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Zero-point field in a circular-motion frame
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The energy spectrum of zero-point fields of a massless scalar field observed by a detector in circu-
lar motion is studied by analyzing the Wightman function. It is shown to be quite different from
the Planck spectrum which would have been expected from the result of a uniformly accelerated
detector. In a nonrelativistic limit zero-point fields with frequencies only up to the first harmonics
of the circular-motion frequency contribute dominantly. In an extremely relativistic case the energy
spectrum is dominated by a particular pole in the complex proper-time plane.

I. INTRODUCTION

In the last decade a uniformly accelerated particle
detector' has attracted much attention in connection with
Hawking's black-hole radiation effects. It is remarkable
that a uniformly accelerated detector in Minkowski
space-time would see a Planckian form of particle distri-
butions in the Minkowski vacuum; i.e., the response func-
tion of a uniformly accelerated particle detector is identi-
cal to that of the same detector at rest in a thermal bath.
Interpretations on the origin of the Planck spectrum may
vary depending upon one's viewpoint. One may argue
that the accelerated detector sees a thermal state, ' or
that there appears a distortion of zero-point fields without
implying creation of particles. '

We follow the zero-point field viewpoint of Hacyan et
aI. and extend their study to a more realistic problem:
the response function of a particle detector in a uniform
circular motion. Circular motion is much different from
uniform linear acceleration in that it has no event horizon
whose existence was considered to be closely related to the
Planck spectrum. ' The question we ask is whether there
is still any distortion of zero-point fields in a motion
without an event horizon such as circular motion. We
will show that there is indeed a distortion of a zero-point
field energy density but its spectrum is not thermal. This
is in agreement with Sciama, who maintains that the
spectrum of vacuum fluctuations observed by a detector
not moving along a geodesic is different from that of an
inertial observer.

The spectrum in rotating coordinates has been exten-
sively studied by Letaw and Pfautsch. We confirm
their results and extend their work by applying different
methods. We study the problem using different parame-
ters, v (the circular-motion speed) and coo (the circular
motion frequency), instead of their parameters (the ac-
celeration or torsion and the speed). By performing the
integration as a power series of v we show that harmonics

of the circular-motion frequency appear, which should be
expected from physical intuitions but cannot be clearly ex-
hibited by a numerical analysis. For the extremely relativ-
istic case, the power-series method is not effective because
the integration has a singularity at v =c when coo is fixed.
We study this case by examining the pole contributions in
the complex proper-time plane, which provides another
valuable piece of information on the structure of the spec-
trum.

We restricted our attention to massless scalar fields in
four-dimensional space-time. In Sec. II a brief review of
an inertial and uniformly accelerated detector is given for
the purpose of comparison. The Wightnian function for
circular motion is introduced and the zero-point field en-
ergy spectrum is computed as a power series of the linear
velocity of circular motion. It shows that the zero-point
fields whose frequencies are lower than the circular-
motion frequency contributes dominantly because higher-
frequency fields average out when v &&c. The series is,
however, divergent as v approaches the speed of light,
which makes it difficult to study the spectrum. This
problem is dealt with in Sec. III by computing pole contri-
butions in the complex proper-time contour integral. The
divergent contribution at v =c is concentrated only at a
pole while all other poles give a finite amount at v =c,
which renders it possible to evaluate the dominant contri-
bution as v goes to c. In Sec. IV a summary is given
along with a further example of motion which exhibits a
nonthermal spectrum. From now on we will take
fi=c =k~ ——1.

