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BAYESIAN BOOTSTRAP FOR PROPORTIONAL
HAZARDS MODELS

BY YONGDAI KIM1 AND JAEYONG LEE

Ewha Womans University, Korea and Pennsylvania State University

We propose two Bayesian bootstrap extensions, the binomial and Poisson
forms, for proportional hazards models. The binomial form Bayesian boot-
strap is the limit of the posterior distribution with a beta process prior as the
amount of the prior information vanishes, and thus can be considered as a
default nonparametric Bayesian analysis. It is also the same as Lo’s Bayesian
bootstrap for censored data when covariates are absent. The Poisson form
Bayesian bootstrap is equivalent to the Bayesian analysis with Cox’s pro-
file likelihood. When the baseline distribution is discrete, thus when the data
set has many ties, simulation study suggests that the binomial form Bayesian
bootstrap performs better than standard frequentist procedures in the frequen-
tist sense. An advantage of the proposed Bayesian bootstrap procedures over
the standard Bayesian analysis is conceptual and computational simplicity.
Finally, it is shown that both Bayesian bootstrap posteriors are asymptotically
equivalent to the sampling distribution of the maximum likelihood estimator.

1. Introduction. Bayesian analysis of the proportional hazards model has
been studied for more than two decades by many statisticians, Kalbfleisch (1978),
Hjort (1990) and Laud, Damien and Smith (1998), to name just a few, but it still
remains a field only for experts. Difficulties of Bayesian analysis, both conceptual
and computational, come from modelling the baseline cumulative hazard function
(c.h.f.) with nonparametric priors, for example, beta process [Hjort (1990)] or
gamma process [Kalbfleisch (1978)], whose theory and computation are often
formidable to practitioners. To circumvent such complications of the full Bayesian
analysis, we propose Bayesian bootstrap (BB) procedures which, we believe,
are easily accessible to practitioners and at the same time are reliable inference
procedures. The proposed BB procedures approximate the baseline c.h.f. with the
family of c.h.f.’s having masses only at uncensored data points. Thus, the BB
procedures are conceptually parametric and computationally simple but retain the
flexibility of nonparametric models. Another advantage of the BB procedures is
that it is unnecessary to elicit prior information on the baseline c.h.f. This is an
important advantage, for elicitation of prior information on nonparametric objects
is not an easy task.

From the frequentist’s point of view, the proposed BB procedures can be
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considered as new methods of approximating the sampling distribution of the
maximum likelihood estimator (MLE), because the BB posterior is proved to
be asymptotically equivalent to the sampling distribution of the MLE. Moreover,
simulation study suggests that the binomial form BB posterior approximates the
sampling distribution of the MLE better than standard frequentist methods for
grouped survival data.

BB was first introduced by Rubin (1981) and extended to finite population
model [Lo (1988)] and right censored data [Lo (1993)]. There are three views
of BB. We will briefly review these to give background for the proposed BB
procedures.

The first view is that BB extends Efron’s bootstrap [Efron (1979)]. Consider
a situation where X = (X1,X2, . . . ,Xn) is a random sample from an unknown
distribution F and a functional of F, T (F ), is of interest. In this situation, a typical
bootstrap procedure consists of sampling many bootstrap samples X∗

1, . . . ,X
∗
B,

where each bootstrap sample is a random sample from the empirical distribution
of the original sample X, and inference on T (F ) is based on T (F ∗

i )s where F ∗
i

is the empirical distribution of X∗
i . Noting that F ∗

i

d= ∑n
j=1 wjδXj

, where nw =
n(w1,w2, . . . ,wn) ∼ Multinomial(n,1/n, . . . ,1/n), Rubin proposed a smoother
alternative, Dirichlet(1,1, . . . ,1), for the distribution of w. For this reason, BB
is viewed as a weighted bootstrap. The weighted bootstrap provides a unified
framework for theoretical study of Efron’s bootstrap and Rubin’s BB. Theoretical
properties of the BB and weighted bootstrap have been studied by many authors,
for instance, Lo (1987), Weng (1989), Mason and Newton (1992), Præstgaard and
Wellner (1993), Gasparini (1995), James (1997) and Choudhuri (1998). Lo (1993)
[see also James (1997)] extended this idea to censored data. He observed that the
Kaplan–Meier estimator of the survival function S(t) = 1 − F(t) is

Ŝ(t) = ∏
t∈Tn

(
1 − ∑

j∈D(t) 1∑
j∈R(t) 1

)
,(1)

where Tn is the set of distinct uncensored observations, D(t) the set of uncensored
observations at time t and R(t) the risk set at time t . He proposed to replace the 1’s
in (1) by independent gamma random variables. Lo (1993) showed that this BB
posterior can be used as an approximation to the posterior obtained from the beta
neutral process prior, and James (1997) studied the second order properties of
this approximation. Furthermore, Wellner and Zhan (1996) extended the weighted
bootstrap to Z-estimators and showed their method can be applied to doubly
censored data and a frailty model.

