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Zero-point field in a circular-motion frame. II. Spinor and vector fields

J. S. Kim and K. S. Soh
Department of Physics Education, Seoul National University, Seoul 151, Korea

S. K. Kim
Department of Physics, Ehtva Women's University, Seoul 120, Korea

J. H. Yee
Department of Physics, Yonsei University, Seoul 120, Korea

(Received 6 March 1987)

The energy spectrum of zero-point fields of massless spinor and vector fields in a circular-
motion frame is investigated. In the nonrelativistic limit it exhibits half-integer harmonics of the
circular-motion frequency. The density-of-states factor is of the same form as the uniform-
acceleration case, but the energy spectrum is not of the thermal form.

I. INTRODUCTION

Previously we studied the energy density of a zero-
point field in a circular-motion frame. In this paper we
extend the previous work' (hereafter denoted as paper I)
from scalar fields to fields with spin —,

' and 1. Fields with
any spin in uniformly accelerated frames have been in-
vestigated by Hacyan and others. In this paper we
adopt Hacyan's formalism and apply it to a circular-
motion case.

As was shown in the paper I and other works ' the
spectrum of zero-point energy of massless scalar fields in
a circular-motion frame does not have the thermal char-
acter of uniformly accelerated frames. In this paper we
rea%rm this result in the fields with spin. In the non-
relativistic limit the spectrum exhibits the harmonics of
the circular-motion frequency, and in the extremely rela-
tivistic limit the energy spectrum is mostly determined
by a pole in the complex proper-time plane. The essen-
tial features of the involved calculations are similar to
but more complicated than those of scalar field cases.

There are, however, distinctive features in the cases of
fields with spin. In the nonrelativistic limit there appear
harmonics of half the circular-motion frequency. This is
due to the interfering term u x (u is a velocity four-
vector) which is absent in the scalar field case. Other
features are the extra factors [l+(a/2) /co ] (spinor)
and ( l +a /co ) (vector) which are multiplied to the
thermal energy spectrum. These factors agree with the
results obtained by Hacyan, Candelas and Deutsch,
and Boyer.

In this paper we restrict our attention to massless
fields with spin —, and 1 in Aat four-dimensional space-
time. We adopt the formalism of Hacyan: A zero-
rest-mass field with spin S can be defined by a spinor

which transforms as the D(S,O) representa-
1 2S

tion of the Lorentz group. The Wightman functions are
defined as the following vacuum expectation values:

D„+„(X,X') —= ((5~ (X)P„(X')),
D„-„(X,X') =—& P „(X')P„(X)), s = —,

'

and

D~+~ ~~(X,X') = (P„tt(X)P„~(X')),
Dgtt gt't (XyX ):( tt) gtt (X )P pit (X ) ) y

Here, the indices A, B, etc. , are spinorial ones which are
related to the tensorial indices by the Rindler conven-
tion; thus for a vector we write

a uAA a
AA

where it is understood that u =o. u
The Wightman functions for a scalar field are

(3)

D*(X—X') =
4m. [(t t'+ie) —

~

x——x'
~

i]
where X=(t,x). Those for the fields with spin are

(4)

and

D „„(X—X')=n', ~
—

2 . D (X —X'), s = —,
'

gyA A
(Sa)

D (X—X') =n ',
—

. D —(X—X'), s = l,

e=u u Tap

where T & is the energy-momentum tensor of the field.

(Sb)

where n,
' are appropriate normalization constants.

In this paper the two points 7 and 7' are considered
as points on a given world line of a detector, i.e.,
X =X (r+ —,'o ) and X =X (r —,'cr), where r is th—e prop-
er time of the detector. The energy density measured by
the detector with four-velocity u [dX (r)/dr] is
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In Sec. II we will evaluate the energy-density spec-
trum of spinor fields in the extremely relativistic and
nonrelativistic limit of the circular motion. In Sec. III
the case of vector fields will be treated in a similar
manner, and in Sec. IV summary of the results will be
given.

where a is acceleration. From this we can show that

X (7+—'o. ) X—(7 —'—o )= —sinh u (7)
2 2

Q 2

and

II. SPIN
2

The energy-momentum tensor of a massless fermion
field is

0 o —2
u D — ~+ —,z——

2 2 4~2 2 ~—sinh
Q

2
0 +lE

a

3

(12)

The energy density is

"'{(aA„)y„—y„eA „&] (7)

and the energy density of the field as detected by an ob-
server with a world line X =X (7) and four-velocity u

is

de
dQ)

cp f dere
16m. 2 . Q—sinh —0.—l e

Q 2

3

e=u u T&———ua P AA

d~ d'7
2 . Q—sinh —0 +is
Q 2

3

where all the quantities are evaluated at the proper time
Following the work of Hacyan, we obtain

1 2 a
CO CO +

2~2 2

2
1 1——+ 2m'co/a+

1
(13)

de

dt's

—2l do e coQ
4m.