II. NONRELATIVISTIC LIMIT

When a particle detector moves along a world line,
its response in the vacuum is represented by the two-point
Wightman function evaluated at two pointsI"=I"(r+—,o) and I'"=I'"(r——,

'
tr) on the world line:
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D (r-+ —,
' r, r ——, o. )

=(0 y(X~(r+ ,
' o—))y(X~(r+-,o)) 0), (1)

where P(X) is a massless scalar field, r is the proper time
of the world line, and

~

0) is the vacuum in Minkowski
space-time. Fourier transforms of the Wightman func-
tions are defined as

D (cu, r)= I dere'" D+ (r+-—,cr, r —, o—),

where ~ is the frequency of the zero-point fields. Accord-
ing to the viewpoint of Ref. 5, the "particle number densi-
ty of the vacuum seen by the moving detector" is given by

serve at a thermal bath with temperature T=a/2~. In
many articles' the Planck spectrum is implicitly con-
sidered to be closely related to the existence of an event
horizon in Rindler coordinates of the uni formly ac-
celerated detector. Ho~ever, there may still exist a distor-
tion of the zero-point energy density even when there is no
event horizon, and its spectrum may not be thermal. In
order to study this problem, we chose a uniform circular
motion which is a relatively simple motion without an
event horizon, and its predictions could possibly be tested
by accelerator experiments. We also contrived another
less realistic example which is discussed in the last sec-
tion.

The trajectory of a uniform circular motion is given by

f (cu, r) = [D (cu, r) D—(cu, r)],
(2~) cu

and the energy density per mode is

(3) t =r/(1 —u )'~

x =p sin(cuot), y =p cos(coot ),
(12)

2

de = [D (cu, r)+D (cu, r)]dcu . (4)

For the massless scalar field the Wightman functions are

where p is the radius of the circle, cop is the angular fre-
quency, and v =peep. The magnitude of acceleration in
the detector frame is

D (X",X'")=-+ 1 1

4~ (t —t'+i e) —(g —g'}

V COp

1 —v
2 (13)

Before we present the circular-motion case we review
the results of an inertial and uniformly accelerating
motion for the purpose of comparison. An inertial trajec-
tory with velocity v is

The Wightman functions are

+ I I 1D (r+ —,cr, r———,o ) =
4~ (yo. +i@) —4p sin (ycuoo. /2)

(14)
t =r/(1 —u') ' ', X =Xo+ur/(1 —u )

' (6)
where y = 1/(1 —u )'~, and their Fourier transforms are

the Wightman functions are

—1 1D (r+ —,o., r —,o. )
—=-

4rr (o +i e)

and their Fourier transforms are

+
D (cu, r) = —1 ~p exp(2i Ws )

ds
4~ 2y —" (s +i e) usin —(s )

where s—:@capo./2, 8'—=~/ymp.
It is straightforward to show that

(15)

D (cu, r) D(cu, r)=, —cu )02~' D (cu) D(cu ) =cu/2rr, — (16)

D (cu, r) =O, cu )0 .

The world line of a uniformly accelerated detector is
given by

which means that the particle number density is identical
to the previous ones. The integrand of D (cu) can be ex-
panded as a power series of v:

t=a 'sinh(ar), x =a 'cosh(ar), (9) 4~' 2y —" „o (s +is)'"+'

2
+ 1 1

D —(r+ —,o., r ——,cr) =
sinh [ , a(o+i e)]—.(10)

where o. is the magnitude of the acceleration. The Wight-
rnan functions are

which can be integrated term by term. The result is

D (cu) = ( —1)
cuo ™

u
" "

t, (n —k —W) "+'
2ny „o 2n +1 k o k!(2n —k)!

and, for positive co, && e(n —k —W), (18)

D (cu, r) D(cu, r)=-
27T

'

D (cu, r) =
2w exp(2~cd/a) —1

Comparing these two cases we note that the particle
number densities are identical, but the energy densities are
quite different: a Planck term appears in the uniformly
accelerated case. This term is exactly what one would ob-

U
(2—w)' e(2 —w) +

60
(19)

where the 0 function is the usual step function. For ex-
plicitness we give the first few terms (n = 1,2):

2 4

8 = "' '
(1—w)' e(1 —w) —'