The second view is that the BB posterior is the limit of the full Bayesian poste-
rior as the amount of prior information vanishes, and that BB is a noninformative
(or default) Bayesian analysis of nonparametric problems. If the prior on F is
a Dirichlet process with parameter α, a non-null finite measure, the posterior is
again a Dirichlet process with parameter α + ∑n

i=1 δXi
[Ferguson (1973)]. As the

total mass of α (or the prior sample size) goes to 0, the posterior converges to
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Rubin’s BB posterior. As Gasparini (1995) noted, this provides the basis for the
use of the BB as a default nonparametric Bayesian analysis. At the same time,
BB gives a good approximation to the posterior. The same property holds for Lo’s
BB and the binomial BB proposed in this paper for censored data and the propor-
tional hazards model, respectively. See Section 2.4 for details. Even though this
view provides a clear connection between the BB and full Bayesian analysis, it
requires detailed information about the full Bayesian posterior for constructing the
BB, which may be infeasible in most situations.

The third view is that the BB posterior is obtained by

BB posterior ∝ empirical likelihood × prior.(2)

For the following discussion, assume that there are no ties among X. Suppose
the true distribution belongs to Fn = {∑n

i=1 wiδXi
}. Then, the model is effectively

parametric and Bayesian analysis can be carried out. Since there is one observation
at each Xi, the likelihood is

L(F ) =
n∏

i=1

wi.(3)

Adopting a noninformative prior,
∏n

i=1 w−1
i , by the usual Bayesian computation

we get Rubin’s BB posterior for w, Dirichlet(1,1, . . . ,1). This description of BB
was noted by many authors, including Rubin (1981), Owen (1990), Choudhuri
(1998) and Lazar (2000). Note that the likelihood used in the above derivation
is the empirical likelihood of Owen (1990). Thus, this view can be effectively
summarized by (2). This is the main idea we will use to derive the BB posterior
for the proportional hazards model. The above discussion provides an idea for
constructing the empirical likelihood which will be used in this paper. That is, first
the model is reduced to a data-dependent parametric model, Fn, and the likelihood
on Fn is the empirical likelihood.

This paper is organized as follows. In Section 2, BB procedures for the
proportional hazards model are proposed and components of the BB—BB
likelihoods, priors, posteriors—and computational algorithms using Markov chain
Monte Carlo (MCMC) are discussed. In Sections 3 and 4, simulation results are
presented and a real data set is analyzed by the proposed BB methods. Discussion
of issues around the BB is presented in Section 5. Finally, the asymptotic theory is
given in Section 6.

2. BB for Cox’s proportional hazards model.

2.1. The model. Let X1, . . . ,Xn be survival times with covariates Z1, . . . ,

Zn ∈ Rp . Suppose the distribution Fi of Xi with covariate Zi is given by
1 − Fi(t) = (1 − F(t))exp(βT Zi) for an unknown regression parameter β ∈ Rp ,
where F is the baseline distribution function. The c.h.f. A of the cumulative
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distribution function (c.d.f.) F is defined by dA(t) = dF (t)/(1 − F(t−)) and the

c.h.f. Ai of Fi is given by dAi(t) = 1 − (1 − dA(t))exp(βT Zi ). If A is absolutely
continuous with respect to Lebesgue measure, there exists a hazard function a

such that A(t) = ∫ t
0 a(s) ds and the hazard function of Ai is a(t) exp(βT Zi). The

survival times are subject to right censoring, and only (T1, δ1,Z1), . . . , (Tn, δn,Zn)

are observed, where Ti = min(Ci,Xi), δi = I (Xi ≤ Ci) and C1, . . . ,Cn are
independent censoring variables with a common c.d.f. G. For i = 1,2, . . . , n,
define counting processes Ni(t) = I (Ti ≤ t, δi = 1) and Yi(t) = I (Ti ≥ t). Also,
let N(t) = ∑n

i=1 Ni(t), �N(t) = N(t) − N(t−), and Y (t) = ∑n
i=1 Yi(t).

2.2. BB likelihoods. Two forms of the likelihood using product-integration,
the binomial and Poisson forms, are available for the proportional hazards model.
They are denoted by LB(β,A) and LP (β,A), respectively, and are

LB(β,A) =
n∏

i=1

∏
t∈[0,τ ]

dAi(t)
dNi(t)

(
1 − dAi(t)

)Yi(t)−dNi(t),(4)

LP (β,A) =
n∏

i=1

∏
t∈[0,τ ]

(
Yi(t) dAi(t)

)dNi(t) exp
(
−

∫ τ

0
Yi(t) dAi(t)

)
,(5)

where [0, τ ] is the time period of interest. Both of them are the real likelihoods
when the c.d.f. is absolutely continuous, while only the former is when the c.d.f.
is discrete. Nevertheless, both are used in the derivation of BB likelihoods since
each has its own merits. For the interpretation of the two likelihoods (4) and (5),
see Andersen, Borgan, Gill and Keiding (1993).

