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Zero modes of the nonrelativistic SU{2)Chem-Simons solitons
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It is demonstrated that 4n parameters are required to specify a nonrelativistic n-soliton solution in the
nonlinear planar Schrodinger equation coupled to the SU(2) Chem-Simons gauge Gelds. This result im-

plies that the most general soliton solutions of the theory can be obtained from the Toda ansatz.
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I. INTRODUCTION

U(1)-invariant gauge theories in 2+ 1 space-time di-
mensions with a Chem-Simons term possess static soliton
solutions that satisfy self-dual equations [1]. Especially,
in the nonrelativistic limit the self-dual equations pro-
duce the Liouville equation, all of whose solutions are
known [2]. The resulting U(1)-invariant n-soliton solu-
tions depend on 4n parameters, interpreted as 2n loca-
tions, n scales, and n phases, with one overall phase being
irrelevant. An index theorem confirms that 4n is indeed
the correct number [3]. The problem can be generalized
to the case where the invariance group is non-Abelian
[4»]

Dunne, Jackiw, Pi, and Trungenberger [6] (DJPT)
made a systematic analysis of the nonlinear planar
Schrodinger equation with a coupling to a non-Abelian
Chem-Simons term and its self-dual equation. In the
nonrelativistic limit with the Toda ansatz DJPT have
found special solutions of the self-dual equations of the
theory and have shown that the Chem-Simons theory
provides a unified framework for a variety of nonlinear
equations (Toda, affine Toda, sinh-Gordon, nonlinear o.
model CP model, Bullough-Dodd, etc.}. However, gen-
eral solutions of the self-dual equations of the theory are
not yet known. It will be interesting then to count the
degrees of freedom needed to describe the most general
configuration of the n-soliton system of the theory. The
degrees of freedom within the Toda ansatz have been
computed with the result of 4n [7]. A main result of this
paper is that this number of parameters entering the most
general soliton solution is 4n.

The system we are studying is governed by the Hamil-
tonian

H= fd x (D4) (DC)
2m

2
(O'T'4 )(O'T'C), k&0

2mk

where 4 is the matter field matrix transforming under lo-
cal gauge transformations according to the adjoint repre-
sentation of the SU(2} gauge group,

[T', T ]=te,b, T', (T')b, = i&et,&—'

DC=V% ig [ A,—4],
(1.2)

and A is the vector field matrix which is determined by
the Chem-Simons equation

B=B)A~—8~A, ig[A„—A~]= — [4,4 ] . (1.3)

The Hamiltonian achieves its minimum when 4 satisfies
the static self-dual equation

(Dt+iDq)4=0 . (1.4)

Using the notation 8+=8,kiBz, A+ = A, +iAz, we

rewrite Eqs. (1.3) and (1.4) in the form

—t} A —ig [ A, A ]= [4,4t], (1.5)

In the Cartan-Weyl basis, the field N, 4t, and A can be
decomposed as

(1.7)
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A~= Ag'T3+ A~ 'T++ A~+'T (1.8) II. EIGENVALUE EQUATIONS FOR ZERO MODES

a y")—' (A' )y(+)—A(+)y( ')=O,

y(
—) i (A3 y(

—) A( —)4(+))—P

y(+ ) ig( A (+ ) y(3) A (3)y(+ )—)P

and the Chem-Simons equation (1.5) yields

a, A'" —a A',"—ig(A( )A(+) —A',+'A' )

(1.9)

(1.10)

where T+=(1/&2)(T)+iTz). Note that p' ' and p'+'
are not complex conjugate to each other unless 4=4 .
The self-dual equation (1.6) then yields three equations:

a,5y(3)+rgb( )5-A',+' =O,

(a, (g—A(,3) }5y( ) -(g—y( )5-A(,') =0,
(a, +)gA(,")5y'+)=0,

(a 5A (3) a 5A (3)
)

C (y(
—)5$(—)»+ +

(2.1}

(2.2)

(2.3)

In order to count the parameters entering the general
static soliton solutions of the SU(2) Chem-Simons system,
we take infinitesimal variations of Eqs. (1.5) and (1.6). On
the Toda backgrounds, infinitesimal fluctuations preserv-
ing self-duality satisfy the equations

g (y(
—)y(

—)» y(+)y(+)«) (1 12)
K

2 g (y(3)y(+) y(
—)y(3) ) (1 13)

K

+y(
—)«5y( —) —p

(a, +igA(,")5A(+)—(a +igA(3) )5A',+'

