ 4; � � � ; N̄). Then, the usual cosmological evolution
for the single field under the Friedmann-Robertson-
Walker (FRW) metric with the background solution for
σa guarantees the homogeneity and isotropy of the
cosmological principle [16–19]. In the perturbation level,
fluctuations for σi (i ¼ 4; � � � ; N̄) are decoupled and have
no influence on cosmological observables [19]. For this
reason, we consider the N̄ ¼ 3 case for simplicity. This
model corresponds to the case with fðφÞ ¼ 1 in the work
[19]. On the other hand, without the usual single inflaton
field contribution, inflation is also possible when one uses
a higher-order combination of X ¼ ∂μσ

a∂μσa (a ¼ 1; 2; 3)
with a spatially linear configuration of σa. This inflation
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1The large negative running of ns can be introduced in the
context of reconciling the results of the Planck and BICEP2
collaborations [9], though it has been pointed out that uncertainty
from the foreground effect can dominate the excess [10–12]
observed by the BICEP2 collaborations. See also for the
suppression of the scalar power spectra on large scales
Refs. [3,8,13–15], after the BICEP2 observation.
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model is known as the solid inflation [18]. See also
Refs. [20].
In our model, the background evolution is the same as

that of the single-field model with the curvature term of
the open universe. That is, the solution σa ∼ xa induces
the curvature term of the open universe in the
Friedmann equation, though we start from the flat
FRW metric.2 The curvature term is proportional to
the inverse square of the scale factor, and so the effect
of the spatial condensation appears during the very
early stage of the inflation and disappears quickly as the
scale factor grows up. Since we start from the phase in
which the curvature term is much more dominant than
the potential term of the single field, there appears a
phase transition from the curvature term dominant phase
to the potential term dominant phase. Because of the
phase transition in the early stage of the background
evolution, there appears the suppression of the scalar
power spectrum. This situation has some resemblance to
that of inflation models referred as “whipped inflation”
[3,14] and “open inflation” [8,15,21], in which there
exist phase transitions from the fast-roll phase to the
slow-roll phase of the single scalar field model. These
phase transitions during the early stage of inflation
induce the suppression of the scalar power spectrum
on large scales, though the detailed suppression mech-
anisms are different from that in our model.
The organization of this paper is as follows. In the next

section, we explain the properties of the background
evolution under the spatial condensation. In Sec. III, we
investigate the effects of the spatial condensation in the
linear perturbation level. We find the suppression of the
scalar power spectrum and large value of the running of
the scalar spectral index on large scales. We conclude
in Sec. IV.

II. BACKGROUND EVOLUTION ON A
SPATIAL CONDENSATION

We start from the action for the single-field inflation
model with an additional triad of moduli scalar fields,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
R −

1

2
∂μφ∂μφ − VðφÞ − 1

2
∂μσ

a∂μσa
�
;

ð2:1Þ

where a ¼ 1; 2; 3 and MP denotes the Planck mass,
MP ≡ ð8πGÞ−1=2. The SO(3)-symmetric fields σa have
no potential. Then, equations of motion of the scalar fields
σa are read as

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νσ

aÞ ¼ 0: ð2:2Þ

Under the background FRW metric, ds2 ¼ −dt2 þ
aðtÞ2ðdx2 þ dy2 þ dz2Þ with the scale factor aðtÞ, the
spatially linear configuration

σa ¼ M2
Pαx

a ð2:3Þ

satisfies the equations (2.2). Here, the constant gradient α is
an arbitrary dimensionless parameter. In order to be
consistent with the cosmological principle of homogeneity
and isotropy, we assume that the field φ depends on time
only. Then, the remaining equations of motion of gμν and φ
in (2.1) are given by

H2 ¼ 1

3M2
P

�
1

2
_φ2 þ 3M4

pα
2

2a2
þ V

�
;

_H ¼ −
1

2M2
P

�
_φ2 þM4

pα
2

a2

�
;

φ̈þ 3H _φþ Vφ ¼ 0; ð2:4Þ

where H ≡ _a=a and Vφ ≡ dV=dφ. As was discussed in
Ref. [19], the α terms in (2.4) correspond to the curvature
terms by identifying the curvature constant K as K ¼
−M2