To construct the BB likelihoods for the proportional hazards model, an appro-
priate reduced parametric model Fn needs to be chosen first. Lo (1993) made a
clever choice of Fn for censored data, namely, Fn = {∑piδyi

:pi ≥ 0,
∑

pi = 1},
where the yi’s are distinct uncensored observations. We employ the same Fn for
the proportional hazards models. For each t , define D(t) = {i :�Ni(t) = 1} and
R(t) = {i :Yi(t) = 1}. The set D(t) is the set of observations which fail at time t

and R(t) is the set of observations still at risk at time t . Let Tn = {t :�N(t) ≥ 1}.
Then Fn becomes the set of all probability measures with support Tn. The BB
likelihoods can be derived from Poisson as well as binomial form likelihoods. Re-
placing 1 − dAi(t) with (1 − �A(t))exp(βT Zi ) at each t ∈ Tn in the binomial form
likelihood (4), we obtain the binomial form BB (BFBB) likelihood

LB
n (β,A) = ∏

t∈Tn

( ∏
i∈D(t)

(
1 − (

1 − �A(t)
)exp(βT Zi )

)�Ni(t)
)

× (
1 − �A(t)

)∑
i∈R(t)\D(t) exp(βT Zi).
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Similarly, replacing dAi(t) with exp(βT Zi)�A(t) for t ∈ Tn in (5), we get the
Poisson form BB (PFBB) likelihood

LP
n (β,A) = ∏

t∈Tn

exp

( ∑
i∈D(t)

βT Zi

)
�A(t)�N(t) exp

(
−�A(t)

∑
i∈R(t)

exp(βT Zi)

)
.

REMARK. Prentice and Gloeckler (1978) proposed to maximize the BFBB
likelihood to get estimators of β and the baseline survival probability for grouped
survival data. They argued that the BFBB likelihood was computationally simpler
than the real and exact partial likelihoods [Peto (1972) and Cox (1972)] and yielded
reasonable answers. However, they reported instability of numerical maximization
and the possibility of several local maxima. The Bayesian bootstrap avoids these
problems by exploring the whole surface of the BFBB likelihood with efficient
MCMC algorithms. The simulation results in Section 3 show that the BFBB
posterior yields reliable results for both continuous and discrete survival models.

REMARK. The PFBB likelihood LP
n (β,A) is also used by frequentists to

derive the partial likelihood. See Andersen, Borgan, Gill and Keiding (1993) for
details.

2.3. Priors. Note that the prior on �A used for Rubin’s BB is not proper.
Interestingly, no proper priors produce consistent posteriors. We propose the
following two priors for the BFBB and PFBB, respectively:

π(A) = ∏
t∈Tn

�A(t)−1(
1 − �A(t)

)−1
,(6)

π(A) = ∏
t∈Tn

�A(t)−1.(7)

A motivation for (6) is that the BFBB posterior with prior (6) can be obtained by
the limit of the full Bayesian posterior as the prior information vanishes. Consider
the full Bayesian analysis with the beta process with parameters c(t) and A0(t)

on the c.h.f., where A0(t) is the prior mean, and c(t) governs the amount of prior
information. See Hjort (1990) for a description of beta processes. If we let c(t)

go to 0 (the amount of prior information goes to 0), the full Bayesian posterior
converges to the BFBB posterior.

The motivation of prior (7) is more involved. Popular priors of c.h.f. A for
full Bayesian analysis—beta processes (including Dirichlet processes) and gamma
processes—are Lévy processes. Interestingly, not all Lévy process priors for A

have consistent posteriors for the full Bayesian analysis [Kim and Lee (2001)].
Suppose A is a Lévy process with Lévy measure ν([0, t]×D) = ∫ t

0
∫
D fs(x) dx ds,

for D ⊂ [0,1]. Roughly, a sufficient condition for the posterior consistency is that
fs(x) ≈ c/x near x = 0, c > 0. Since fs(x) can be considered as the density of the
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jump size at s of the Lévy process, this result suggests that the prior of �A(t) needs
to behave like 1/�A(t) for �A(t) near 0. Among such priors, we choose (7) since
the marginal posterior distribution of the regression coefficients is proportional
to the product of the partial likelihood and the prior. Also, in Section 6, we
justify the use of the priors (6) and (7) by proving that the two BB posteriors
are asymptotically equivalent to the sampling distribution of the MLE.

We recommend a subjective proper prior for β when prior information is
available for β . The constant prior for β can be used if prior information is not
available, but propriety of the posterior needs to be checked. For the PFBB, the
posterior is proper if coni(A) = Rp , where A = {zi − zj : j ∈ R(t) \ D(t), i ∈
D(t), t ∈ Tn} and the conical hull of A, coni(A), is the set of all conical (non-
negative linear) combinations of the vectors in A. This is because the partial
likelihood is log-concave and has a unique maximizer [Jacobsen (1989)].