)g y(
—)»5y(3) —p

k

(2.4)

(2.5)

a A'" —a A'+' —i (A'+'A'" —A"'A'+')

C (y(+)y(3)» y(3)y( —)«) (1 14)
K

Various ansatz can be made for soliton-type solutions
of these equations. One simple soliton-type solution can
be obtained from the Toda ansatz
(4=/( 'T+, A=A' 'T3). With this ansatz, the self-
dual equation and the Chem-Simons equation become,
respectively,

These equations will admit an infinite family of solutions
connected with gauge transformations. In order to re-
move gauge degrees of freedom from Eqs. (2.1)-(2.5), we
impose a gauge condition. There are two convenient
gauges: the Coulomb gauge and background gauge,
where the latter requires the fluctuations to be orthogonal
to the gauge transformations whose parameter vanishes
at spatial infinity. We will consider both gauge condi-
tions by introducing a parameter in the equation

y(
—) igA(3)y( —) —P

a A'" —a A"'= ' (y'-'('.+ — — +

(1.15}

(1.16)

[a; i eg A;,g—5A;]+—a[54,4 ]+—a[54, (I))=0 .

(2.6)

The Coulomb and the background gauges correspond to
@=0and @=1,respectively.

With the Toda backgrounds, Eq. (2.6) implies

g[a,5A'"+a 5A',"]
+«[y( )»5y( ) y( )5y( )»] p (2 7)

g[a+5A'+'+a 5A'++']+ig a[A'+'5A'+'+ A' '5A'++']

)ey( )«—5y(3) =-0 . (2.8)

y( )(r 8) &i(a —1)e 2n 1 a=, (1.17)
V'ar r"+r

n 2r
g A =— ( —i sin8+ j cosa) .

r r"+r (1.18) If we write

The soliton-type solutions of these two equations have
been studied in detail by Jackiw and Pi [2]. For later use,
we present the spherically symmetric n-soliton solution of
Eqs. (1.15) and (1.16):

This paper is organized as follows. In Sec. II we derive
eigenvalue equations for zero modes of the SU(2) Chern-
Simons solitons. In Sec, III, we solve these eigenvalue
equations to exhibit the 4n zero modes explicitly. Con-
cluding remarks and discussions are given in the last sec-
tion.

P(a) P(a)+ iy(a) u + 3

(+)—A (+)+
& A (+) A (3) A (3) + .

A (3)
i iR l iI & + 1 l 2

(2.9)

Eqs. (2.1)—(2.6) take the matrix form, which is fully re-
ducible as

D) 0 0
Dg= 0 D2 0

0 0 D3 '93

=0, (2.10)

where
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2&dr(

~y(
—)

2art)r

ey(
—)

a, +gA(," —a, +gA(,"
a,—gA', " a, +gA,")

y(-) y(-)

y(-) y(-)

a2

81 B2

gy(
—)

gy(
—)

gSA'," =0

gSA(23)

(2.11)

gA (3) g gA (3) gy(+)

D292 g + A(3) g A(3), g ~(+)
2 g 1 1 g 2 &I

(2.12}

a2

E'g A 1
E'g A 2 a2 R 2 I

~gA (3) ~gA (3) ~
y(

—) ~
y(

—)
1 2 2 I 2 R g~A 1R

g5A', R+'

gA (3)

y(
—)

y(
—)

—a 1

gA (3)

y(
—)

gA (3)

y(
—)

y(
—)

gA', "
a2

~y(
—

)

~y(
—

)

—a2

~y(
—)

&({)'R '

g5A'+'

gSA', +,
'

gy(3)

5y(3)

=0. (2.13)

Equation (2.13) can be written in a simpler form if we define ri, as

2)3=Qk (2.14)

where

gA (3)

gA (3)

y(
—)

y(
—

)

gA', "
gA (3)

y(
—

)

y(
—

)

~y(
—)

~y( —)

~y(
—

)

~y(
—)

gA (3)

—8) —gA',"
()2 0

()2 8)

gA (3)

—a) —gA ',"
4
4

0 Cs

0 (6

{2.15)

DeSning three complex fields g")=g)+i g2, g( '=$3+i g4, and g( '=ps i/6, we—can write Eq. (2.13) in the three com-
plex equations

a [(a +igA("g'"]=0,
(V +2 ~(t)' '~ )g' ' —'P' ){(1 —i A' ))g' '=0,
[P' —/2~$ )

—g ) A
~
+(1+ )'g A '())']g' —[j(x((3 +jgsA )y +(I(2+ lsi2)'y () ]g

,'[(—8(—)+igsAI '}(8+ igA'+') ——(8++igs A+ ()()8 +igA' ) )g' '=0 .

