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BPS D-branes from an Unstable D-brane 1
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Abstract.
We search for exact tachyon kink solutions of DBI type effective action describing an unstable D-brane with worldvolume

gauge field turned in both the flat and a curved background. There are various kinds of solutions in the presence of
electromagnetic fields in the flat space, such as periodic arrays, topological tachyon kinks, half kinks, and bounces. We
identify a BPS object, D(p-1)F1 bound state, which describes a thick brane with stringflux density. The curved background
of interest is the ten-dimensional lift of the Salam-Sezginvacuum and, in the asymptotic limit, it approaches R1,4×T2×S3.
The solutions in the curved background are identified as composites of lower-dimensional D-branes and fundamental strings,
and, in the BPS limit, they become a D4D2F1 composite wrappedon R1,2×T2 where T2 is inside S3.
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INTRODUCTION AND SUMMARY

Study of the dynamics of unstable D-brane has been re-
alized by condensation of tachyonic mode living on the
brane [1]. After A. Sen wrote down the boundary state
describing decay of unstable D-branes in boundary con-
formal field theory (BCFT) [2] and suggested the corre-
sponding tachyon effective action [3], such observations
enables us to study the decay of the unstable D-branes in
the spatially homogeneous background, say, the rolling
tachyon. On the other hand, spatial inhomogeneity has
been another important issue, particularly in the form of
tachyon solitons which form BPS and non-BPS D-branes
of various codimensions.

It is well known that the tachyon effective field the-
ory (EFT) correctly captures some aspects of the tachyon
condensation in the low energy limit of open string the-
ory. Particularly, tachyon kink solutions are effectively
described in EFT. The purpose of this note is to review
the tachyon kink solutions with electromagnetic fields
under a runaway tachyon potential, 1/cosh(T/

√
2), in

flat and a curved background, and summarizes the result-
ing BPS objects on the unstable D-branes.

In flat space, the obtained static kink configurations for
pure tachyon fields are either singular solutions [4] or an
array of regular kink-anti-kink [5, 6, 7]. Once constant
DBI-type electromagnetic fields are turned on, there are

1 Proceeding of PASCOS 2005, Gyeongju, Korea, May 30-June 4,
2005. Talk was given by O-K. Kwon.

additional five non-trivial regular solutions. Specifically
the solutions include two types of topological kinks,
bounce, half kink, and hybrid of two half kinks [7]. When
the pure electric field along the inhomogeneous direction
is less than or equal to 1, corresponding BCFT solutions
are also obtained in Ref. [8]. Remarkably, in the critical
limit of the electric field,|E| = 1, the resulting solution
represents a D(p-1)F1 bound state and is identified as the
thick BPS-brane with string flux density. The thickness
can be adjusted by the strength of the string flux density.

We attempt to extend the analysis of unstable D-brane
to the case of a curved bulk background and find tachy-
onic kink solutions [9, 10]. Similar problems were con-
sidered in Ref. [11]. The background of our considera-
tion is R1,4×T2×S3 with non-vanishing NSNSB-field,
which is the asymptotic limit of the ten-dimensional
embedding [12] of the supersymmetric vacuum, R1,3 ×
S2, of the Salam-Sezgin model [13]. We obtain exact
tachyon kink solutions on a non-BPS D5-brane whose
worldvolume lies on R1,2 ×S3. The obtained solutions
describe the codimension-one branes on the non-BPS D-
brane. In the thin limit of the solution, it becomes a BPS
object with string flux density when a constant magnetic
field h is goes to zero and forms a D4D2F1 bound state.

GENERALITIES

In this paper we consider the DBI-type effective action
for tachyon field which couples to abelian gauge field on
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an unstable Dp-brane in general backgrounds,

S =
∫

d p+1xL = −Tp

∫

d p+1xe−ΦV (T )
√
−X , (1)

with

X ≡ detXµν = det(gµν + ∂µT∂ν T +Fµν),

Fµν = Bµν + Fµν ,

Fµν = ∂µAν − ∂νAµ , (µ ,ν = 0,1, · · · , p),

whereTp is the tension of the unstable Dp-brane,Φ is
the dilaton,Bµν is the induced anti-symmetric tensor. We
neglected the transverse scalars which are irrelevant in
our discussion. Equations of motion for the tachyonT
and gauge fieldAµ are given by

∇µ

[

γp√−g
Cµν

S ∂νT

]

+

√
−X√−g

Tpe−Φ dV
dT

= 0,(2)

∇µ

[

γp√−g
Cµν

A

]

= 0, (3)

where Cµν
S and Cµν

A are the symmetric and anti-
symmetric parts of the cofactor,Cµν , of the matrix
(X)µν , and we define

γp ≡
Tpe−ΦV√

−X
. (4)

Conservation of energy-momentum is given by

∇µT µν = ∇µ

[

γp√−g
Cµν

S

]

= 0, (5)

where T µν is the energy-momentum tensor. For the
tachyon potentialV (T ) that is symmetric underT → −T
in type IIA and IIB superstring theories, any runaway po-
tential withV (0) = 1 andV (±∞) = 0 is allowed for the
existence of D-brane configuration of our interest, that
is consistent with universal behavior in tachyon conden-
sation [4]. Here we assume a specific form in order to
obtain exact solutions

V (T ) =
1

cosh
(

T√
2

) , (6)

which was derived in the open string theory using pertur-
bation around half S-brane [14].