More caution needs to be taken for the propriety of the BFBB, because even
with a proper prior on β the BFBB posterior can be improper. Suppose that there
are no tied uncensored observations. Then the marginal BFBB posterior of β with
constant prior is

π(β|Data) = c
∏
t∈Tn

[
ψ

( ∑
i∈R(t)

exp(βT Zi)

)
− ψ

( ∑
i∈R(t)\D(t)

exp(βT Zi)

)]
,

for some positive constant c, where ψ(x) = ∫ 1
0 (1 − (1 − y)x−1)/y dy. Since

dψ(x)/ dx = ∫ ∞
0 (ye−yx)/(1 − e−y) dy ≥ 1/x2, the mean value theorem yields

that

π(β|Data) ≥ c
∏
t∈Tn

exp(βT Zd(t))

(
∑

i∈R(t) exp(βT Zi))2 ,

where d(t) ∈ D(t). Suppose the data observed are (1,1,−1), (2,1,−1.9), and
(3,1,−1.5) with coordinates being Ti , δi and Zi, respectively. Then the BFBB
posterior is improper even with some proper priors on β , whereas the PFBB
posterior is proper with constant prior on β .

2.4. BB posteriors. The BFBB posterior with prior (6) for �A(t) and π(β)

for β is given by

π(β,�A|Data) ∝ LB
n (β,A)

∏
t∈Tn

�A(t)−1(
1 − �A(t)

)−1
π(β).(8)

Due to the form of the BFBB likelihood, neither of the full conditional distributions
of β and �A(t) is a well-known distribution. But Bayesian computation with a
Metropolis–Hastings algorithm does not pose any difficulty.
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With prior (7) for �A(t) and π(β) for β , the PFBB posterior of β and �A(t)

is given by

π(β,�A|Data) ∝ π(β)
∏
t∈Tn

exp

( ∑
i∈D(t)

βT Zi

)
�A(t)�N(t)−1

× exp

(
−�A(t)

∑
i∈R(t)

exp(βT Zi)

)
.

Thus, �A(t) for t ∈ Tn, given β , are independent and follow

�A(t)|β,Data ∼ Gamma

(
�N(t),

∑
i∈R(t)

exp(βT Zi)

)
.

Integrating out �A(t), we get the marginal posterior of β ,

π(β|Data) ∝ π(β)
∏
t∈Tn

exp(
∑

i∈D(t) β
T Zi)

(
∑

i∈R(t) exp(βT Zi))�N(t)

= π(β) × Cox’s partial likelihood.

Since the partial likelihood for β is log-concave, so is the posterior of β with a log-
concave prior. In this case, adaptive rejection sampling [Gilks and Wild (1992)]
can be used coordinatewise.

REMARK. The MCMC schemes for the BBs do not include the sample path
generation of a Lévy process and, hence, are much simpler than that of the full
Bayesian computation.

REMARK. Consider the survival model without covariates. Then, the BFBB
posterior reduces to Lo’s BB posterior for censored data: �A(t), t ∈ Tn, are
independent and follow Beta(�N(t), Y (t) − �N(t)). In the PFBB case, �A(t)

are independent and follow Gamma(�N(t), r(t)), where r(t) is the cardinality
of R(t). This provides an alternative to Lo’s BB for censored data without
covariates.

REMARK. When the regression coefficient β is the only parameter of interest,
the PFBB gives a justification for the Bayesian analysis with the partial likelihood
and a prior on β , as was done in Volinsky, Madigan, Raftery and Kronmal (1996).

REMARK. Since the BFBB and PFBB were derived under implicit assump-
tions of discrete and continuous c.h.f., respectively, the survival probabilities
have slightly different forms. For the estimation of 1 − F(t), we recommend∏

Ti≤t,δi=1(1 − �A(Ti)) for the BFBB and exp(−∑
Ti≤t,δi=1 �A(Ti)) for the

PFBB. In fact, the former cannot be used for the PFBB because the PFBB dis-
tribution of �A(t) is not restricted to [0,1].
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3. A simulation study. In this section, we conduct a simulation experiment
to compare frequentist coverage probability of the proposed BB posterior of β

with that of standard frequentist procedures, Breslow and Efron partial likelihoods.
Breslow’s and Efron’s partial likelihoods coincide for data sets without ties, but
differ otherwise. For a detailed description of Breslow’s and Efron’s likelihoods,
see Kalbfleisch and Prentice (1980).

We consider two baseline c.d.f.’s: a continuous distribution F0 = Exponen-
tial(1) and a discrete distribution F1 with support {0.3,0.5,1} and probability 1/3
at each support point. The covariate Z is one-dimensional and generated from
Bernoulli(1/2). The exponential distribution with mean 2 is used for the censoring
distribution.