Pα
2=2. Since the curvature constant is negative in this

case, the equations representing the background evolution
in (2.4) are the same with those of the open universe in
the single-field inflation model. Although the single-field
model in the open universe is the same with our model in
the background level, they are different in the perturba-
tion level due to the contribution of fluctuation modes of
σa. In our case, 3 degrees of freedom (one scalar mode
and two vector modes) originating from the triad of scalar
fields appear in the perturbation level, while there is no
additional perturbation degree of freedom in the usual
single-field inflation model with a negative curvature
constant.
Now, we investigate some characteristic properties of the

background evolution of our model. The effect of the α
terms in (2.4) is decreasing rapidly during the inflation and
has some influence on the early time of the inflation period.
Especially, as we see in the first line of (2.4), the Hubble
horizon rH ≡ 1=H starts from a small value when we
introduce a large value of the α-dependent term at the initial
state, increases during the early stage of the inflation, and
approaches the value of the single-field inflation model at
late time.
In our model, the suppression of scalar power spectrum

on large scales can be achieved by introducing a large value
of the α term at the early time of inflation. For that purpose,
we consider the case that the α term in the first equation of
(2.4) is much larger than the potential term of the inflaton
field, i.e.,

2We call the remnant of the solution σa ∼ xa in the background
evolution spatial condensation.
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3M4
pα

2

2a2
≫ VðφÞ: ð2:5Þ

Obtaining an analytic solution for the equations in (2.4) is a
formidable task for the potentials of the large-field inflation
models. So we rely on a semianalytic way to figure out the
behavior of the background evolution governed by the
equations in (2.4), based on the numerical method. By
employing the simplest scalar potential VðφÞ ¼ 1

2
m2φ2, for

concreteness, we find that the scalar field φ remains almost
constant until the e-folding number N ¼ 10 ∼ 20. See
Fig. 1. Then, there appears a stage that the value of α
term is comparable to that of the potential, i.e.,

3M4
pα

2

2a2
≃ VðφÞ: ð2:6Þ

After the universe passes through this stage, the scalar field
starts to decrease and follows the behavior of the canonical
slow-roll inflation. The behaviors of the background scalar
field and the Hubble horizon with respect to the e-folding
number N are plotted in Fig. 1.
As we see in Fig. 1, there is a sharp transition point near

Neq ≃ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3α2M4

P

2VðφðNeqÞÞ

s
; ð2:7Þ

where Neq ≡ logaeq represents the e-folding number when
the α term is the same with the potential of the scalar field.
After the transition point, the background evolution rapidly
follows the behavior of the usual slow-roll inflation by
rolling down the potential slop. For this reason, we can
approximate the background equations in (2.4) under the
assumption of the slow rolling of the scalar field as

early time∶ 3H2 ≃ 3α2M2
P

2a2
þ Λ
M2

P
; ð2:8Þ

late time∶ 3H2 ≃ 3α2M2
P

2a2
þ VðφÞ

M2
P
; ð2:9Þ

where Λ≡ VðφiÞwith an initial value of the scalar field φi.
From the relation (2.7), we also have the relation

Neq ≃ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3α2M4

P

2Λ

r
: ð2:10Þ

In the early time, the background equation (2.8) has a
solution [22,23]

aðtÞ≃ aeq sinh

 ffiffiffiffiffiffiffiffiffi
Λ

3M2
P

s
ðtþ t0Þ

!
; ð2:11Þ

where t0 is the initial time with the scale factor a0. On the
other hand, in the late time for a given value of α, the scale
factor a is already very large, and then the α term in (2.9)
becomes much smaller than the potential term. Based on
the numerical result during the late time in Fig. 1, we see
that the scalar field starts to roll down the potential slope
matching the behavior of the usual slow-roll approxima-
tion. Since the behavior of the background evolution for the

case 3α2M2
P

2a2 ≪ V
M2

P
was already investigated in Ref. [19], we

omit the detailed background behaviors in this paper.

