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BAYESIAN ANALYSIS OF PROPORTIONAL HAZARD MODELS

BY YONGDAI KIM1 AND JAEYONG LEE

Ewha Womans University and Pennsylvania State University

This paper is concerned with Bayesian analysis of the proportional
hazard model with left truncated and right censored data. We use a process
neutral to the right as the prior of the baseline survival function and a finite-
dimensional prior is placed on the regression coefficient. We then obtain the
exact form of the joint posterior distribution of the regression coefficient
and the baseline cumulative hazard function. As a by-product, we prove the
propriety of the posterior distribution with the constant prior on the regression
coefficient.

1. Introduction. This paper is concerned with Bayesian inference of the
proportional hazard model when observations are both left truncated and right
censored (LTRC). Bayesian analysis of the proportional hazard model with right
censored data has been studied, for example, by Kalbfleisch (1978), Hjort (1990)
and Laud, Damien and Smith (1998). However, their results cannot be extended
directly to LTRC data. To the best of our knowledge, even with the popular prior
processes—gamma and beta—a Markov chain Monte Carlo (MCMC) algorithm is
not available. The main contribution of this paper is the derivation of the posterior
distribution in a closed form for LTRC survival data. There are two important
consequences. First, any Markov chain Monte Carlo algorithm for right censored
data can be modified to implement a Bayesian analysis of LTRC data. Second,
the theoretical study of the posterior distribution for LTRC data has become
simpler because of the availability of its closed form. In particular, we prove
the propriety of the posterior when an improper constant prior is used for the
regression coefficient. To our knowledge, this result is the first propriety result
concerning prior processes neutral to the right.

Our proof also has novel features. We derive the posterior distribution by
embedding the LTRC data into a counting process model. Because it handles
left truncated data easily, this approach, using counting processes, has various
advantages over other earlier approaches. First the proof is much simpler and
more systematic. Kalbfleisch (1978) used gamma process priors for the log of
the survival function and obtained the posterior distribution by deriving finite-
dimensional distributions of the posterior process. The proof involves nontrivial
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details, particularly when there are ties among observations. Our approach handles
ties in a consistent way. Second, the posterior distribution can be derived for a
much wider class of priors. While the previous results require specific knowledge
of a prior for the baseline distribution, such as a gamma or beta process, our
approach requires only that the prior of the baseline distribution be a process
neutral to right. In Example 1 of Section 3, Kalbfleisch’s result is deduced from
the main theorem of this paper. In Example 2 of the same section, we derive the
posterior distribution of the regression coefficient with beta process priors, which is
an extension of Hjort (1990) in tied observations. Laud, Damien and Smith (1998)
implemented an MCMC algorithm for the proportional hazard model with beta
process priors. However, the derivation of the conditional posterior distribution
of the cumulative hazard function, given the regression coefficients used in their
algorithm, is not available in the literature. Our results justify its use.

The paper is organized as follows. Section 2 introduces the model and the class
of priors. Section 3 presents the posterior distribution. Section 4 gives the propriety
result. Sections 5 and 6 give the proofs of the results.

2. Proportional hazard models and processes neutral to the right. In this
section, we introduce the proportional hazard model for LTRC data and review
prior processes neutral to the right for the baseline survival function.

We begin by modelling the complete data and then introduce the truncation
and censoring mechanisms. The postulates of the proportional hazard model
are as follows. Let X1,X2, . . . be survival times with covariates Z1,Z2, . . . ,

where Zi ∈ R
p . Suppose the distribution Fi of Xi with covariate Zi is given by

1 − Fi(t) = (1 − F(t))exp(βT Zi), where β ∈ R
p is the unknown regression coef-

ficient and F is the unknown baseline distribution function. The survival times
are only partially observed due to the presence of truncation and censoring vari-
ables (Wi,Ci), which are assumed to be independent random vectors independent
of the Xi ’s. Let Ti = min(Xi,Ci) and δi = I (Xi ≤ Ci). In the presence of LTRC
data, one observes (Ti, δi) only when Ti ≥ Wi . Finally the data consist of n copies
of (Ti, δi,Wi,Zi) with Ti > Wi . By setting Wi = 0, data subject to only right cen-
soring can be treated in this framework.

There are two parameters in the proportional hazard model: the regression
coefficient β and the baseline cumulative distribution function (c.d.f.) F . We use
a process neutral to the right [Doksum (1974)] for F and a finite-dimensional
distribution with a density for β . Processes neutral to the right include popular
prior processes such as Dirichlet processes [Ferguson (1973)], gamma processes
[Kalbfleisch (1978); Lo (1982)] and beta processes [Hjort (1990)].

Before deriving the posterior distribution, we review several features of
processes neutral to the right. A random distribution function F is a process neutral
to the right if F(t) = 1−exp(−Y (t)), where Y (t) is a nondecreasing Lévy process
with Y (0) = 0 and limt→∞ Y (t) = ∞ with probability 1 [Doksum (1974)]. We can



BAYESIAN ANALYSIS OF HAZARD MODELS 495

redefine it in terms of a cumulative hazard function (c.h.f.), taking the approach
initiated by Hjort (1990). Let A be the c.h.f. of F , A(t) = ∫ t

0 (1−F(s−))−1 dF (s).