We consider 4 sample sizes, 30, 50, 100 and 200. For the BB posteriors,
Markov chains for the BB computation were run for 10,000 iterations with the
first 500 iterations discarded as burn-in. For each method considered, empirical
frequentist coverage probability of the 95% interval estimate of β is calculated
based on 2000 independent samples. Nominal coverage probability is 95%. The
baseline distributions F0 and F1 are Exponential(1) and the discrete distribution
with support {0.3,0.5,1} and probability 1/3 at each support point.

The result of the simulation study is shown in Table 1. The simulation study
reveals the striking feature that when the baseline c.d.f. is discrete (F1 in Table 1),
the performance of all methods except the BFBB gets worse as the sample size
increases. The strong performance of the BFBB seems to be due to the fact that
only the BFBB likelihood is the true likelihood when the baseline c.d.f. is discrete.
The BFBB works consistently well for moderately large samples (n = 100,200)
under both the continuous and discrete models, although it shows smaller coverage
probabilities than the nominal one for small sample sizes (n = 30). Thus, when
the data has many ties and the sample size is moderately large, the BFBB credible
interval is recommended even for the frequentists. For the continuous c.d.f., both
Breslow’s and Efron’s methods work very well. Both BB methods perform well

TABLE 1
Empirical frequentist coverage probabilities of the BFBB, PFBB and

Breslow’s and Efron’s partial likelihoods

Baseline c.d.f. Sample size BFBB PFBB Breslow Efron

F0 30 91.40 93.45 95.15 95.15
50 94.10 95.25 95.55 95.55

100 94.10 95.05 95.70 95.70
200 93.95 94.55 95.40 95.40

F1 30 91.95 95.70 93.85 94.80
50 93.40 62.15 82.70 92.75

100 94.00 78.35 63.90 90.55
200 94.85 47.35 24.50 85.35
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for the continuous case, although their empirical coverage probabilities are slightly
smaller than the nominal level for small sample sizes.

4. Analysis of leukemia patient remission data. In this section, we analyze
the leukemia patient remission time data set analyzed by Laud, Damien and Smith
(1998). A total 42 patients is divided into control and treatment groups with
21 patients each. The treatment and control groups are given 6-mercaptopurine
(or 6-MP) and placebo, respectively. Of the 42 observations, 12 are censored and
16 are tied.

In Table 2, we present the point estimates and 90% interval estimates of β from
various methods. The first block of rows of Table 2 is quoted from Laud, Damien
and Smith (1998). Using a Bayesian approach, they analyzed the data with the
beta process prior with mean A∗(t) = 0.05t and c(t) = ke−0.05t . The constant k

governs the amount of the prior information. Thus as k tends to 0, it is expected
that the result of the BFBB is close to that of the full Bayesian analysis with
small k. The BB analyses are in the second block, and the frequentist analyses in
the third block. As also expected, the PFBB produces results similar to Breslow’s
and Efron’s methods.

The PFBB and BFBB generate slightly different results which seem to be due
to small sample size and many ties. However, Figure 1, depicting the histograms
of samples from the PFBB and BFBB posteriors, shows that the difference of the
two BB posterior distributions of β is not significant.

Figure 2 shows the Bayes estimate of the survival function with 5% and 95%
quantiles and sample paths of the survival function from the PFBB posterior. The
BFBB gives similar results and the figures are not included here. In these two
figures, survival curves are drawn by linearly interpolating the estimates of survival
probabilities at t ∈ Tn. An advantage of the full Bayesian analysis is that it enables
one to see the variation of each sample c.d.f. The BB retains this advantage. Thus,
these figures show that with the BB posterior the same analysis can be done as
with the full Bayesian analysis.

TABLE 2
Point and interval estimates of β of various methods

Method k Point estimate 90% C.I.

Full Bayesian 0.10 1.71 (1.06, 2.44)
1.0 1.71 (1.02, 2.42)

10.0 1.67 (0.98, 2.36)
PFBB 1.54 (0.86, 2.24)
BFBB 1.71 (1.00, 2.44)
Breslow 1.51 (0.83, 2.18)
Efron 1.56 (0.88, 2.24)



1914 Y. KIM AND J. LEE

FIG. 1. Posterior samples of β: Bayesian bootstrap using (a) Poisson form and (b) binomial form.

FIG. 2. (a) Posterior mean, and 5%, 95% quantiles of survival probabilities; (b) posterior samples
of survival curves. The y-axis is survival probability and the x-axis is in months.

5. Discussion. We proposed two BB procedures based on the Poisson
and binomial form likelihoods. Both BB procedures can be considered as
noninformative Bayesian analyses, but the BFBB approximates the posterior
distribution better as we have seen in Table 2. The BFBB also performs better
for discrete distributions than the PFBB and standard frequentist methods. Thus, it
is recommended to frequentists for data sets with moderate sample size and many
ties. The PFBB has nice mathematical equivalence with the Bayesian analysis of
Cox profile likelihood and does not have propriety problems as in the BFBB.