III. SUPPRESSION OF LARGE SCALE SCALAR
POWER SPECTRUM

A. Generality

We consider the linear scalar perturbation of the FRW
metric,

ds2 ¼ −ð1þ 2AÞdt2 þ 2a∂iBdtdxi

þ a2½ð1 − 2ψÞδij þ 2∂i∂jE�dxidxj; ð3:1Þ

FIG. 1 (color online). The graphs of the inflaton field φðNÞ (left) and Hubble radius 1=HðNÞ (right). We set the pivot scale k0 ¼
0.05 Mpc−1 and N� ¼ 60. We choose the initial condition as ai ¼ 1, φi ¼ 16.5MP, _φi ¼ 0, m ¼ 5.85 × 10−6MP, and α ¼ 102.
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where A, B, ψ , and E are four scalar modes. In the linear
perturbation, there is also a contribution from fluctuations
of scalar fields,

φðt; xÞ ¼ φðtÞ þ δφðt; xÞ;
σaðt; xÞ ¼ σaðxÞ þ δσaðt; xÞ: ð3:2Þ

The three perturbation modes δσa are decomposed into one
scalar and two vector modes,

δσa ¼ δσa∥ þ δσa⊥: ð3:3Þ

In this work, we focus on the scalar mode δσa∥ in the
perturbation level.3 Since the kinetic term of σa in (2.1) is a
well-defined quadratic form, the kinetic term of the three
perturbation modes δσa’s is also well defined and does not
violate the energy condition. Here, we express the longi-
tudinal mode δσa∥ in terms of a scalar mode u with a
normalization [16,19],

δσa∥ ¼
1

k
∂au; ð3:5Þ

where k is the comoving wave number. We introduce the
1=k factor to define the canonical kinetic term for the scalar
mode u in the form of the perturbed Lagrangian.
Employing the spatially flat gauge ðψ ¼ 0 & E ¼ 0Þ, the

perturbed scalar equations are reduced to

Q̈φ þ 3H _Qφ þ
�
k2

a2
þ _φVφ

M2
PH

þ Vφφ

�
Qφ

þ 2

�
_H _φ

H
− φ̈

�
A ¼ 0;

Q̈u þ 3H _Qu þ
�
k2

a2
þ 2α2M2

p

a2

�
Qu ¼ 0; ð3:6Þ

where Qφ ≡ δφ − _φ
H ψ and Qu ¼ u − αkM2

PE are gauge-
invariant quantities [19]. Scalar modes A and B satisfy the
constraints

3AH2 −
k2BH
a

¼ 1

2M2
p
ðA _φ2 − _φ _Qφ − VφQφÞ þ

αk
2a2

Qu;

2AH ¼ _φQφ

M2
p
þ α

k
Qu −

α2M2
pB

a
: ð3:7Þ

Using these constraints, one can express the modes A and B
in terms of Qφ and Qu. In this multifield perturbation
system, the comoving curvature perturbation is written
as [19]

R ¼ H

"
_φQφ − αM2

PðαM
2
PB
a − _Qu

k Þ
_φ2 þ α2M4

P
a2

#
: ð3:8Þ

Differently from the single-field inflation model, there is
also a nonvanishing isocurvature perturbation [19]. How-
ever, here we only concentrate on the adiabatic curvature
perturbation.

B. Suppression of the scalar power spectrum

As we discussed in Sec. 2, there are two inflation
phases in the background evolution, the α-term dominant
phase and the scalar potential dominant phase. Because
of the phase transition during the inflation, the compu-
tation of the power spectrum is different from that of the
usual single scalar-field model. To calculate the power
spectrum and related observational quantities, such as the
scalar spectral index ns and the running of the spectral
index αs, we use the method developed in Ref. [4], in
which the authors calculated the power spectrum of the
single scalar-field model with the potential having a step
transition. Because of the shape of the scalar potential,
there are two inflationary phases, the fast-roll phase and
slow-roll phase. The origin of the phase transition in
Ref. [4] is different from ours, but there is a robust
similarity between these two cases in the sense that there
is a transition during the inflation and the background
evolution approaches the usual slow-roll inflation phase
of the single-field model at late time. For this reason, we
follow the method developed in Ref. [4] to compute the
power spectrum and related perturbation quantities.
Because of the phase transition in the background level,
there is also a phase transition to the perturbed equations
in (3.6). We try to solve the perturbed equations for the
α-term dominant phase and the scalar potential dominant
phase separately and apply the matching condition at the
transition point.