Then, it can be shown that F is a process neutral to the right if and only if A is
a nondecreasing Lévy process such that A(0) = 0, 0 ≤ �A(t) ≤ 1, for all t with
probability 1 and either �A(t) = 1 for some t > 0 or limt→∞ A(t) = ∞ a.s. From
what follows, we simply use the term Lévy process for a prior process of the
c.h.f. A that induces a process neutral to the right on F .

For any given Lévy process A(t) on [0,∞), there exists a unique random
measure µ on [0,∞) × [0,1] such that

A(t) =
∫
[0, t]×[0,1]

xµ(ds, dx),(1)

where µ is defined by

µ([0, t] × B) =∑
s≤t

I
(
�A(s) ∈ B

)
(2)

for any Borel subset B of [0,1] and for all t > 0. Since µ is a Poisson
random measure [Jacod and Shiryaev (1987), page 70], there exists a unique
σ -finite measure ν on [0,∞) × [0,1] such that E(µ([0, t] × B)) = ν([0, t] × B).

Conversely, for a given σ -finite measure ν with
∫ t

0
∫ 1

0 xν(ds, dx) < ∞ for all
t > 0, we can construct a Lévy process through (1). Thus, we can conveniently
characterize a Lévy process by ν, which we call the Lévy measure of A (or F ).
The expectation of A(t) is also neatly expressed as

E(A(t)) =
∫ t

0

∫ 1

0
xν(ds, dx).(3)

The relationship between Lev́y processes and Poisson random measures is well
known in probability theory. For its complete treatment, see Jacod and Shiryaev
(1987). For their application to Bayesian survival models, which is relatively new,
refer to Kim (1999) and Kim and Lee (2001).

3. The posterior distribution. A priori, let the baseline c.d.f. F be a process
neutral to the right with a Lévy measure ν of the form ν(dt, dx) = ft (x) dx dt for
x ∈ [0,1] and let π(β) be the prior density function for β . Let qn be the number
of distinct uncensored observations and let t1 < t2 < · · · < tqn be the ordered
distinct uncensored observations. Define Dn(t) = {i :Ti = t, δi = 1, i = 1, . . . , n},
Rn(t) = {i :Wi < t ≤ Ti, i = 1, . . . , n} and R+

n (t) = Rn(t) − Dn(t). Thus, Dn(t)

and Rn(t) are the sets of the failure times at time t and observations at risk at
time t , respectively. The next theorem is the main result of the paper and is proven
in Section 5.

THEOREM 3.1. Let the observations be denoted by Dn = ((T1, δ1,W1,Z1),

. . . , (Tn, δn,Wn,Zn)).
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(i) Conditional on β and Dn, the posterior distribution of F is a process
neutral to the right with Lévy measure

ν(dt, dx|β,Dn)

= (1 − x)
∑

j∈Rn(t) exp(βT Zj )ft (x) dx dt +
qn∑
i=1

dHi(x|β)δti (dt),
(4)

where δa is the degenerate probability measure at a and Hi(·|β) is a probability
measure on [0,1] with density proportional to

hi(x|β) =
[ ∏

j∈Dn(ti )

(
1 − (1 − x)exp(βT Zj )

)]
(1 − x)

∑
j∈R

+
n (ti )

exp(βT Zj )
fti (x).(5)

(ii) The marginal posterior distribution of β is

π(β|Dn) ∝ e−ρ(β)
qn∏
i=1

∫ 1

0
hi(x|β)dx π(β),(6)

where

ρ(β) =
n∑

i=1

∫ Ti

Wi

∫ 1

0

(
1 − (1 − x)exp(βT Zi)

)
(1 − x)

∑i−1
j=1 Yj (t) exp(βT Zj )ft (x) dx dt,

Yj (t) = I (Wj < t ≤ Tj ) for j = 1, . . . , n and
∑i−1

j=1 Yj(t) exp(βT Zj ) = 0 when
i = 1.

REMARK. Setting Zj = 0 for all j , we can deduce the posterior of the c.h.f.
when there are no covariates, which coincides with the results in Hjort (1990) and
Kim (1999).

REMARK. The marginal posterior density of β given in (6) has the form
L(β)π(β), where L(β) = exp(−ρ(β))

∏qn

i=1

∫ 1
0 hi(x|β)dx. Thus, L(β) is the

integrated likelihood of β with the c.h.f. integrated out. This result can be used for
computation of posterior model probabilities in selecting a subset of appropriate
covariates or in Bayesian model averaging.

REMARK. For only right censored observations, the posterior distribution can
be obtained from Theorem 3.1 by letting Wi = 0 for all i.