TACHYON KINKS IN FLAT SPACE

In this section we analyze the DBI-type effective action
(1) with vanishing dilatonΦ and anti-symmetric field
Bµν in flat (p+1)-dimensions (gµν = ηµν ), and classify

all possible static tachyon kinks (See Ref. [7]). To de-
scribe the tachyon kink solutions we assume that the
tachyon and gauge field strengths depend only on one
spatial direction,x,

T = T (x), Fµν = Fµν(x). (7)

Then the effective action (1) is simplified as

S = −Tp

∫

d p+1xV (T )
√

βp −αpxT ′2, (8)

whereT ′ = ∂xT , αpx is 11-component of the cofactor
Cµν , andβp = −det(ηµν + Fµν).

Bianchi identity for the abelian gauge field strength,
dF = 0, the gauge field equation (3), and conservation of
energy-momentum (5) determine the system completely.
As expected the resulting solutions are consistent with
the tachyon equation (2). What we obtain is as follows.
All components of the gauge field strength are constants,
andT 11 which is written asT 11 = γpαpx is a constant
of motion. Now the remaining equation is constancy of
T 11 where the expression ofT 11 is reexpressed by a first-
order differential equation for the tachyon field,

Ep =
1
2

T ′2 +Up(T ), (9)

whereEp = βp/2αpx andUp = αpx [TpV (T )]2/2(T 11)2.
We can classify all kink solutions in terms of three pa-
rameters (αpx, βp, T 11). For the tachyon potential (6) all
the codimension-one tachyon solitons are given by exact
solutions [7].

Whenαpx is negative,Up is turned upside down and
has the minimum value,αpxT

2
p /2(T 11)2, at T = 0 and

the maximum value, 0, atT = ±∞ due to the runaway
property of the tachyon potential (6). Three types of the
exact solutions of Eq. (9) are

sinh

(

T (x)√
2

)

= (10)







√
u2−1sin(x/ζ ) for 0 < βp < ũ2 (i)

ux/ζ for βp = 0 (ii)√
u2 +1sinh(x/ζ ) for βp < 0 (iii )

,

where

u2 =

∣

∣

∣

∣

∣

T 2
p α2

px

βp(T 11)2

∣

∣

∣

∣

∣

, ũ2 = βpu2, ζ =

√

∣

∣

∣

∣

2αpx

βp

∣

∣

∣

∣

.

(i) is an array of kink-anti-kink which is interpreted as
an array of D(p-1)D̄(p-1) ( and D(p-1)F1− D̄(p-1)F1),
and is an unique nontrivial solution in the pure tachyon
case [5]. (ii) and (iii) are the topological kinks connecting
two vacuaT = ±∞, and interpreted as a single D(p-1)F1



bound state. For (i) and (ii), BCFT calculation confirms
this interpretation [8].

When αpx is positive, there are three more types of
non-trivial solutions

sinh

(

T (x)√
2

)

= (11)







√
u2−1cosh(x/ζ ) for 0 < βp < ũ2 (iv)

exp(x/ζ ) for βp = ũ2 (v)√
1−u2sinh(x/ζ ) for βp > ũ2 (vi)

.

These solutions are interpreted as bounce for (iv), half-
kink for (v), and hybrid of two half-kinks for (vi). The
functional form of these three solutions in Eq. (11) coin-
cides with the exact rolling tachyon solution in DBI-type
tachyon effective action [15]. However, these solutions
are not yet obtained in other descriptions of the system
theories, such as BCFT and boundary string field the-
ory (BSFT).

In relation to BPS nature, the single topological kink
(ii) saturates BPS-type bound with thickness forT 11 =
Π1 6= 0 case, i.e., the energy of this object consists of the
string charge and RR-charge of the lower-dimensional
D(p-1)-brane exactly.

TACHYON KINKS IN A CURVED
BACKGROUND

Since the DBI action can describe the low energy dy-
namics of Dp-brane in a curved background as well, we
consider the DBI-type tachyon effective action on the
curved background [9, 10, 11]. This section is based on
the Ref. [10], and we will study tachyon kink solution
in the large dilaton limit of the ten-dimensional lift of
Salam-Sezgin vacuum on R1,3×T2×Rρ ×S3 described
by [12]

ds2 = dx2
6 +4R2dρ2+ du2

+sin2
( u

R

)

dv2 +
[

dw+cos
( u

R

)

dv
]2

,

B = −cos
( u

R

)

dv∧dw,

Φ = −ρ , (12)

whereR is the radius of S3 which is parametrized by
three coordinates (u, v, w), B is the non-vanishing NS-
NS two-form field on S3, andΦ is the dilaton field. It is
interesting to notice that the local geometry of the back-
ground (12) is nothing but the NS5-brane near horizon
geometry. However, there is a difference in that string
coupling constant goes to zero in the asymptotic limit of
the background, while it blows up in the throat region of
the NS5-brane. Thus in this background (12), it is valid to
study non-BPS D-branes in terms of DBI-type effective

theory (1). Note thatFµν defined byFµν = Fµν + Bµν
is gauge-invariant on the worldvolume of D-brane.