1. Early time

In the early time, having the limit 3M
4
pα

2

2a2 ≫ V, we obtain
A, B from (3.7) in the leading order of the limit as

3In the linear perturbation level, the two vector modes δa⊥ have
no contribution to the scalar mode [19]. To see this fact explicitly,
one can read the ð0; iÞ component of the perturbed Einstein
equation δG0

i ¼ M−2
P δT0

i as

−2∂iðHAþ _ψÞ ¼ M−2
P δT0

i

¼ M−2
P

�
−∂ið _φδφÞ − αδ _σi þ α2

a
∂iB

�
: ð3:4Þ

Taking the curl of both sides of (3.4), we obtain ϵijk∂jδσk ¼ 0.
That is, only the longitudinal scalar mode can satisfy this relation.
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A ≈
α
k MPQu

2þ 3
α2M2

P
k2

; B ≈ −

ffiffiffiffiffiffiffiffiffiffi
4V0

3α2M4
P

q
Qu

zM2
Pð2þ 3

α2M2
P

k2 Þ
: ð3:9Þ

Using the relation (3.9) and the fact that φ is almost a
constant during the α-term dominant phase, we conclude
that the A-dependent term in (3.6) is negligible. One can
also neglect Vφ- and Vφφ-dependent terms in (3.6) since
VðφÞ is almost constant in the early time phase. Introducing
the Sasaki–Mukhanov variables,

V ≡ aQφ; U ≡ aQu; ð3:10Þ

and the conformal time coordinate τ ¼ R dt=a, we obtain
the decoupled differential equations for V and U as

V 00
e þ

�
k2e1 − α2M2

Pcsch
2

�
αð−τÞffiffiffi

2
p

��
Ve ¼ 0;

U 00
e þ

�
k2e2 − α2M2

Pcsch
2

�
αð−τÞffiffiffi

2
p

��
Ue ¼ 0; ð3:11Þ

where the prime represents the differentiation with respect
to the conformal time, the subscript e denotes the early time
phase, and

ke1 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 −

α2M2
P

2

r
; ke2 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 3α2M2

P

2

r
: ð3:12Þ

Using general solutions for Ve and Ue, we obtain normal-
ized solutions [22],

VeðτÞ ¼
M

3
2

Pffiffiffiffiffiffiffiffiffi
2ke1

p ð− αMPffiffi
2

p þ ike1Þ

×

�
−
αMPffiffiffi

2
p coth

�
αð−τÞffiffiffi

2
p

�
þ ike1

�
e−ike1τ;

UeðτÞ ¼
M

3
2

Pffiffiffiffiffiffiffiffiffi
2ke2

p ð− αMPffiffi
2

p þ ike2Þ

×

�
−
αMnffiffiffi

2
p coth

�
αð−τÞffiffiffi

2
p

�
þ ike2

�
e−ike2τ: ð3:13Þ

Here, we adjusted the integration constants for the solutions
Ve and Ue to get the Bunch–Davies vacua in the τ → −∞
limit,

VeðτÞ ¼
M

3
2

Pffiffiffiffiffiffiffiffiffi
2ke1

p e−ike1τ; UeðτÞ ¼
M

3
2

Pffiffiffiffiffiffiffiffiffi
2ke2

p e−ike2τ: ð3:14Þ

As we see in (3.14), effective wave numbers for
oscillation modes Ve and Ue at early time are ke1 and
ke2, which are deformed from the wave number k due to the
nonvanishing value of α. Then, we find that there is a

minimum value of the comoving wave number k. The
modes below the minimum value always stay in the
superhorizon scale and never cross the horizon, so those
modes do not contribute to current observable quantities.
Now, we try to obtain the minimum value of the wave
number. As we will see later, the leading contribution to the
power spectrum comes from the Ve mode in the limit we
are considering. So we focus on the mode Ve. The horizon
crossing condition for the mode Ve at the early stage of
inflation is given by

ke1 ¼ a�H�; ð3:15Þ

and the corresponding conformal time τ� is

τ� ¼ −
ffiffiffi
2

p

αMP
tanh−1

�
αMPffiffiffi
2

p
ke1

�
: ð3:16Þ

From this relation, we notice that at the early stage of
inflation the Hubble crossing occurs only when perturba-
tion modes satisfy the condition to give a real value of τ�,

αMPffiffiffi
2

p
ke1

< 1: ð3:17Þ

This condition determines the minimum value of the
comoving wave number,

kmin ¼ αMP: ð3:18Þ

In the current observation for perturbation modes, the
minimum comoving wave number is in the range
kmin ≲ 10−2 Mpc−1. Because of this fact, one can roughly
estimate the value of α as

α ∼
Mpc−1

MP
≪ 1: ð3:19Þ

2. Late time

On the other hand, in the late time satisfying the

condition 3α2M4
P

2a2 ≪ VðφÞ, one can express the scalar modes
A and B in terms of the gauge-invariant variables, Qφ and
Qu from the constraint (3.7),