In the next two examples of the application of Theorem 3.1, we derive the
posterior distributions from the two well-known families of prior processes—
gamma and beta processes.
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EXAMPLE 1 (Gamma process prior). A priori, assume that Y (t) =
− log(1 − F(t)) is a gamma process with parameters (c(t),A0(t)). Here, the
gamma process with parameters (c(t),A0(t)) is defined to be a Lévy process
whose log moment generating function is

log E
(
exp(−θY (t))

) =
∫ t

0

∫ ∞
0

(e−θx − 1)
c(s)

x
exp(−c(s)x) dx dA0(s)

provided A0(t) is continuous. This class of prior processes was proposed by Lo
(1982). Kalbfleisch (1978) used a subclass of these processes with constant c(t)

for the proportional hazard model. The cumulative hazard function A of the gamma
process is a Lévy process with a Lévy measure ν given by

ν([0, t] × B) =
∫ t

0

∫
B

1

− log(1 − x)
c(s)(1 − x)c(s)−1 dx dA0(s).

Therefore, from Theorem 3.1(i), we can establish that the posterior distribution of
the c.h.f. given β is a Lévy process with Lévy measure

ν(dt, dx|β,Dn) = c(t)

− log(1 − x)
(1 − x)

∑
j∈Rn(t) exp(βT Zj )+c(t)−1 dx dA0(t)

+
qn∑
i=1

dHi(x|β)δti (dt),

where

dHi(x|β) ∝ 1

− log(1 − x)

[ ∏
j∈Dn(ti)

(
1 − (1 − x)exp(βT Zj )

)]

× (1 − x)

∑
j∈R

+
n (ti )

exp(βT Zj )+c(ti )−1
dx.

Even though the continuous part of Y is a gamma process, the gamma process prior
is not conjugate because the distributions of jumps are not gamma distributions.
This fact was overlooked by Clayton (1991), who used a gamma process in im-
plementing an MCMC algorithm for the frailty model. In the case of constant c(t)

without left truncation, our result coincides with that of Kalbfleisch (1978).

EXAMPLE 2 (Beta process prior). The beta process with mean A0 and
scale parameter c is a Lévy process with Lévy measure ν(dt, dx) = c(t)x−1 ×
(1 − x)c(t)−1 dx dA0(t). If the prior of the c.h.f. A is the beta process given above,
the posterior of A given β is a Lévy process with Lévy measure

ν(dt, dx|β,Dn) = c(t)

x
(1 − x)

∑
j∈Rn(t) exp(βT Zj )+c(t)−1 dx dA0(t)

+
qn∑
i=1

dHi(x|β)δti (dt),



498 Y. KIM AND J. LEE

where

dHi(x|β) ∝ 1

x

[ ∏
j∈Dn(ti )

(
1 − (1 − x)exp(βT Zj ))]

× (1 − x)

∑
j∈R+

n (ti )
exp(βT Zj )+c(ti )−1

dx.

Also the marginal posterior distribution of β is given by (6) with hi(x|β)dx =
dHi(x|β) and

ρ(β) =
n∑

i=1

∫ Ti

Wi

∫ 1

0

c(t)

x

(
1 − (1 − x)exp(βT Zi)

)

× (1 − x)
∑i−1

j=1 Yj (t) exp(βT Zj )+c(t)−1
dx dA0(t).

Hjort (1990) derived the posterior distribution with a beta process prior when
there are no ties and observations are subject to only right censoring. This example
extends his results for tied observations.

With the result given above, we can devise a Markov chain Monte Carlo
algorithm for left truncated and right censored data. Based on the idea that a
positive increasing Lévy process is an integral of a Poisson random measure,
Lee and Kim (2002) developed an approximate algorithm to generate a beta
process and illustrated their algorithm with the proportional hazard model when
the observations are subject to right censoring only. The algorithm can be used
verbatim for the left truncated and right censored data, except that the risk set
Rn(t) is adjusted for left truncation, that is, Wi’s are not 0.

4. Propriety of the posterior. In this section, we consider the propriety of the
posterior distribution with the constant improper prior on β . For a set of vectors
{x1, . . . , xm} in R

p , a conical (nonnegative linear) combination is represented
by a point x = ∑m

j=1 λjxj , where λj ≥ 0 for j = 1, . . . ,m. For a set A in R
p ,

the conical hull of A is the collection of all conical combinations of vectors
from A or

coni(A) =
{

m∑
j=1

λjxj :xj ∈ A, λj ≥ 0 and m is a positive integer

}
.

We assume the following conditions on the prior process of the baseline c.h.f.

A1. There exists a positive number ς1 such that supt∈[0, τ ],x∈[0,1] xft(x) ×
(1 − x)1−ς1 (= M1) < ∞, where τ = max{T1, . . . , Tn}.

A2. There exist positive constants M2 and ς2 and a positive function a0(t)

continuous on (0, τ ) such that xft(x) ≥ M2(1 − x)ς2−1a0(t) for all x ∈ [0,1]
and t ≤ τ .
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THEOREM 4.1. Let B = {Zj − Zk : i = 1, . . . , qn, j ∈ Dn(ti ), k ∈ R+
n (ti)}.

Assume that A1 and A2 hold. If coni(B) = R
p , the posterior distribution with

a constant prior on the regression coefficients is proper.

The sketch of the proof of Theorem 4.1 is as follows. Conditions A1 and A2
yield the result that the marginal posterior distribution of β with a flat constant
prior is bounded by J

∧
z∈B(eβT z ∧ 1) for some positive constant J , where

∧
i ai

is the minimum value of ai’s. Thus, B is the set of vectors for which the likelihood
decreases exponentially along the direction of β with βT z < 0. The condition
coni(B) = R

p implies that the likelihood decreases exponentially in any direction.
Consequently, integrability is guaranteed. The detailed proof of Theorem 4.1 is
presented in Section 6.

