
PHYSICAL REVIEW D VOLUME 51, NUMBER 8 15 APRIL 1995

Quantum cosmological entropy production and the asymmetry of thermodynam&c t&me

Sang Pyo Kim
Department of Physics, Kunsan National University, Kunsan 579 860-, Korea

Sung-Won Kim
Department of Science Education, Ewha Womans University, Seoul 180 750-, Korea

(Received 23 May 1994)

The Hamiltonian for the time-dependent Schrodinger equation for matter fields derived from the
Wheeler-DeWitt equation for a quantum minisuperspace cosmological model minimally coupled to
free massive minimal scalar fields consists of a set of parameter-dependent and implicitly cosmolog-
ical time-dependent harmonic oscillators. By using the generalized invariant method we obtain the
exact quantum states whose number states at an earlier gravitational configuration in an expanding
stage get evolved unitarily by a squeeze operator into the same number states at the later identi-
cal gravitational configuration in the subsequent recollapsing stage. It is proposed that during an
expansion and the subsequent recollapse of the Universe following a wide class of wave functions of
the quantum minisuperspace cosmological model, the cosmological entropy production determined
by the squeeze parameters may break the symmetry of the thermodynamic time.

PACS number(s): 04.60.Kz, 04.62.+v, 98.80.Hw

I. INTRODUCTION

In recent years there have been various attempts to ex-
plain the asymmetry of the cosmological, thermodynam-
ical, and psychological times in the context of quantum
cosmology [1]. At the classical level, the first scientific
study about the connection between the thermodynamic
and cosmological times dates back to Gold [2], who ar-
gued the time-symmetric entropy increase and decrease
with respect to the maximum expansion of the Universe.
But this argument was refuted by Penrose [3] from the
point of view of an observer falling into a black hole,
which can be regarded as a recollapsing small universe.
On the other hand, at the quantum level, the connection
between the thermodynamic and cosmological times was
proposed by Hawking [4] from the Hartle-Hawking no
boundary wave function 5], in which the wave function
of the Universe should be CPT invariant. This argu-
ment again was refuted immediately by Page [6], who
pointed out that the CPT theorem does not exclude a
time-asymmetric wave function in which entropy can in-
crease monotonically throughout an expansion and the
subsequent recollapse of the Universe. Quite recently,
Hawking et al [7] argued in. support of the latter point
of view that the thermodynamic arrow of time need not
reverse even in the recollapsing stage of the Universe,
due to the density perturbations which start small but
grow larger and become nonlinear as the Universe, ex-
pands and recollapses. There have been many related and
similar quantum cosmological arguments on the connec-
tion between the thermodynamic and cosmological times
[8,9,1].

In a previous paper [9], we proposed that for any quan-
tum cosmological model with many degrees of freedom
for the gravitational and matter fields the symmetry of
the cosmological time may be broken due to the geo-

II. DERIVATION OF TIME-DEPENDENT
SCHRODINGER EQUATION

I et us consider the Wheeler-DeWitt equation (in units
of 5 = 1) for a quantum minisuperspace cosmological
model:

1 as
(q)~( ~(, +v, (q) — G (()27' p

where I' and G" are the inverse supermetrics of the su-
permetrics F g and Gk~ on the extended minisuperspace
of the three-geometry plus scalar fields with the signa-
tures rl s = (—1, 1, . . . , 1) and bi, i ——(1, . . . , 1). Following

metric phases during an expansion and the subsequent
recollapse of the Universe. Such a quantum cosmolog-
ical model has a spectrum of wave functions, in which
the recollapsing wave function difFers from the expanding
wave function by the holonomy (Wilson loop operator)
of the gauge potential coming from the matter fields or
some other gravitational inhomogeneity and anisotropy
if the Universe traces a closed loop in a projected minisu-
perspace. In this paper, we shall further propose that in
the Universe following a wide class of wave functions, the
symmetry of the thermodynamic time may be broken due
to the cosmological particle creation and the entropy pro-
duction by further elaborating the same quantum cosmo-
logical model. This, however, does not exclude some par-
ticular wave functions of the universe expanding from an
asymptotic region and recollapsing to the same asymp-
totic region in which the entropy may decrease during
the recollapse.
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Ref. [9], one can expand the wave function

~(C, O) =) ~.(C) I .(4, 4)) =U. («)+(&)

Hmatter (4'y C) 2m.
|""'(C)»b» i + &.(4, C).