A≃ _φ

2HM2
P
Qφ þ

α

2kH
Qu;

B≃ α

2k

�
3a
k2

−
1

aH

�
Qu þ

a _φ
2Hk2M2

P

_Qφ: ð3:20Þ

Using (3.20), one can easily see that the coefficient of the
A-dependent term in the first line of (3.6) belongs to higher
order for slow-roll parameters. For this reason, the differ-
ential equations forQφ andQu are decoupled in the leading
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contribution of slow-roll parameters. Then, we obtain
differential equations for Vl and U l in the conformal time
coordinate as

V 00
l þ

�
k2l1 −

μ21 − 1
4

τ2

�
Vl ¼ 0;

U 00
l þ

�
k2l2 −

μ22 − 1
4

τ2

�
U l ¼ 0; ð3:21Þ

where the subscript l denotes the late time phase and

k2l1 ≡ k2 −
α2M2

P

6
; k2l2 ≡ k2 þ 11α2M2

P

6
;

μ1 ≃ 3

2
þ 3ϵ − η; μ2 ≃ 3

2
þ ϵ: ð3:22Þ

Here, the slow-roll parameters, ϵ and η, are defined as

ϵ ¼ _φ2

2M2
PH

2
; η ¼ Vφφ

3H2
: ð3:23Þ

General solutions of Vl and U l modes for differential
equations in (3.21) are given by

VlðτÞ ¼ M
3
2

P

ffiffiffiffiffiffi
−τ

p ðC1H
ð1Þ
μ1 ð−kl1τÞ þ C2H

ð2Þ
μ1 ð−kl1τÞÞ;

U lðτÞ ¼ M
3
2

P

ffiffiffiffiffiffi
−τ

p ðD1H
ð1Þ
μ1 ð−kl2τÞ þD2H

ð2Þ
μ2 ð−kl2τÞÞ;

ð3:24Þ

where HðiÞ
μ ðxÞ (i ¼ 1; 2) are the first and second kinds of

the Hankel functions and C1;2, D1;2 are integration
constants.

3. Matching condition

As we discussed in the previous section, there are two
phases in our model, and we obtained perturbation modes
for each phase separately. Then, all perturbed modes should
satisfy matching conditions at the transition point τeq in
conformal time,

VeðτÞjτ¼τeq
¼ VlðτÞτ¼τeq

; V 0
eðτÞτ¼τeq

¼ V 0
lðτÞτ¼τeq

;

UeðτÞτ¼τeq
¼ U lðτÞτ¼τeq

; U 0
eðτÞτ¼τeq

¼ U 0
lðτÞτ¼τeq

:

ð3:25Þ

Here, we notice that the perturbed modes V and U satisfy
the same type of differential equations with different
parameters. So in what follows, we only consider the
matching condition for the mode V. Then, the results can be
extended to the case of the mode U as well. From the
matching condition in (3.25), we obtain the corresponding
integration constants,

C1 − C2 ¼
e−iβτeq

ffiffiffi
π

pffiffiffi
2

p
k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ke1τeq

p �
ðke1 þ iαMPÞkl1τeqJμ1−1

þ
�
ðke1 þ iαMPÞ

�
μ −

1

2

�

þ ðiα2M2
P þ 2αke1MP − 2ik2e1Þτeq

�
Jμ1

�
;

C1 þ C2 ¼
−ie−iβτeq

ffiffiffi
π

pffiffiffi
2

p
k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ke1τeq

p �
ðke1 þ iαMPÞkl1τeqYμ1−1

þ
�
ðke1 þ iαMPÞ

�
μ −

1

2

�

þðiα2M2
P þ 2αke1MP − 2ik2e1Þτeq

�
Yμ1

�
;

ð3:26Þ

where we used the relations between the Hankel functions
and Bessel functions, Hð1;2Þ

μ ðxÞ≡ JμðxÞ � iYμðxÞ, and
defined the quantities at the transition point as

Jμ ¼ Jμð−kl1τeqÞ; Yμ ¼ Yμð−kl1τeqÞ;