REMARK. The condition coni(B) = R
p is the condition equivalent to unique-

ness of the maximum likelihood estimator and log-concavity of the partial likeli-
hood. See Jacobsen (1989) and Anderson, Borgan, Gill and Keiding (1993). This
former condition can be seen as a counterpart to the linear independence of covari-
ates in linear regression models.

Consider a gamma process prior in Example 1. Suppose A0(t) = ∫ t
0 a0(s) ds

for all t > 0 such that a0(t) is positive continuous and bounded on (0, τ ]. If
0 < inft∈[0, τ ] c(t) ≤ supt∈[0,τ ] c(t) < ∞, then the assumptions A1 and A2 are
satisfied by any positive constants ς1 and ς2 such that ς1 < inft∈[0, τ ] c(t) and
ς2 > supt∈[0, τ ] c(t). Hence, we can use the constant improper prior on β as long as
coni(B) = R

p holds. Similar arguments hold for a beta process prior in Example 2.

5. Proof of Theorem 3.1. We prove Theorem 3.1 in this section. The proofs
of part (i) and (ii) of the theorem are given in the following two subsections.
Throughout this section, the probability P refers to the joint probability measure
of the sampling distribution and its prior, and E(·) refers to its expectation.

Define counting processes Ni and Yi on [0,∞) by Ni(t) = I (Ti ≤ t, δi = 1)

and Yi(t) = I (Wi < t ≤ Ti). Let Ft = σ(N1(s), . . . ,Nn(s), s ≤ t). Then the
compensator �i of Ni with respect to Ft conditional on β and F is

�i(t) =
∫ t

0
Yi(s) dAi(s),

where Ai(t) is the cumulative hazard function of Fi . See Fleming and Harrington
(1991) or Anderson, Borgan, Gill and Keiding (1993) for the theory of counting
processes.

Since the truncation and censoring times are assumed to be independent of the
survival times, the posterior distribution conditional on Dn is the same as that
conditional on Nn = (N1, . . . ,Nn) and Zn = (Z1, . . . ,Zn). In the following, we
derive the posterior distribution conditioning on Nn and Zn, and we drop Zn in the
formulas unless there is a possibility of confusion.
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5.1. The posterior distribution of F given β and data. In this subsection,
we prove part (i) of Theorem 3.1. Noting that Ai(t) is also a Lévy process, we
derive the posterior distribution of A (and, consequently, of F ) by first deriving
the posterior distribution of Ai using Theorem 3.2 in Kim (1999) and inverting it
to A using Theorem A.1 in the Appendix.

Suppose the Lévy measure ν of F is given by

ν(dt, dx) = ft (x) dx +
l∑

j=1

dGj(x)δvj
(dt),(7)

where for each t ≥ 0, ft (x) dx is a σ -finite measure on [0,1] with
∫ t

0
∫ 1

0 x ×
fs(x) dx ds < ∞ for all t and Gj(x) are distributions on [0,1]. Here, L =
{v1, . . . , vl} is the set of fixed discontinuities of F . For a given counting
process N1(t) with covariate Z1, define N∗

1 (t) by N∗
1 (t) = N1(t) − �N1(t) ×

I (t ∈ L). For given r > 0, define F(t : r) by F(t : r) = 1 − (1 − F(t))r and
let A(t : r) be the cumulative hazard function of F(t : r).

LEMMA 5.1. For given β and N1, the posterior distribution of F is a process
neutral to the right with Lévy measure

ν(dt, dx|β,N1)= (1 − x)Y1(t) exp(βT Z1)ft (x) dx dt

+
l∑

j=1

c−1
j

[
(1 − x)Y1(vj ) exp(βT Z1)

]1−aj

× [
1 − (1 − x)exp(βT Z1)

]aj dGj(x)δvj
(dt)

+ c−1(t)
[
1 − (1 − x)exp(βT Z1)

]
ft (x) dx dN∗

1 (t),

(8)

where cj and c(t) are normalizing constants and aj = I (�N1(vj ) = 1).

PROOF. Let r = exp(βT Z1). Theorem A.1 with h(x) = 1 − (1 − x)r implies
that A(t : r) is a Lévy process with Lévy measure

ν(dt, dx : r) = 1

r
(1 − x)1/r−1ft

(
1 − (1 − x)1/r)dx dt

+
l∑

i=1

dGj

(
1 − (1 − x)1/r

)
δvi

(dt).

Since the compensator of N1(t) is
∫ t

0 Y1(s) dA(s : r), Theorem 3.2 of Kim (1999)
implies that the posterior distribution of A(t : r), given β and N1, is a Lévy process
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with Lévy measure :

(dt, dx|β,N1) = (
1 − Y1(t)x

)
1/r(1 − x)1/r−1ft

(
1 − (1 − x)1/r)dx dt

+
l∑

j=1

c−1
j

(
1 − Y1(vj )x

)1−aj xaj dGj

(
1 − (1 − x)1/r)δvj

(dt)

+ c−1(t)x1/r(1 − x)1/r−1ft

(
1 − (1 − x)1/r

)
dx dN∗

1 (t).