In an intermediate step, one obtains a matrix effective
gravitational Hamiltonian equation

by the adiabatic or nonadiabatic basis of the eigenstates
for the matter field Hamiltonian

It should be remarked that in defining the cosmological
time the effects of the matter fields have already entered
the matrix effective gravitational Hamiltonian equation
(4) just as the back reaction and the gauge potential have.
This procedure seems more systematic and correct than
the ordinary WEB approximation given by

~(C 4) = p [ S(&)]4(& 0
where the action is expanded in a power series of h/gamp,
and the lowest order action satisfies the Einstein-
Hamilton-Jacobi equation [13]

2mp
&'(1,')

I B .—i&-,-(&) I I b
—i&-,b(&) I

f' B
2mp (12)

where

+Vg(() + II tt„„(g) 4'(g) = 0, (4)

A„(g) = iU„'(g, () U„(g, (),

Although the asymptotic parameter for the Wheeler-
DeWitt equation should be gmp/h rather than gm, /h,
if the mass scale for the matter fields is lower by only a
few orders than that of the Planck mass for the gravita-
tional fields, one should include the matter fields into the
action S((,P) for large quantum numbers and modify the
Einstein-Hamilton-Jacobi equation as

is a gauge potential (Berry connection) [10] and

«-, (C) = U'(4' &)~ «-(& &)U (& &)

is a back reaction of the matter fields to the gravitational
fields. Depending on the choice of bases, IImatter „(1'.)
needs not to be a diagonal matrix.

In either of the bases, the wave function determined
from the gravitational Hamiltonian equation (4) has the
WEB approximation

@p(g) = exp [i'(g)],
which is peaked along a classical trajectory in an oscilla-
tory region. The classical trajectory is a solution of the
Einstein equation with the matter fields [ll]. One can de-
Bne the cosmological time along each classical trajectory
through a tangent vector [12] as

Btp mp B$ B(bSi(C)

The cosxnological time defined without the gauge poten-
tial is symmetric with respect to an expansion and the
subsequent recollapse, whereas with the gauge potential
it is asymmetric. So we may set the exact wave function
of the form

Bearing Eq. (12) in mind, one is able to see that the
terms in the square brackets of Eq. (10) are the quan-
tum correction of the gravity to the matter fields. In
the nonadiabatic basis of the generalized invariant, we
may perform a new asymptotic expansion of the Wheeler-
DeWitt equation, in which the lowest order solution of
the time-dependent Schrodinger equation in curved space
is the eigenstate itself of the generalized invariant, and
the higher order corrections can be found analytically in
the asymptotic parameter [14]. Hereafter, we shall con-
fine ourselves to the time-dependent Schrodinger equa-
tion for the matter fields only.

III. COSMOLOGICAL ENTROPY PRODUCTION

The time-dependent equation

@i(C,4) = exp [iS~(C)]@~(4,C),
C'~(4, C) = ~ tt-(4' C)C'~(4' C)

0
(14)

8
+&a(&) @~(4' C). (10)

and substitute Eq. (9) into the Wheeler-DeWitt equation
(1) to derive the time-dependent Schrodinger equation for
the matter fields in the curved Universe:

8
Oi(4 C) = ~ tt-(4, t.')@~(4, t,')

1 b (BSP BSg B2SP
C'

is parametrized by the cosmological time tp defined along
the classical trajectory of the Ath wave function. A
change of the notation will be made hereafter: the sub-
script "matter" used to denote the matter fields and the
A for the modes will be omitted from the notation and
carets will denote quantum operators. For the simple
model, e.g. , Eq. (30) of Ref. [9], the matter field Hamil-
tonian in some appropriate normal coordinates is the sum
of harmonic oscillators with their own variable &equency
squared:
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II(4 &(t)) = ).II (4, 4(t))

=). p, + --, (C)~,2ml 2

It is well known that the exact quantum states of a
time-dependent harmonic oscillator are determined by
the eigenstates of the I ewis-Riesenfeld invariant up to
some time-dependent phases [15]. Of course, there are
many methods [16] introduced to find the invariant for
the time-dependent harmonic oscillator. The invariant is
again the sum of the invariants for each HI(p, ():

I(4»4) =).2 I,.@,.(&)
l

(22)

where ~~ o is the invariant frequency of the lth generalized
invariant, and it is usually fixed by the initially prepared
quantum state. The number states of each invariant are

KI o(g) ~nI, kl o, (,') = (nl + kl o) ~nI, kl o, g), (23)

where p, I = pI + gl o((;)O'I/gI —(C) are the canonically
transformed momentum operators. The basis preserves
the same group structure as Eq. (20). Now, the general-
ized invariant can be rewritten as

I(» &(t)) = ).II(& 4)

) x
(()LII (()

PIP'I + It'IVI

p2
+«,+(&) 2' (16)

i/2

x lo„kI „(). (24)

where k~ p is the Bargmann index for the 1th harmonic
oscillator, which takes the values kl 0

——1/4 or 3/4 [18].
One can also obtain the number states by acting the rais-
ing operator on the ground state:

The parameter-dependent harmonic oscillator has the
Lie algebra of SU(2) (N being the number of normal
modes) with the following Hermitian basis:

On the other hand, some simplification can be achieved
by introducing the squeeze operators [19]. The basis
of the spectrum-generating algebra at an arbitrary later
gravitational configuration (,

' can be expressed by that at
an earlier gravitational configuration (o as

A

L PILI + O'IPI L 0'(
l —= ) I, o—

2 ' 2 ) l+= ))

whose group structure is

(17)

where

@,.(~) = - ..(&)@,.(~.) + -,.(c)k,.(~.)
+&I*,+(&)~l, -(CO), (25)