(1 —w)' e(1—w)
4~y 3 15
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de cc)

dc' a

de co

dc'
C

1 1—+
2 exp(2~au /a ) —1

—+ g u "f„(W)
2 2/Q7 p

(20)

(21)

where f„(W) can be read from (18), and the subscripts a
and c refer the uniformly accelerated and circular case,
respectively. From the results of the uniformly accelerat-
ed detector, one might conjecture that the energy spec-
trum in other motions is also determined by the accelera-
tion parameter. We can see that this does not hold by
comparing (20) and (21). If it were true (20) and (21)
should be identical if we substitute the parameter a in (20)
by the circular-motion acceleration o., =y copU.

The function

exp[2~W(1 —u')'~ v] —1
(22)

has an essential singularity at v =0 which forbids an ex-
pansion such as Eq. (21). This means that the spectrum
of the circular motion is not determined by the accelera-
tion alone. Indeed, the spectrum also depends on the
speed U, and the numerical results are explicitly displayed
in Ref. 6 for the range of U from 0.05 to 0.95, which clear-
ly shows that the spectrum is quite different from the
thermal distribution.

The arguments of the 0 functions indicate zero-point
field modes whose frequencies are harmonics of the
circular-motion frequency ( W=n means cu=ncooy). For
a very small velocity only the first term is important, in
which case the contribution of the zero-point fields with
frequencies ~ &cop is averaged out due to faster oscilla-
tions than the circular motion. This is why the 6 func-
tion appears.

It is instructive to compare the energy densities of the
uniformly accelerated detector and the circular-motion
case:

R =U sinhR . (24)

de co 1 1—+ exp( —2 WR )
2 4WR

(26)

The frequency range of appreciable energy density change
is cu &cool /2v 3, which is much smaller than a synchro-
tron radiation frequency range (cu (3cuoy ).

Let us compare this result with a Planck spectrum.
From (20), by identifying a=@ ucuo ——&3ycuo/R, we ob-
tain

There is one and only one solution when U & 1, and it ap-
proaches zero as V~1. The contribution from this pole is
very large and is to be identified as the divergent part of
(23) at v=1. All other poles are located outside the unit
circle, the nearest one to the origin at s = +2.3+ 1.7i when
V=1. These poles contribute only finite amounts even at
U =1.

The integral of (23) can be written as the sum of two
contour integrals:

J ds= f ds+ f,, ds,

where the contours c~ and c2 are shown in the Fig. 1.
The semicircle in the figure is of unit radius with its
center at the origin. It is straightforward to show that the
integration along the contour c& remains finite as V~1.
Since the e-pole contribution is constant and independent
of U, the divergent part at v =1 is only due to the pole at
s =iR, whose contribution can be evaluated by the residue
theorem.

When v is extremely close to one the integral (23) is
dominated by the pole at s =iR:

~o exp( —2 WR )
(25)

4~y 2R ( v coshR —1)

Notice that y (u coshR —1) approaches 1 as u~l. The
energy density is approximately

III. EXTREMELY RELATIVISTIC CASE
de
dc'

CO

2
a 7T

1 1—+
2 exp(2' W'R /v'3) —1

As the speed U approaches the speed of light, the in-
tegral (15) develops a singularity at u =1 due to relativis-
tic kinematics, and the series (18) is indeed divergent at
v =1. Since in many realistic situations U is very close to
1, it is necessary to evaluate the integral in a different
way.