(2.16)

(2.17)

(2.18)

g5A'+'= —(tl + gA"')g'"+2'

+ (() —ig A "' )g"',
gtsA(" = —(a +igA'")(g'"+g"'),
gy(3) —

& 4,( —)g( () g g(2)

Q.19}

(2.20)

(2.21)

The fluctuations are then determined through the rela-
tions

I(D)=dim(KerD) —dim(KerD )

=dim(KerD D}—dim(KerDD ) . (2.22)

Normalizable zero modes of Eq. (2.10) can be obtained
if we solve the three equations D,.q; =0, i =1,2, 3. Before
trying to solve them, we will first investigate the index of
the operator D [S).

The index of D is defined as
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From Eqs. (2.10) and (2.22) we find

3
I(D)= QI(D;),

3

kim(KerD)= +dim(KerD;),

(2.23)

(2.24)

2n'r ~0(2)

0(r &a r (r"+r ")

For the homogeneous part of Eq. (3.6},setting

g(2)(r g) —ye imeF(/l)( )

(3.8)

(3.9)

Using the formula

MI D)=Tr D'D+M'
M

Tr (2.25}
DD I+M

in Eq. (3.6) yields

8n2

dr dr rn+r n) 2
(3.10)

it is straightforward to calculate

I(D3)=0,
I(D) )= I(Dz—)=4n,

I(D)=0 .

The solution of Eq. (3.10) is (see Ref. [3])

F"(r)=B ~(f)(r)+B' 'f ~(r),

(2 26) where

rmf (r)= [(rn+n)+(m n)r—~"
] .2n+ 1

(3.11)

(3.12)

The result I(D)=0 implies that a straightforward appli-
cation of an index theorem is not so useful here as in oth-
er cases [9] in computing the number of zero eigenmodes
of D.

III. EXPLICIT ZERO EIGENMODES

For m =0,n,f and f coincide and thus we need
second solutions to obtain the most general solutions.
The most general solution for g(), '(r, g) can be written in
the form

We first calculate dim (KerD3) by solving Eqs. (2.16),
(2.17), and (2.18). By setting

g(2)(r g) g e™F(h)(r) (3.13)

g(3)( g) y imeH (3 1)
where

in Eq. (2.16} we find the most general solution for
g' '(r, g) as

g' '=/[A'"H"'(r)+ A' 'H' '(r)], (3.2)

Fo"'(r) =B()')fo(r)+B() '[f()(r)lnr —1],

r "—1F„'"'(r)=F' „(r)=B„"' f„(r)lnr+
2r"

(3.14)

(3.15)

where

r mr r m

r2n+1 r 0

r —m —2n (3.3)

By using the solutions of the homogeneous part of Eq.
(3.6) and their Wronskian, W[f„+ (r),f „(r)],we
can obtain particular solutions of the inhomogeneous
equation (3.6). The most general solution of Eq. (3.6) is
then given in the form

(2) m 2m+n rn —r "
m

m40

1 1—r "+n lnr — lnr
r "+1 r —+0

(3.4)

g(2)(r g) ~eirneF(h)+~ ie(n+m)8 (FP)
m

where

F(P) — i [A())r —m A(2)rm]
~'a r +r

(3.16)

(3.17)

r'.
f' —+ OO

(3.5)
FI()— )

A (2)
v'(z ' 2 r +r

lnr . (3.18)
rn+ n

Substituting Eq. (3.2}into Eq. (2.17) yields
r

q2+ g(2)( gr) =hei(n +m)eP (r), (3 6)
8n

2( Il+ tl)2

where

By substituting the results (3.2) and (3.16) into Eq.
(2.18), we can obtain the most general solution of g"' for
arbitrary values of e and a. We however, found that the
most general solution of Eq. (2.18) is given in a very sim-

ple closed form in the background gauge with a particu-
lar value of a, a = 1/2. In this case, setting

( )
4mni 1

2( n+ —n)2

X[—A'" -"-"+A"' +"]

f "(r,g)=pe' R (r)

(3.7) in Eq. (2.18) yields

(3.19}



3548 KIM, NAMGUNG, SOH, AND YEE 46

1 d d m 4n m+n r"
R ( } 8 2[A(, )+2 ~—.B(~) ]r dr dr r r (r"+r ") " r2(r" +r ")3

+4[A' )+2n&aiB„'" ]
r (r"+r ")

2n (m +n)
r"+r

n 2m +m(rn +n)r"
(r"+r ")

(3.20)

0 for simplicity si
can be easily shown that the fluctuation fields are unnor-
malizable for the log-dependent terms.