X [ D+(7+ —'o. , 7——'o )
Qyg 2 2

D(7+ ,'o, 7 ——,'cr )]—, —

The last factor in the energy density shows the thermal
characteristics of the spectrum, and the other factor
represents the number density, which can be seen by cal-
culating the fermion number density dn /dcp (Ref. 2).

Consider now the case of circular motion, which is
given by

where only positive values of co are involved, and —2i is
the normalization constant.

In the case of uniform linear acceleration, the world
line is given by

X (7)= (y7, p s 1(n cppy7), p cos(spy 7),0}

u (7)=(y, yo cos(cppy7), yo si—n(cppy7), 0),
(14)

X (7)=a '(cosha7, sinha7, 0,0),
u (7)=a '(sinha7, cosha7, 0,0),

(10)

where p, cop, U are the radius, angular frequency, and
speed of the circular motion, respectively, and
y = 1/+1 —v . From this we easily obtain

X &+——X ~——= y0. , 2p sin
2 2

Ct7 pP (T

2
cos(cppy7), —2p sin

oy
2

sin(~py7), 0 (15)

and

0 0 —1D w+ —,~——
4m. Q)pg 0

(ycr+ie) —4p sin
2

(16)

D+ 2

aX 4'
y ya —2pu sin

Q)pf 0

2

cozy cr
(yo +ie) 4p sin—

2

2 (17)

The energy density is
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n oo

icosa

a 0 0
co d0 e'" u 8 D+ w+ —,~——+D ~+ —,~——2' 2

n

4~

COp

2

3

zi wz

CO p
—oo

2 2z —v slnz z —v slnz2. 2 2+[(z —ie) —u sin z] [(z+ie) —U sin z]

n ~o

4m

3

[J(—ie)+J(+i@)],
COp

where W=co/yeso and z =(@coo/2)o.
In the nonrelativistic limit (U =0) we can evaluate the energy density as a power series in U. We illustrate the pro-

cedure by computing the first two terms explicitly:

J( —ie)= J" dze"~ 1 2 sin z1+v
(z —ie) Z

slnz + ~ ~ ~

Z

2 2

4W + [(W+1) —2W +(W —1)"0(W—1)]— [(W'+ —,') —(W —
—,') 8(W ——,')]+ (19)

For the calculation of J(+i@)we make use of the relation

J( i@)—J—(+i@)= 2771
2 ~2 U

1 —U 2(1 —U )

co 1 U= —4~i +—
2 4 (1 ~2)2

—4vri
2

QPp

r 2

CO + a
2

(20)

where a =coov/(1 —v ) is the circular acceleration. Now the energy density is

de
6f CO

n ~o

4m

3

62o
( 4rri) — + — + v [( W —1) 0(1—W)+4( W ——,

' )'8( —,
' —W)]2 4 (1 2)2 3

1 2 a
267 CO +2~'

2 2 2

[( W —1)'9(1—W)+4( W ——,
' )'8( —,

' —W)] .
2 2~2 12

(21)

We have chosen the normalization factor n = 2i such—that we obtain the (negative) zero-point energy density of the
neutrino field for v =0. Notice that the form of the first term agrees completely with the result of Hacyan in the uni-
form acceleration case, namely, Eqs. (13). A new feature we found in this energy density is the appearance of the fac-
tor which involves harmonics of one-half of the circular-motion frequency. In the scalar case only integer multiples of
the circular-motion frequency were involved. The origin of the half-integer harmonics is the u 7 term which was
produced by the u 8 operation on D —functions. A kind of frequency mixing of X (r) and u (r) occurs.