Since

A(t) = ∑
s≤t

(
1 − (

1 − �A(s : r)
)1/r)

I
(
�A(s : r) > 0

)
,

Theorem A.1 with h(x) = 1 − (1 − x)1/r implies that the posterior distribution
of A conditional on β and N1 is a Lévy process with Lévy measure ν(·|β,N1)

defined by (8). �

PROOF OF (i) OF THEOREM 3.1. For n = 1, Lemma 5.1 with L = ∅ implies
the desired result. For n ≥ 2, we complete the proof by applying Lemma 5.1
repeatedly. �

5.2. The marginal posterior distribution of β . In this subsection, we prove
part (ii) of Theorem 3.1. The proof consists of two parts. First, we derive the
marginal compensator of the counting process Nk+1, given β and Nk . Second,
we derive the likelihood of β using Jacod’s formula for the likelihood ratio [Jacod
(1975); Andersen, Borgan, Gill and Keiding (1993)]. Assume L = ∅ in (7). Let
rk = exp(βT Zk) for k = 1, . . . , n.

LEMMA 5.2. For k ≥ 1, conditional on β and Nk , Nk+1 is a multiplicative
counting process with compensator

∫ t
0 Yk+1(s) dE[A(s : rk+1)|β,Nk], where

E[A(t : rk+1)|β,Nk] =
∫ t

0

∫ 1

0

(
1 − (1 − x)exp(βT Zk+1)

)
ν(ds, dx|β,Nk).(9)

PROOF. Part (i) of Theorem 3.1 implies that, conditional on β and Nk , the
posterior distribution of A is a Lévy process with Lévy measure ν(·|β,Nk). Hence,
A(t : rk+1) is also a Lévy process and we have

P(Xk+1 > t|β,Nk) = E
(
1 − F(t : rk+1)|β,Nk

)

= E

(∏
s≤t

(
1 − dA(s : rk+1)

)|β,Nk

)

= ∏
s≤t

(
1 − dE[A(s : rk+1)|β,Nk]).
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Hence, conditional on β and Nk , the cumulative hazard function of Xk+1 is
E[A(t : rk+1)|β,Nk]. By (3) and the transformation of variables technique, we
have

E[A(t : rk+1)|β,Nk] =
∫ t

0

∫ 1

0

(
1 − (1 − x)exp(βT Zk+1)

)
ν(ds, dx|β,Nk)

and the proof is complete. �

LEMMA 5.3. Let Pk+1(·|β,Nk) be the probability measure of Nk+1 condi-
tional on β and Nk and let

L(Nk+1|β,Nk) = dPk+1(·|β,Nk)

dPk+1(·|0,Nk)
.

Then

L(Nk+1|β,Nk) ∝
qk∏

i=1

[
1

ci

∫ 1

0

(
(1 − x)exp(βT Zk+1)

)1−�Nk+1(ti )

× (
1 − (1 − x)exp(βT Zk+1)

)�Nk+1(ti )

× ∏
j∈Dk(ti )

(
1 − (1 − x)exp(βT Zj )

)

× (1 − x)

∑
j∈R

+
k

(ti )
exp(βT Zj )

fti (x) dx

]Yk+1(ti )

× exp
[
−
∫ Tk+1

Wk+1

∫ 1

0

(
1 − (1 − x)exp(βT Zk+1)

)
× (1 − x)

∑
j∈Rk(t) exp(βT Zj )

ft (x) dx dt

]

×
[∫ 1

0

(
1 − (1 − x)exp(βT Zk+1)

)
× (1 − x)

∑
j∈Rk(Tk+1) exp(βT Zj )

ft (x) dx

]ξk+1

,

(10)

where qk, (t1, . . . , tqk
), Dk,Rk and R+

k are defined similarly to qn, (t1, . . . , tqn),
Dn,Rn and R+

n in Theorem 3.1, except that only the first k observations are used.
Also

ξk+1 = I (δk+1 = 1, Tk+1 	= ti , i = 1, . . . , qk)

and

ci =
∫ 1

0

∏
j∈Dk(ti )

(
1 − (1 − x)exp(βT Zj ))(1 − x)

∑
j∈R+

k
(ti )

exp(βT Zj )
fti (x) dx.(11)
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PROOF. Let B(t) = E[A(t : rk+1)|β,Nk]. Let Bd(t) = ∑qk

i=1 �B(ti)I (ti ≤ t)

and Bc(t) = B(t) − Bd(t). By a result of Jacod (1975) [or see Anderson, Borgan,
Gill and Keiding (1993)] and the definition of product integration, we have

L(Nk+1|β,Nk) ∝ ∏
t∈[0,τ ]

(
Yk+1(t) dB(t)

)�Nk+1(t)(1 − Yk+1(t) dB(t)
)1−�Nk+1(t)

= bc(Tk+1)
ξk+1 exp

[
−
∫ ∞

0
Yk+1(t) dBc(t)

]
(12)

×
qk∏

i=1

�Bd(t)�Nk+1(ti )
(
1 − Yk+1(ti)�Bd(t)