τeq ¼ −
ffiffiffi
2

p
coth−1ð ffiffiffi

2
p Þ

αMP
: ð3:27Þ

4. Power spectrum

Now, we try to obtain the power spectrum for the
curvature perturbation R in (3.8) and related observational
quantities. For a single scalar model, one usually reads the
power spectrum at the horizon crossing point since it is
guaranteed in the absence of the transition point that
curvature perturbations of perturbed modes are frozen after
the horizon crossing. In our case with two inflationary
phases, however, reading the power spectrum at the horizon
crossing point can cause some possible errors for large-
scale modes that are deformed due to the presence of the
nonvanishing α term. That is, one cannot guarantee the
freezing of the curvature perturbation after the horizon
crossing for large-scale modes. For this reason, we read the
power spectrum at the limit τ → 0 for all values in the
region k > αMP.
Using the relation (3.20) in the limit 3α2M4

P
2a2 ≪ VðφÞ,

we obtain leading contributions for the curvature perturba-
tion [19],

R≃ 1

2þ α2M2
P

a2H2ϵ

�
−

ffiffiffi
2

p

MP
ffiffiffi
ϵ

p Qφ þ
α

kHϵ
_Qu

�
: ð3:28Þ

As we see in (3.18), the comoving wave number has a
minimum value, and so we notice that all comoving wave
numbers relevant to the observation are in the range
αMP
k < 1. Because of this fact, from now on, we neglect
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the contribution of _Qu in (3.28) by keeping the leading
contribution of αMP

k since the _Qu term in (3.28) gives an
OðαMP

k Þ4 contribution to the resulting power spectrum [19].
Then, the power spectrum of the curvature perturbation is
given by

PRðkÞ≡ k3

2π2
hRR�i�

≃
�
1þ α2M2

P

2ϵ�k2

�−2 H2�
2ϵ�M2

P
lim
τ→0

k1lhVlðτÞVlðτÞ�i;

ð3:29Þ

where the subscripted asterisk indicates the value at the
horizon crossing point kl1 ¼ aH and we take the late time

limit τ → 0 to read the power spectrum. Plugging the first
line of (3.24) into (3.29), we obtain

PR ≃ Pð0Þ
R

jC1 − C2j2
ð1þ α2M2

P
2ϵk2 Þ

2
; ð3:30Þ

where Pð0Þ
R denotes the power spectrum of the canonical

single inflation model,

Pð0Þ
R ¼ H2�

8π2M2
P

1

ϵ
ð1þ ð2 − 2CÞηþ ð6C − 8ÞϵÞ: ð3:31Þ

Here, C ¼ 2 − ln 2 − γ with the Euler–Mascheroni
constant γ ≈ 0.5772 and

jC1 − C2j2 ¼ −
παMP

Xke1

�
β2
�
1þ α2M2

P

2k2

�
k2l1

α2M2
P
J2μ1−1

þ 2β

��
1þ α2M2

P

2k2

��
μ −

1

2

�
þ βα2M2

P

k2

�
kl1
αMP

Jμ1Jμ1−1

þ
��

1þ α2M2
P

2k2

��
μ −

1

2

�
2

þ βα2M2
P

k2

�
μ −

1

2

�

þ β2
�
1þ 3α2M2

P

4k2

��
J2μ1

�
; ð3:32Þ

where β≡MPατeq ¼ −
ffiffiffi
2

p
coth−1ð ffiffiffi

2
p Þ.

As discussed previously, we notice that during the early
time phase modes satisfying the condition k > αMP can
only cross the Hubble horizon. In other words, modes in the
range k < αMP stay outside the Hubble horizon and never
cross the horizon. Therefore, those superhorizon modes are
causally disconnected to our Universe and irrelevant to
observational quantities. As we see in the plot of the power
spectrum in Fig. 2, the power spectrum in our model
asymptotically approaches that of the single-field model
(dashed blue line) by increasing the comoving wave
number k, while it is strongly suppressed by decreasing
the value k.
In this paper, we investigate the behavior of power

spectrum in terms of the value k. To do that, we divide the
values of k into two regions, k ≫ αMP and k≳ αMP. At
first, in the region k ≫ αMP, from (3.30) we have the
following asymptotic form of power spectrum:

PR ≃ Pð0Þ
R

�
1 −

α2M2
P

ϵk2
þ α2M2

P

β2k2
sin2
�

βk
αMP

��
: ð3:33Þ

The power spectrum is almost scale invariant but modu-
lated with small oscillation. This oscillation behavior of the
power spectrum was also reported in a different inflation
model with phase transition [3,4]. The corresponding

spectral index nR and the running of the spectral index
αR at the pivot scale k0 in the leading order of α=k with
small slow-roll parameters are given by

nR ≃ nð0ÞR þ 2α2M2
P

ϵ�k20
; αR ≃ −

4α2M2
P

ϵ�k20
; ð3:34Þ

where nð0ÞR denotes the spectral index at the pivot scale k0
for the single-field inflation model. We notice that the