We consider an unstable D5-brane on R2×S3 with the
coordinates (x,z,u,v,w) where(x,z) is two of the spatial
coordinates of R1,3. Similar to the case of the flat space
in the previous section, we assume the same tachyon
potential (6). The compactification scaleR in the Eq. (12)
is assumed to be identical to the self-dual radius

√
2 in

the tachyon potential (6).
From now on, we will study static solutions of the

tachyon effective action (1) under the ansatz

T = T (u,w), (13)

F0z = Ez(u,w), Fvz = α(u,w), Fvw = h(u,w),

where we assume other components of the gauge field
strengthFµν vanish. Using the Bianchi identity for the
two-form field on the unstable D-brane,dF = H, where
H is field strength of the anti-symmetric tensor field, we
obtain

Ez = constant, α = constant, h = h(w). (14)

Inserting the Eqs. (12), (13), and (14) into the equations
of motion (2) – (3), we find that the tachyon fieldT is a
function of eitheru or w but not both, andh should be a
constant, i.e.,

∂uT ∂wT = 0,

h = constant, (15)

and the dilaton fieldΦ is decoupled.
We first consider the case thatT depends only onu.

Then we can find an exact solution

sinh

(

T (u)√
2

)

= ±

√

(

T5

αγ5

)2

−1 cos

(

u√
2

)

, (16)

whereγ5 was defined in Eq. (4). From the analysis of
the physical quantities for the solution (16), e.g., energy-
momentum tensorT µν and electric flux densityΠi, we
notice that the solution represents a dimensionally re-
duced configuration. From the background metric in
Eq. (12), the configuration spans T2 in the three-sphere:

dsS3 = du2 +sin2
(

u√
2

)

dv2 +

[

dw+cos

(

u√
2

)

dv

]2

u√
2
= π

2−→ dsT2 = dv2 + dw2. (17)

To identify the RR-charge of the resulting lower di-
mensional D-brane we take into account the Wess-
Zumino term for the unstable D-brane [4, 16],

SWZ = T5

∫

V (T )dT ∧CRR∧ eF+B. (18)



For the solution (16) in the thin limitγ5 → 0, the Wess-
Zumino term (18) is reduced to

SWZ = ∓π
√

2T5

∫

[

C(5) + α C(3)∧dz∧dv

+hC̃(3)∧dv∧dw
]

, (19)

where we omitted the terms containing a RR-form
wedged todt, which are irrelevant in the interpretation of
the lower-dimensional D-brane. Thus the resulting con-
figuration consists of a D4-brane stretched along R2×T2

with coordinates(x,z,u,w) and RR-chargeT4 =
√

2πT5

and two D2-branes with charges per unit area,
√

2πT5α
and

√
2πT5h, spanned by the worldvolume coordinates

(t,x,w) and (t,x,z), respectively. In addition, there are
fundamental strings with flux on cylinder R× S1 of
(z,w).

In order to study the BPS nature of the solution, we
now investigate the energy-momentum tensor. For the
solution (16) to describe a BPS object, it is required
that the pressure inu-direction,T uu, and the off-diagonal
stress component between two D2-branes,T zw, should
vanish, which are given by

T uu = − γ5α2

sin(u/
√

2)
,

T zw =
α

sin(u/
√

2)

[

h−cos

(

u√
2

)]

Σ(u) (20)

with

Σ(u) =
T 2

5 /γ5α2

[( T5
γ5α )2−1]cos2( u√

2
)+1

. (21)

To obtain this vanishing condition we should take the
thin limit, γ5 → 0, with π/

√
2 andh = 0. Then we have

single D2-brane along the direction (x, w) and an elec-
tric flux along thez-direction. This solution is expected
to saturate a BPS bound. The energy per unit area of co-
ordinates (x, w) takes the form

H
∫

dxdw
=

∫

dzdudvΠz +
√

2πT5α
∫

dzdv

= QF1+ QD2, (22)

where QF1 is the total charge of fundamental strings
alongz-direction andQD2 the total charge of D2-brane
stretched along (x, w)-direction on the area

∫

dzdw.
In summary, whenh = 0, the solution produces a BPS

D4D2F1-composite in the thin limit,γ5 → 0. It consists
of the D4-brane wrapped on R2×T2, the tubular D2-
brane with the coordinates(x,w), and the fundamental
strings stretched alongz-direction.

For the caseT = T (w) we also obtain an exact solution
similar to the previous solution (16) and investigate again

the BPS nature in the thin limitγ5 → 0 which satisfies
the conditionh = 0 automatically in this case. This BPS
object is proven to describe the same configuration as the
BPS solution in the case ofT = T (u).
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