)1−�Nk+1(ti ),

where bc(t) is the first derivative of Bc(t). From the definition of B(t) in (9), we
have

Bd(t) =
qk∑

i=1

1

ci

∫ 1

0

[(
1 − (1 − x)exp(βT Zk+1)

)
× ∏

j∈Dk(ti )

(
1 − (1 − x)exp(βT Zj )

)

× (1 − x)

∑
j∈R

+
k

(ti )
exp(βT Zj )

fti (x)

]
dx I (ti ≤ t)

(13)

and

Bc(t) =
∫ t

0

∫ 1

0

(
1 − (1 − x)exp(βT Zk+1)

)
(1 − x)

∑
j∈Rk(s) exp(βT Zj )

fs(x) dx ds.(14)

The proof is complete by substituting (13) and (14) in (12). �

PROOF OF (ii) OF THEOREM 3.1. When n = 1, (6) is valid by Lemma 5.3.
Now, assume that (6) is true for n = k. Since

π(β|Nk+1) ∝ L(Nk+1|β,Nk)π(β|Nk)

and the ci in (11) is the same as
∫ 1

0 hi(x|β)dx in (5) with n replaced by k,
we complete the proof by rearranging the equations L(Nk+1|β,Nk) in (10) and
π(β|Nk) in (6). �

6. Proof of Theorem 4.1. In this section, we prove the propriety of the
posterior distribution of β with the constant prior. Let

L(β) = e−ρ(β)
qn∏
i=1

∫ 1

0
hi(x|β)dx.

This is the right-hand side of (6) with π(β) ≡ 1. We will prove that L(β) is
integrable.
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Let 0 = r0 < r1 < · · · < rm < ∞ be the ordered values of all the distinct points
of {T1, . . . , Tn,W1, . . . ,Wn}. For a given sequence of real numbers {ai}, ∨i ai is
defined to be the maximum value of {ai}. For each k, let nk be an integer such that
tk = rnk

and let

ρk(β) =
∫ rnk

rnk−1

∫ 1

0

n∑
i=1

[
Yi(t)

(
1 − (1 − x)exp(βT Zi )

)
× (1 − x)

∑i−1
j=1 Yj (t) exp(βT Zj )

]
ft (x) dx dt.

LEMMA 6.1. For k = 1, . . . , qn,

ρk(β) ≥ Ck

∨
j∈Dn(tk)

ρkj (β),

where

ρkj (β) =
∫ 1

0

1 − (1 − x)exp(βT Zj )

x
(1 − x)

∑
l∈R

+
n (tk )

exp(βT Zl)+ς2−1
dx

and Ck = M2
∫ rnk

rnk
−1 a0(t) dt.

PROOF. Note that

ρk(β) =
∫ rnk

rnk−1

∫ 1

0

(
1 − (1 − x)

∑n
j=1 Yj (t) exp(βT Zj ))

ft (x) dx dt.

Hence, for any j ∈ Dn(tk),

ρk(β) ≥
∫ rnk

rnk−1

∫ 1

0

(
1 − (1 − x)exp(βT Zj )

)
ft (x) dx dt

≥
∫ rnk

rnk−1

∫ 1

0

(
1 − (1 − x)exp(βT Zj ))(1 − x)

∑
l∈R

+
n (tk )

exp(βT Zl)
ft (x) dx dt

≥
∫ rnk

rnk−1

∫ 1

0

1 − (1 − x)exp(βT Zj )

x

× (1 − x)

∑
l∈R

+
n (tk )

exp(βT Zl)+ς2−1
dx M2a0(t) dt

= Ckρkj (β).

The third inequality is due to A2. Since j is chosen arbitrarily, the proof is
complete. �

Let li (β) = ∫ 1
0 hi(x|β)dx. For j ∈ Dn(ti), define lij (β) by

lij (β) =
∫ 1

0

1 − (1 − x)exp(βT Zj )

x
(1 − x)

∑
k∈R

+
n (ti )

exp(βT Zk)+ς1−1
dx.
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LEMMA 6.2.

li (β) ≤ M1
∧

j∈Dn(ti )

lij (β).

PROOF. For any j ∈ Dn(ti ), we have

li (β) ≤
∫ 1

0

(
1 − (1 − x)exp(βT Zj )

)
(1 − x)

∑
k∈R

+
n (ti )

exp(βT Zk)
fti (x) dx

≤ M1

∫ 1

0

1 − (1 − x)exp(βT Zj )

x
(1 − x)

∑
k∈R

+
n (ti )

exp(βT Zk)+ς1−1
dx

= M1lij (β).

The second inequality is due to A1. Since j is arbitrary, this completes the
proof. �

LEMMA 6.3. Let ρ∗
i (β) = ∨

j∈Dn(ti)
ρij (β) and let l∗i (β) = ∧

j∈Dn(ti)
lij (β).

Then

L(β) ≤ M
qn

1

qn∏
i=1

exp
(−Ciρ

∗
i (β)

)
l∗i (β),

where Ci are defined in Lemma 6.1.