FIG. 2 (color online). The primordial power spectrum of
curvature perturbation for the usual single-field model (dashed
blue line) and the inflation model on the spatial condensation
(solid red line).
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spectral index is slightly increasing and the running is
negative and slightly decreasing by decreasing the value k
due to the spatial condensation. On the other hand, for the
region k≳ αMP, we obtain the behavior of the power
spectrum as

PR ∼
k4

α4M4
p
Pð0Þ

R : ð3:35Þ

This behavior was plotted in Fig. 2 in terms of the red line
in the logarithmic scale of the wave number. Then, the
corresponding spectral index and its running are given by

nR ≃ 5; αR ≃ 0: ð3:36Þ

From this behavior of the power spectrum in the spatial
condensation, one can clearly notice a strong suppression
of the scalar power spectrum on large scales. Since the
spectral index is approaching a constant on these large-
scale limits, the running of the spectral index becomes
almost zero.
We analyzed the behavior of the power spectrum in terms

of semianalytic methods for large scales k≳ αMP and small
scales k ≫ αMP in the previous paragraph. However, as we
see in the numerical result shown in Fig. 2, there is a sudden
transition of the power spectrum for intermediate scales
between k≳ αMP and k ≫ αMP. Therefore, for this region,
the spectral index grows suddenly by decreasing the comov-
ing wave number, i.e., the scalar power spectrum starts to be
suppressed strongly, and then one has large negative running
of the spectral index in the intermediate region.

IV. CONCLUSION

There are several models to accomplish the suppression.
One common property of these models is that there exists a
phase transition of the background evolution and it is
connected to the slow-roll phase of the single-field inflation
model at late time. In this paper, we showed that a deformed
single-field inflation model in terms of the spatial con-
densation has a phase transition that is similar to that of
models in Refs. [14,15] and the suppression of the scalar
power spectrum on large scales.
We deformed a single-field inflation model in terms of

three SO(3) symmetric moduli fields σa. On the solution
with constant gradient σa ¼ αxa, the background evolution
is equivalent to that of the single inflation model with the
curvature term of the open universe. During very early
time, the background evolution is governed by the curva-
ture term, but soon after the curvature term is rapidly
decreased. Then, at the late time, the evolution is governed
by the potential term of the single scalar field and
asymptotically approaches that of a single-field inflation
model. This means that there exists a phase transition
of the background evolution, and so, for an analytic
approach, we divided the background evolution into two

phases, the α-term dominant phase and the potential term
dominant phase.
During the α-term dominant phase, we assumed that the

inflation started with a very large value of the α term
(curvature term) and then the e-folding could be accumu-
lated very rapidly. Therefore, during the early time phase
with a short cosmic time process, the single scalar field
remains almost constant. Assuming the scalar potential is a
constant, there is an exact solution governing the back-
ground evolution. On the other hand, in the late time phase,
the α term becomes very small, and the evolution is
governed by the potential term and asymptotically
approaches that of the single-field inflation. Under the
slow-roll assumption, the system is governed by slow-roll
parameters and a small contribution of the α term.
Under the above circumstance of the background evo-

lution, we investigated the behavior scalar modes in the
linear perturbation level. We considered the perturbation
modes in the early and late time phases separately. For
perturbed modes in the two phases, we applied the junction
condition at the transition point. Then, we obtained the
power spectrum, the spectral index, and the running of
the spectral index for scalar modes. We found that the
power spectrum is apparently suppressed by decreasing the
comoving wave number, while it approaches the value of
the single-field inflation model for a large value of the
comoving wave number. Therefore, one can obtain large
negative running of the scalar spectral index on large scales.
We also found a oscillation behavior of the power spectrum
at late time.
We focused on the suppression of the scalar power

spectrum on large scales. However, we also expect that
there will be a nontrivial contribution to the isocurvature
perturbation since our model has two perturbed scalar
modes. Actually, our model introduces a free gradient
parameter α to a single-field inflation model in an isotropic
and homogeneous way. Therefore, to accommodate obser-
vational data, a similar analysis to what we did in this paper
can be applied to various inflation models by adjusting the
free parameter α.
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