In Section 2, we chose the prior π(x) for �A(t) as π(x) = 1/x for the
PFBB and π(x) = 1/(x(1 − x)) for the BFBB. These priors have many desirable
properties. First, the BFBB posterior can be obtained as the limit of the
full Bayesian posterior. Second, the marginal posterior of β for the PFBB is
proportional to the product of the partial likelihood and the prior. Third, the BFBB
and PFBB posteriors are asymptotically equivalent to the sampling distribution of
the maximum likelihood estimator. However, this does not mean that we exclude
other alternatives. For example, with priors π(x) = x−1(1−x)1−α,α > 0, a simple
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propriety condition for the BFBB can be established. However, the choice of α is
not obvious. More investigation into this matter needs to be done.

There are many possible applications of the BB for more complicated problems
such as general censored data (doubly censoring and interval censoring) and
random effect models. In such problems, the estimation of the variance of the
MLE is computationally demanding. In contrast, BB may be implemented easily
for those models with MCMC, and the computed BB posterior variance may be
used as the variance estimate of the MLE.

6. Asymptotic results. In this section, we prove that the BB posterior
distributions of β and A are asymptotically equivalent to the sampling distribution
of the maximum likelihood estimators, β̂ and Â. Denote by A0 and β0 the true
values of A and β . We only consider the PFBB. The proof for the BFBB can be
done similarly. We assume the following regularity conditions:

1. The true c.h.f. A0 is absolutely continuous.
2. There is a positive constant τ such that G(τ) = 1, G(τ−) < 1 and A0(τ ) < ∞,

where G is the c.d.f. of the censoring variables.
3. Covariates Zi ∈ Rp are i.i.d. with |Zi | < M for a constant M > 0, where |Zi |

is defined by

|Zi | =
p∑

k=1

|Zik|.

4. The support of the distribution of Zi contains an open set.
5. The prior density of β , π(β), is continuous at β0 with π(β0) > 0.

The above conditions are assumed throughout this section. Condition (1)
prevents ties. Condition (2) implies that the follow-up ends before all observations
fail; this is satisfied in most practical problems. Condition (3) is for technical
purposes and can be relaxed to the finiteness of certain moments of Z. For
example, see Assumption 3.1 in Tsiatis (1981). Condition (4) avoids collinearity
among the covariates and ensures the uniqueness of the MLE β̂ . Condition (5) is
a standard assumption in Bayesian asymptotic theory. We consider only proper
priors of β here.

Before we state theorems, we introduce the necessary notation. Let

S0(t :β) = E

( ∑
i∈R(t)

exp(βT Zi)

)
,

S1(t :β) = E

( ∑
i∈R(t)

Zi exp(βT Zi)

)
,

S2(t :β) = E

( ∑
i∈R(t)

ZiZ
T
i exp(βT Zi)

)
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and

V (t :β) = S2(t :β)/S0(t :β) − e0(t)e0(t)
T ,

where

e0(t) =
∫ t

0
S1(s :β0)/S

0(s :β0) dA0(s).

Define 	0(t) = ∫ t
0 1/S0(s :β0) dA0(s) and I (β) = ∫ τ

0 V (t :β)S0(t :β)dA0(t).
The next theorem is the main result of this section.

THEOREM 1. Let LB(·|Data) denote the PFBB posterior distribution given
the data. Then, as n → ∞,

LB
(√

n
(
A(·) − Â(·), β − β̂

)∣∣Data
) d→ (

W(	0(·)) − Xe0(·),X)
on D[0, τ ] × Rp with probability 1, where X follows the multivariate normal
distribution with mean 0 and variance I−1(β0) and W is a standard Brownian
motion. Here D[0, τ ] is the space of right continuous functions on [0, τ ] with left
limits equipped with the uniform topology.

We divide the proof of Theorem 1 into two theorems.

THEOREM 2. As n → ∞,

lim
n→∞‖fn − φ‖ = 0 a.s.,(9)

where fn is the posterior density of
√

n(β − β̂) from the PFBB, φ is the normal
density with mean 0 and variance I (β0)

−1 and ‖ · ‖ is the L1 norm.

THEOREM 3.

LB
(√

n
(
A(·) − Â(·))∣∣√n(β − β̂) = x,Data

) d→ W(	0(·)) − xe0(·)
on D[0, τ ] with probability 1.

Throughout the proofs, we write o(nδ) for a sequence of random variables Zn

such that Zn/nδ → 0 with probability 1.