In the extremely relativistic limit (U ~1), the integral is dominated by the pole contribution at z =iR
(R =v sinhR). We note that this pole is a double pole in the spin- —, case while it was a simple one in the scalar case.
After some calculations we obtain

J (+i e) = dz
e "~'(z —U

' sinz)

(z —U sin z)

. exp( —2WR )(1—U) R RU (coshR —1)
27Tl + +

[2R (U coshR —1)] v coshR —1 1 —v

The energy density coming from this term is

~3 —2 WR

, ( WR + —,
' ), R ~0,~' 328"R'

(22)

(23)

where we have retained only the highest order in (1—v). This is different from the thermal spectrum. '
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III. SPIN l

The energy-momentum tensor of the electromagnetic field fzs is given by

(24)

and using the same procedure as in the previous section the energy density can be obtained as

de n i —1 ~o q;, ii 4y (z —v sinz) —(z —v sin z)
8~' 16~' [(z —ie) —v sin z]

3
P1

1 —1 COp

[K ( i e)+K—(+ie)],
8~ 16m.

(25)

where W =a~/yahoo and z =(yaio/2)o. as in the previous section.
In the nonrelativistic case (v =0) the evaluation of the energy density can be done as a power series in v . In order

to have a concrete idea we give only the first two terms:

K(+ie)= f dz e "
(z+ie)

1—v s1n z
Z2

3

1—U sin z
Z2

2
2

4 1
U slnz

Z

4 2

[4(W ——,') 9( —,
' —W)+(W —1) 8(1 —W)) . (26)

Here we note again that the half-frequency harmonics appear in the vector fields in the same way as the spinor case.
The energy density is obtained using (26) and the relations

K( ie) —K(+ie)= —
3

(co +a co),8my

COp

(27)

where a is the circular-motion acceleration. The factor (a~ +a. a~) agrees with the one in the uniform linear accelera-
tion motion found by Candelas and Deutsch, Boyer, and Hacyan. The energy density is normalized by taking
n

&

——8m. in order to recover, in the limit v ~0, the well-known spectrum (ai /ir ) —,'. The spectrum up to the order of
U 1S

de co

dc'
1+

CO

[4( W ——,
' )'8( —,

' —W)+( W —1)'8(1—W)] . (28)

In the extremely relativistic limit the integral is again dominated by the pole contribution at z =iR, but the pole is a
triple one which makes the evaluation very tedious. The result is

[2R ( v coshR —1)]

de co exp( —2WR) 1 2 15WR 9
dpi m (2WR) 2 4 2

(29)

where only the highest term in (1 —v) is retained. This spectrum is somewhat different from the scalar and the spinor
case.

Hacyan and Sarmiento have computed the total vacuum energy density of the electromagnetic field in a circular-
motion frame. By equating the result with the blackbody energy density, they obtained the effective temperature of
the system. This effective temperature might conveniently be used as a rough measure of the zero-point field energy
of the system.

IV. SUMMARY AND DISCUSSION

We summarize the results of the previous and present papers and also include those of the uniformly accelerating
detectors for the sake of completeness and comparison.
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(1) Uniform acceleration.

co 1 1+
2 exp(2~co /a ) —1

2

s=0,

CO 1+ a
2772 2'

2

1 1——+ S—
2 exp(2~co/a)+ 1

1 1—+- s=l .
2 exp(2~ cv/a) —1

(30)

(2) Circular motion v ~& l.

v (1 —W) 0(1 —W)+, s =0,co 1 1 ~o
2 6 co

2

de
ddt 2772

a1+- 2' v [(W —1) 0(1 —W)+4(W ——,')'0( —,
' —W)]+ . , s= —,

' (31)

CO a1+
7T' CO

2 2
COp

v [(W —1)'0(1—W)+4(W ——,') 0( —,
' —W)]+, s =1 .

(3) Circular motion v ~1 (R ~0).
co exp( —2 WR )

48'R

cu exp( —2 WR )

2~ (2WR)
co exp( —2 WR )

(2WR )

s=0,

+ —,'), s = —,
'

) + —'(WR)+ —', ], s =1 .

(32)

The thermal nature of the energy spectrum holds only
in the uniform acceleration. The appearance of harmon-
ics of circular motion in the low-velocity limit is com-
mon to the fields of any spin, but the spinor and vector
fields have extra harmonics of half-frequency. The ex-
treme relativistic limit is somewhat similar in that they
have the same exponential factor, but they have spin-
dependent polynomial function of frequency.

One common feature in the uniform linear accelera-
tion and the circular motion is the multiplicative factor,
i.e., the density-of-states factor (cv +s a ), s being the

spin 0, —,', or 1. This may suggest that this factor may be
somewhat universal, independent of the details of
motion.
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