Consider the integral

—+ —1 roo exp(2iWs)D cu)= ds
4~ 2y —" (s+-ie) —u sin (s) ycuo

(23)

as a contour integral in the complex s plane, and study the
poles of the integrand. When v is near 1 the poles can be
grouped into three classes. The pole at s =+i@ is a dou-
ble pole which is a sort of universal pole in the sense that
it is common in all three motions we have considered and
it gives rise to the result D (co) D(~)=ru/2~ There- .
is another pole near the origin at s =iR, where R is the
positive real root of the equation

cu exp( 2n WR /V3—)

2~ WR /&3
(27)

de co exp( —2 WR )

d~ ~2 4WR
(28)

ITS

s, - ReS ReS

FIG. 1. The integral of (23) can be written as ds

ds+, ds, when v —1.
1

for a suitable range of co. On the other hand, from (26)
we get, as R~O,
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4
ct)of

4
—1 )& 10 eV/cm 3

24~ R
(29)

From (27) and (28) we see that, in the extremely relativis-
tic case, the energy spectrum looks similar to the Planck
form but with a different numerical factor; i.e., the
circular-motion spectrum falls more slowly by a factor
rr/V3 as ~ increases. This result agrees with Letaw's ex-
treme realistic case.

An experimental test of (26) by polarization measure-
ments was proposed by Bell and Leinaas. Their formula
is in agreement with (26) for fixed a=y ucoo in the limit
yacc, and can be regarded as a special case of ours
whose range of co is limited to the region cg & yvcoo. In ac-
celerator situations the change of the energy density is

very small. For an illustration let us take a circular
motion with a radius p= 1 km and y =E/m = 10 . Then
the change is

exp( —2 WR )he= d~
2HR

that the similarity between a thermal spectrum and the
zero-point field spectrum may be only coincidental.

It is natural to expect that other kinds of motion will

also exhibit nonthermal zero-point energy, but it is nest so
easy to find a case analytically integrable to obtain D (co)

in a closed form. We were able to contrive an example
which is not realistic but illustrative:

at =tan(ar),
(30)

ax = —lnI cos(ar)+ [1+cos~(ar) ] 'c~ I,1+cos (ar) '~

cos(ar)

where —~/2 (a~ & ~/2. This motion has a turning point
at t =~=0, and the acceleration is not uniform. The
proper time is finite but coordinate time is infinite, which
may remind one of the motion of a particle which is shot
up from the outside of a black-hole event horizon to the
turning point and then falls back to the black hole. At
the turning point (&=0) the Wightman function is

But this value increases as y for fixed radius; hence, for
y = 10, Ae becomes extremely large,

D+, i i, —a cos (ao/2)(r+~cr r —za)l~=o= 2 . 24w sin (acr+i@)
(31)

b e=l.OX10 GeV/(A) and their Fourier transforms satisfy

which is about 10 times denser than ordinary solids. This
implies that acceleration of particles in the circular ac-
celerators is limited up to @=10—10 for a fixed radius
p= 1 km even when energy supply conditions are met.

We would like to point out that singularities of D (co)
are branch cuts (e functions) and those of D +—(s) are
poles determined by the equation

jo(s) =(sins)/s =1/u .

D (co) —D (co) = 2' '

X 1+ —P(co/a )
2'

D (co)+D (co) = + sin2' 2K

(32)

The branch points reflect the harmonics of the circular-
motion frequency, but we could not find a simple physical
meaning of the poles. It is also worth noticing that all of
the poles in the uniform acceleration case are located at
integer points on the imaginary axis, while none of those
in circular motion are on the imaginary axis except the e
poles and the pole at s =iR. As has been shown in this
section, the difference in the location of poles leads to the
distinct spectra.

IV. DISCUSSION

p(x)= f, , dt .
1+e

Evidently, the spectrum is quite different from the uni-
form acceleration case. Especially for large co, the differ-
ence is prominent, i.e.,

D (co)+D (co)~ + —sin(vrco/a)+O(1/co ),
277 2m' co

(33)
which decreases only as 1/co while the Planck spectrum
diminishes exponentially.

By comparing three kinds of motion (inertial, uniform-
ly accelerating, and circular motion) we found that the
mode number densities in the vacuum are all the same,
but the energy densities vary depending upon the details
of motion. Circular motion does not have the Planck
spectrum, which one might have naively expected from
the result of uniformly accelerating cases. This signifies
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