By introducing a variable u as g (r) C{1)g{1)+C(2)g(2) (3.24)

whose solutions are recognized as hypergeometric func-
tions. The most general solution of Eq. (3.23) is

r
—n

n+ n

and by setting

(3.21)
where

R (r)= —m —llg
8+ m r (3.22)

—n

r" r

we may write the homogeneous part of Eq. (3.20) in the
form

6~2]—r2~~ +~](r&+rm

(3.25}

d6~ n
u(u —1) + 4ii —3+— +2g =0,

dQ m dQ

(3.23)

By using the solutions of the homogeneous part of Eq.
(3.20}, we can construct particular solutions of the inho-
mogeneous part of Eq. (3.20). We present the most gen-
eral solution of Eq. (3.20) in the form

g(1)(r g}—~emle[C(1)R (1)+C(2)R (2)]+e —inc[ A (1) + A (2) +2/ /~1B(1) ]m m m m —n —n n —nr +r
rn

mAn r +r m+n r" +r
(3.26)

where

—m —n —n

l, 2, 3+—.
n 1

—n & ' ' ' n —nr +r 2 n r +r

axis. The remaining one is an irrelevant overall phase.
We finally consider Eq. (2.12). With the background

(1.18), Eq. (2.12) can be written in the complex form as

R( '=r~+~(r~+r () i 8 2nr" 5~(+)
dr r BH r(r"+r ") (3.29}

dim(KerD3) =0 . (3.27)

In Ref. [3],Eq. (2.11)was solved exactly. The result is

If we substitute the solutions for g"s (3.2), (3.16), and
(3.26) into Eqs. (2.19},(2.20), and (2.21) we can determine
fluctuation fields as the solutions of Eq. (2.13). Without a
writing explicit form, we present only the result that
there are no normalizable modes for
F3(=5A+,5A+, 5$( '), i.e.,

5y(+ ) ye im()( (
m+r2n+ m)r (3.30)

which is unnormalizable for any value of m. %e thus
conclude that

The most general solution of Eq. (3.29) is easily obtained
in the form

dim(KerD )=)4n . (3.28) dim(KerD& ) =0 . (3.31)

These 4n parameters are interpreted as 2n locations, n

scales, and an n —1 relative U(1) phase of an n-soliton
system which is invariant under the rotation about the T3

From Eqs. (2.26), (3.27}, (3.28), and (3.31), we find that
the SU(2) Chem-Simons n-soliton solutions depend on 4n
parameters, which include one overall U(1) phase.
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IV. DISCUSSIONS 5A; =i A;[5a)(+)T 5—ro( 'T ] . (4.5)

54=i [5a),4],
5A; =i [5', A;],

where

(4.1}

(4.2)

(4.3)

Our results imply that the Toda ansatz leads to the
most general soliton solutions of the nonlinear planar
Schrodinger equation coupled to the SU(2) Chem-Simons
fields. The resulting equations (1.15}and (1.16) are of the
same form as that obtained from the U(1) invariant pla-
nar gauge theory with a Chem-Simons term [2], there-
fore, their solutions coincide exactly. Under the
infinitesimal change of global SU(2) phase 5', the fields 4
and A; change by the amount.

For the radially symmetric backgrounds presented in
(1.17) and (1.18), 54 is normalizable but 5A, is unnor-
malizable. When 5' is taken in the T3 direction,

a~=s~"'r,3 7

5@=i/' '5a)' 'T+,
5A;=0,

(4.6}

(4.7)

(4.8)

the fluctuations are normalizable. But the soliton solu-
tions of Eqs. (1.15) and (1.16) are invariant under the glo-
bal SU(2) transformations. We therefore conclude that
the nonrelativistic SU(2} Chem-Simons soliton solution
depends on 4n+2 parameters including the global SU(2)
phase.

With the Toda backgrounds

@—y(-)T

3

the fluctuations become

5@—y( )[5 (3)T 5 (+)T ] (4.4)
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