PROOF OF THEOREM 1. Theorems 2 and 3 prove the convergence of the
marginal distribution of β and the conditional distribution of A given β . To
prove the convergence of the joint PFBB posterior distribution of β and A, note
that Theorem 2 implies the strong convergence of the marginal PFBB posterior
distribution of

√
n(β − β̂) to the distribution of X. Applying Theorem 2 of

Sethuraman (1961) completes the proof. �
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PROOF OF THEOREM 2. Let

Ln(β) = ∏
i∈Tn

exp(βT Zi)∑
j∈R(Ti)

n−1 exp(βT Zj )

and

gn(h) = Ln(β̂ + h/
√

n)

Ln(β̂)
π

(
β̂ + h/

√
n

)
,(10)

where with a slight notational abuse Tn denotes the index set of uncensored
observations. Since fn(h) = gn(h)/

∫
gn(h) dh, it suffices to prove that∫

|gn(h) − ϕ(h)π(β0)|dh → 0(11)

with probability 1, where ϕ(h) = exp[−hT I (β0)h/2]. The left-hand side of (11)
can be decomposed into four pieces as follows:∫

|gn(h) − ϕ(h)π(β0)|dh

≤
∫
|h|≤B

|gn(h) − ϕ(h)π(β0)|dh +
∫
B<|h|<√

nδ
gn(h) dh

+
∫
|h|≥√

nδ
gn(h) dh +

∫
B<|h|

ϕ(h)π(β0) dh,

where δ,B > 0. Denote the four terms on the right-hand side of the above
inequality by I1, I2, I3 and I4, respectively. We will prove that for any given ε > 0
there exist δ and B such that Ii ≤ ε, i = 1,2,3,4, for all but finitely many n with
probability 1.

For I1, let ln(β) = logLn(β). Taylor expansion yields that

ln
(
β̂ + h/

√
n

) − ln(β̂) = 1

2
hT l

(2)
n (β̂)

n
h + Rn(h),(12)

where

Rn(h) = 1√
n

p∑
i,j,k=1

hihjhk

6
l
(3)
nijk(β̃)/n(13)

for |β̃ − β̂| ≤ |h|/√n. Here, l
(2)
n (β) is the Hessian matrix of ln(β) and l

(3)
nijk(β) =

∂3ln(β)/∂βi ∂βj ∂βk . Using (12), we can write∫
|h|≤B

|gn(h) − ψ(h)π(β0)|dh ≤ rnπ(β0)

∫
|h|≤B

ψ(h)dh,

where

rn = sup
|h|≤B

∣∣∣∣ exp
(
−1

2
hT

(−l
(2)
n (β̂)

n
−I (β0)

)
h+Rn(h)

)
π

(
β̂ +h/

√
n

)
/π(β0)−1

∣∣∣∣.
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Since {l(3)
nijk(β̃)/n} are bounded sequences in n with probability 1 for all

combinations of (i, j, k), we have sup|h|≤B Rn(h) → 0 with probability 1.

The continuity of π at β0 together with β̂ → β0 [Tsiatis (1981)] implies
sup|h|≤B |π(β̂ + h/

√
n )/π(β0) − 1| → 0 with probability 1. Finally, since

−l
(2)
n (β̂)/n → I (β0) with probability 1 [Tsiatis (1981)], we have rn → 0 with

probability 1. Hence, I1 converges to 0 with probability 1 for any given B > 0
since

∫
|h|≤B ψ(h)dh < ∞.

For I2, let M be a positive constant such that maxi,j,k{l(3)
nijk(β̃)/n} < M for

all but finitely many n with probability 1. Existence of the constant M can
be proved easily by the law of large numbers. Then for |h| ≤ √

nδ we have
|Rn(h)| ≤ p2δMhT h/6, where Rn(h) is defined in (13). Let η be the smallest

eigenvalue of I (β0) and let Cn = −l
(2)
n (β̂)/n − I (β0). Then

ln
(
β̂ + h/

√
n

) − ln(β̂) = 1

2
hT l

(2)
n (β̂)

n
h + Rn(h)

≤ −1

2
hT

(
I (β0) + Cn

)
h + p2δMhT h/6

≤ −1

2
(η − an − p2δM/6)hT h,

where an = p
∑p

i,j=1 |Cnij | and Cnij is the (i, j)th element of Cn. Note that

an → 0 with probability 1. Now, choose δ such that η − an − p2δM/6 > τ for
some positive constant τ for all but finitely many n with probability 1. Let

ρ = sup
h : |h|≤2δ

∣∣∣∣π(β0 + h)

π(β0)

∣∣∣∣.
Since β̂ → β0,

sup
h : |h|≤√

nδ

∣∣∣∣π(β̂ + h/
√

n )

π(β0)

∣∣∣∣ ≤ ρ

for all but finitely many n with probability 1. For given ε > 0, choose B such that∫
|h|>B

exp
(
−1

2
τhT h

)
dh <

ε

ρπ(β0)
.

Then∫
B<|h|<√

nδ
gn(h) dh ≤ π(β0)

∫
|h|>B

exp
(
−1

2
τhT h

)
π(β̂ + h/

√
n)

π(β0)
dh ≤ ε

for all but finitely many n with probability 1.
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For I3, let

l(β) = βT E
(
Z1I (δ = 1)

)
−

∫ τ

0
log

(
E

(
exp(βT Z1)I (T1 ≥ t)

))
E

(
exp(βT

0 Z1)I (T1 ≥ t)
)
dA0(t).

It is not hard to see that l(β) is strictly concave and attains its maximum at β0.
Since ln(β) are also concave and sup|β−β0|≤δ |ln(β)/n − l(β)| → 0 for any δ > 0,

ln(β̂)/n → l(β0) with probability 1. Let � = sup{β : |β−β0|=δ/2} l(β) − l(β0). Note
that � < 0. Let

rn = sup
{β : |β−β0|=δ/2}

|ln(β)/n − l(β)| + |ln(β̂)/n − l(β0)|.