PROOF. Lemma 6.1 implies

ρ(β) ≥
qn∑

k=1

ρk(β) ≥
qn∑

k=1

Ckρ
∗
k (β)

and Lemma 6.2 implies
qn∏
i=1

li (β) ≤ M
qn

1

qn∏
i=1

l∗i (β).

The above two inequalities lead to the conclusion. �

Let ψ(x) = ∫ 1
0 (1 − (1 − y)x−1)/y dy. Direct calculation yields that for any

positive η,

ψ∗(η) = sup
η≤x<∞

xψ
′
(x) < ∞,(15)

where ψ
′
(x) = dψ(x)/dx.

LEMMA 6.4. There exists a constant K > 0 such that

sup
β∈Rp

exp
(−Ciρ

∗
i (β)

)
l∗i (β) ≤ K

for i = 1, . . . , qn.
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PROOF. First consider ρij (β) − lij (β) for j ∈ D(ti). Then, using the mean
value theorem, we can write

|ρij (β) − lij (β)|

≤
∣∣∣∣∣ψ

( ∑
k∈R+

n (ti )

exp(βT Zk) + ς2

)
− ψ

( ∑
k∈R+

n (ti )

exp(βT Zk) + ς1

)∣∣∣∣∣
+

∣∣∣∣∣ψ
(

exp(βT Zj ) + ∑
k∈R+

n (ti )

exp(βT Zk) + ς2

)

− ψ

(
exp(βT Zj ) + ∑

k∈R
+
n (ti )

exp(βT Zk) + ς1

)∣∣∣∣∣
= |(ς2 − ς1)ψ

′(a1)| + |(ς2 − ς1)ψ
′(a2)|

for some constants a1 > ς3 and a2 > ς3, where ς3 = min{ς1, ς2}. From (15), we
have

|ρij (β) − lij (β)| ≤ |ς1 − ς2|2ψ∗(ς3)

ς3
.

Since

ρ∗
i (β) − l∗i (β) ≥ ∨

j∈Dn(ti )

(
ρij (β) − lij (β)

)
> −|ς1 − ς2|2ψ∗(ς3)

ς3
,

we have

exp
(−Ciρ

∗
i (β)

)
l∗i (β) ≤ exp

(−Cil
∗
i (β)

)
Cil

∗(β) exp
(
Ci|ς1 − ς2|2ψ∗(ς3)

ς3

)/
Ci

≤ exp
(
Ci |ς1 − ς2|2ψ∗(ς3)

ς3

)/
Ci.

Now, letting

K = max
{

exp
(
Ci |ς1 − ς2|2ψ∗(ς3)

ς3

)/
Ci : i = 1, . . . , qn

}
,

we complete the proof. �

LEMMA 6.5. For i = 1, . . . , qn,

l∗i (β) ≤ ∧
j∈Dn(ti)

∧
k∈R+

n (ti )

ψ∗(ς1) exp
(−βT (Zk − Zj )

)
.
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PROOF. It suffices to show that for any j ∈ Dn(ti),

lij (β) ≤ ∧
k∈R+

n (ti )

ψ∗(ς1) exp
(−βT (Zk − Zj )

)
.

Since ψ
′

is decreasing, the mean value theorem yields that

lij (β) = ψ

(
exp(βT Zj ) + ∑

k∈R+
n (ti )

exp(βT Zk) + ς1

)

−ψ

( ∑
k∈R+

n (ti )

exp(βT Zk) + ς1

)

≤ exp(βT Zj )ψ
′
( ∑

k∈R+
n (ti )

exp(βT Zk) + ς1

)

≤ exp(βT Zj )∑
k∈R+

n (ti )
exp(βT Zk) + ς1

ψ∗(ς1)

≤ ψ∗(ς1)∑
k∈R+

n (ti )
exp(βT (Zk − Zj ))

≤ ∧
k∈R

+
n (ti )

ψ∗(ς1) exp
(−βT (Zk − Zj )

)
.

�

LEMMA 6.6. For some constant J > 0,

L(β) ≤ J
∧
z∈B

(
eβT z ∧ 1

)
.

PROOF. Lemma 6.4 implies that for i = 1, . . . , qn,

sup
β∈Rp

qn∏
k=1
k 	=i

exp
(−Ckρ

∗
k (β)

)
l∗k (β) < Kqn−1.

Since exp(−Ciρ
∗
i (β)) ≤ 1, Lemma 6.5 yields

L(β) ≤ ∧
j∈Dn(ti )

∧
k∈R+

n (ti )

M
qn

1 Kqn−1ψ∗(ς1) exp
(−βT (Zk − Zj )

)
.

Since i is arbitrary, we have

L(β) ≤ ∧
i=1,...,qn

∧
j∈Dn(ti)

∧
k∈R+

n (ti )

M
qn

1 Kqn−1ψ∗(ς1) exp
(−βT (Zk − Zj )

)
.
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On the other hand, by Lemma 6.4, we have

L(β) ≤ sup
β∈Rp

qn∏
k=1

exp
(−Ckρ

∗
k (β)

)
M1l

∗
k (β) < (M1K)qn.