For sufficiently large n such that rn ≤ −�/2, {β : |β − β̂| ≥ δ} ⊂ {β : |β − β0| ≥
δ/2} and np/2 exp(n�/2) ≤ ε, we have∫

|h|≥√
nδ

gn(h) dh

= np/2
∫
|β−β̂|≥δ

exp
(
ln(β) − ln(β̂)

)
π(β)dβ

≤ np/2 sup
{β : |β−β0|≥δ/2}

exp
(
ln(β) − ln(β̂)

) ∫
Rp

π(β) dβ

≤ np/2 exp
[
n

(
sup

{β : |β−β0|=δ/2}
(
l(β) − l(β0)

) + rn

)]∫
β∈Rp

π(β) dβ

≤ np/2 exp(n�/2) < ε

with probability 1, where the second inequality is due to the concavity of l(β).
For I4, it is obvious that we can choose a large B such that I4 ≤ ε, and the proof

is complete. �

PROOF OF THEOREM 3. Let Tn(t) = {Ti ≤ t : δi = 1} and θn = (
√

n(β − β̂) =
x,Data). Write √

n(A − Â) = √
n
(
A(·) − E

(
A(·)|θn

))
(14)

+ √
n
(
E

(
A(·)|θn

) − Â(·)).(15)

We will prove that (14) converges weakly to W(	0(·)) and (15) converges to xe0(·)
with probability 1.

For (14), since it is a Lévy process, we utilize Theorem 19 of Section V.4 in
Pollard (1984). Let Yn(t) = √

n(A(t) − E(A(t)|θn)). First, we show the conver-
gence of finite-dimensional distributions by verifying Lyapounov’s condition. Sup-
pose 0 ≤ s < t ≤ τ are given. Note that

Yn(t) − Yn(s) = ∑
s<Ti≤t,δi=1

√
n
(
�A(Ti) − E

(
�A(Ti)|θn

))
.
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Using the moments of gamma distributions and Lemma A.2 in Tsiatis (1981), we
have ∑

s<Ti≤t,δi=1

E
{√

n
(
�A(Ti) − E

(
�A(Ti)|θn

))}4

=
∫
(s,t]

9n2

(
∑

j∈R(u) exp((β̂ + x/
√

n )T Zj ))4
dN(u) → 0 a.s.

Again, Lemma A.2 in Tsiatis (1981) implies

Var
(
Yn(t) − Yn(s)|θn

)
(16)

= n

∫
(s,t]

dN(u)

(
∑

i∈R(u) exp((β̂ + x/
√

n )T Zi))2
→ 	0(t) − 	0(s) a.s.

These two facts together show that the finite-dimensional distributions of Yn

converge to those of W(	0(·)). For tightness, note that

P
{|Yn(t) − Yn(s)| ≥ ε|θn

} ≤ 1

ε2 Var
(
Yn(t) − Yn(s)|θn

)
.

By (16), we have

Var
(
Yn(t) − Yn(s)|θn

) = 	0(t) − 	0(s) + o(1)

with probability 1. Since 	0(t) is continuous, we can make P {|Yn(t) − Yn(s)| ≥
ε|θn} as small as possible for all sufficiently large n with probability 1 by
choosing t and s sufficiently close. Hence, by Theorem 19 of Section V.4 in
Pollard (1984), we conclude that Yn converges weakly to W(	0) on D[0, τ ] with
probability 1.

For (15), the Taylor expansion implies that
√

n
(
E

(
A(t)|θn

) − Â(t)
) = x

∫ t

0
E

(
s :βn(s)

∗) dN(s)∑
i∈R(s) exp(βn(s)∗T Zi)

,

where

E(s :β) =
∑

i∈R(s) Zi exp(βT Zi)∑
i∈R(s) exp(βT Zi)

and βn(s)
∗ lies between β̂ and β̂ + x/

√
n. Since supt∈[0,τ ] |βn(t)

∗ − β0| ≤
x/

√
n → 0, using Lemma A.2 of Tsiatis (1981), it is not hard to see that

sup
t∈[0,τ ]

∣∣∣∣E(
t :βn(t)

∗) − S1(t :β0)

S0(t :β0)

∣∣∣∣ → 0

and

sup
t∈[0,τ ]

∣∣∣∣
∫ t

0

dN(s)∑
i∈R(s) exp(βn(s)

∗T Zi)
− A0(t)

∣∣∣∣ → 0.

Hence, (15) converges to xe0(·). �
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