Finally, by letting J = max{Mqn

1 Kqn−1ψ∗(ς1), (M1K)qn}, the proof is com-
plete. �

PROOF OF THEOREM 4.1. Suppose B = {z1, . . . , zm}. First, we show that
there exists hj > 0 such that

m∧
i=1

(
eβT zi ∧ 1

)
≤ e−hj |βj |(16)

for each j = 1,2, . . . , p. Take j = 1 and let e1 be the unit vector where the first
coordinate is 1 and all the other coordinates are 0. Since coni{z1, . . . , zm} = R

p ,
there exist nonnegative numbers c1, . . . , cm such that

e1 =
m∑

i=1

cizi.

Let d = 1/(m
∨m

i=1 ci) and di = dci . Note that d is well defined because not all ci

can be zero, and 0 ≤ ndi ≤ 1 for all i = 1,2, . . . ,m:

m∧
i=1

(
eβT zi ∧ 1

)
≤

m∧
i=1

(
endiβ

T zi ∧ 1
)

≤ exp

{
m∑

i=1

diβ
T zi

}
∧ 1

= edβ1 ∧ 1.

The first inequality holds because 0 ≤ ndi ≤ 1; the second inequality holds because
the minimum of n real numbers is always less than or equal to their average.
Similarly, we can find g > 0 such that

m∧
i=1

(
eβT zi ∧ 1

)
≤ e−gβ1 ∧ 1.

Now, let h1 = d ∧ g and assume that (16) holds for j = 1. By mimicking the
above derivations with ej , the unit vector whose j th coordinate is 1 and all the
others are 0, we can find hj for (16).
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Finally, let h∗ = min{h1, . . . , hp}. Combining Lemma 6.6 and (16), we
have ∫

Rp
L(β)dβ ≤ J

∫
Rp

p∧
i=1

e−hj |βi | dβ

≤ J

∫
Rp

p∧
i=1

e−h∗|βi | dβ

= Jp

∫
|β1|=∨p

i=1 |βi |
e−h∗|β1| dβ

= Jp

∫
R

∫ |β1|
−|β1|

· · ·
∫ |β1|
−|β1|

e−h∗|β1| dβp · · ·dβ2 dβ1

= Jp

∫
R
(2|β1|)p−1e−h∗|β1| dβ1

= Jp2p
∫
β1>0

β
p−1
1 e−h∗β1 dβ1 < ∞,

and the proof is complete. �

APPENDIX

Transformation of nondecreasing Lévy processes. Let SC[0,1] be the set
of all strictly increasing differentiable functions defined on [0,1] with h(0) = 0
and h(1) = 1. We prove the following theorem.

THEOREM A.1. Let A be a Lévy process with Lévy measure ν given by (7).
For a given h ∈ SC[0,1], define a process B by

B(t) =∑
s≤t

h
(
�A(s)

)
I
(
�A(s) > 0

)
.

Then B is a Lévy process with Lévy measure νB , where

νB(dt, dx) = dh−1(x)

dx
ft

(
h−1(x)

)
dx dt +

l∑
j=1

dGj

(
h−1(x)

)
δvj

(dt)(17)

and h−1 is the inverse function of h.

PROOF. Let An be a Lévy process defined by

An(t) =∑
s≤t

�A(s)I
(
1/n < �A(s) ≤ 1

)
.

Let N(t) be a Poisson process with intensity function a(t) = ∫ 1
1/n ft (x) dx.

Conditional on {N(s) : 0 ≤ s ≤ t}, let Y1, . . . , YN(t) be independent random
variables with density a−1(ti)fti (x)I (1/n < x ≤ 1) for i = 1, . . . , where ti is the
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time of the ith jump of N on [0, t]. Also, let V1, . . . , Vl be independent random
variables with each other as well as N and Y1, . . . , YN(t) such that the distribution
function of Vi is Gi left truncated at 1/n. Since these two Lévy processes have the
common Lévy measure νAn(dt, dx) = I (1/n < x ≤ 1)ν(dt, dx), we have

A(t)
d=

N(t)∑
i=1

Yi +
l∑

i=1

ViI (vi ≤ t).(18)

Define a Lévy process Bn by

Bn(t) =∑
s≤t

h
(
�A(s)

)
I
(
1/n < �A(s) ≤ 1

)
.

Then (18) implies

Bn(t)
d=

N(t)∑
i=1

h(Yi) +
l∑

i=1

h(Vi)I (vi ≤ t).

Since the density of h(Yi) is a−1(ti)(dh−1(x))/(dx)fti (h
−1(x))I (h(1/n) <

x ≤ 1) dx and the distribution function of h(Vi) is Gi(h
−1(x)) left truncated at

h(1/n), the Lévy measure of Bn is

νBn(dt, dx) = dh−1(x)

dx
ft

(
h−1(x)

)
I
(
h(1/n) < x ≤ 1

)
dx dt

+
l∑

j=1

dGnj

(
h−1(x)

)
δvj

(dt),

where Gnj is Gj left truncated at 1/n.

Let B̃ be the Lévy process with Lévy measure νB in (17). Theorem 3.13

in Jacod and Shiryaev (1987) implies that Bn
d→ B̃. On the other hand, from

its construction, it is obvious that Bn
d→ B. Hence, B

d= B̃ and the proof is
complete. �
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