.Lj,o & = +LI.,+~I ~,

(.L.,.&

[LI, +, LI ] = 2 i ' hII.
)

(18)
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It possesses also the spectrum-generating algebra of
SU(l, l) with the Hermitian basis

A ] A 1 A

%,o = (LI, +LI,+—) ~—I,+ = —(LI,+ —LI, —W 'ILI, O)

g', o(C)+
~I,O«, —(( ) )

The classical trajectory should pass through both of (
and (,'o. By introducing the squeeze operator

whose group structure is

(19)
8i(() = exp ((Ie;+(Ie) —('Ie, ((e)),

one can show that the basis transforms unitarily as

(27)

~a,o, ~~,+ = +~A:,~~I,i, ~I, ,+, ~i,— = —2-&j,o~r. i-

Following [17], one can introduce the parameter-
dependent basis of the spectrum-generating algebra

~, ((') = ~'(&)~,o((o)~ (()
where the squeeze parameter [18] is

Rl o((, ) =—

KI ~(() =—
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ME P

(21)

2 ( II()(() )
(29)

Then it follows that a number state at the earlier gravi-
tational configuration transforms unitarily into the same
number state at the later gravitational configuration:
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~ni, ki, o, C) = ~i'(C) lniki, o, Co) .

Including the parameter-dependent phase factors the ex-
act quantum states of the matter field Hamiltonian (14)
are found to be [17]

c'(& &) = exp i [—hi(() —si(()](ni + ki o)

(»)x ini, ki, o, (),
where

hi(() = ~i',o+ «', o+ ~i'(&)«', (&)

7

, (() gi, —(4) ct I' gi, o(()
&~ (.

2(ui 8( (gi (())
(32)

According to the standard (information-theoretic) defi-
nition of nonequilibrium entropy, the amount of entropy
production for each normal mode is determined by the
squeeze parameter [20] to be AEi = 2~(i~, and the total
amount of entropy production to be

N

&&~-~-i = )
l

(33)

( N

= exp i ) si(g)(ni + ki o) (34)
)

for a closed trajectory in the projected minisuperspace.
The geometric phase is identical to Eq. (36) of Ref. [9]
in spite of a slight change of notation in Eq. (32).

IV. DISCUSSION

To summarize, we derived the time-dependent
Schodinger equations of Eq. (10) and Eq. (14) for the

The entropy is produced due to the cosmological par-
ticle creation of the matter fields which obey the time-
dependent Schrodinger equation in the expanding and
subsequently recollapsing Universe. It is a general fea-
ture of time-dependent harmonic oscillators that the gen-
eralized invariant does not evolve to be time symmetric
even for the time-symmetric Hamiltonian and therefore
the information-theoretic entropy increases according to
Eq. (33). The generalized invariant is periodic even for
a periodic &equency up to some factor determined from
the Floquet theorem. Furthermore, even if the Universe
returns to the same gravitational configuration in the re-
collapsing stage as the gravitational configuration in the
expanding stage, it is the asymmetry of the cosmologi-
cal time due to the gauge potential [9] that prevents the
generalized invariant &om evolving to the identical value.
Thus there is always entropy production throughout an
expansion and the subsequent recollapse.

It should be remarked again that there is a geometric
phase in Eq. (31):
N

exp
~ a/~, K)(n, +i,, o)

~

matter fields from the Wheeler-DeWitt equation for a
quantum cosmological model. As a simple model we
considered the free massive minimal scalar fields and ob-
tained the Hamiltonian (15) consisting of implicitly cos-
mological time-dependent and parameter-dependent har-
monic oscillators and the Lewis-Riesenfeld invariant of
Eq. (16). It is shown that the eigenstates of the general-
ized invariant are the number states of Eq. (23) and the
exact quantum states of Eq. (31) for Eq. (15) are de-
termined up to some time-d. ependent phase factors. The
number states at an earlier gravitational configuration
get evolved unitarily by the squeeze operator of Eq. (27)
into the same number states of Eq. (30) at the later
identical gravitational configuration. According to the
information-theoretic entropy, the entropy increases by
the squeeze parameters of Eq. (29). In the process of
an expansion and the subsequent recollapse of the Uni-
verse, the entropy increases inevitably, because the gener-
alized invariant starting at the earlier gravitational con-
figuration does not evolve into the same value when re-
turning to the identical gravitational configuration. It is
proposed that the cosmological entropy production may
break the symmetry of the thermodynamic time in an
expansion and the subsequent recollapse.

The particle creation and entropy production has al-
ready been discussed in the context of quantum field
theory in time-changing metrics [21], and quite recently
it has been investigated using the squeeze state for-
malism in the expanding Universe [22]. The main dif-
ference of this paper from those is that, by studying
the time-dependent Schrodinger equation in the func-
tional Schrodinger picture, we obtained the exact quan-
tum states and found the squeeze parameters explicitly
using the generalized invariant method. With a suit-
able redefinition of imaginary time, the time-dependent
Schrodinger equation can also be extended. to the regimes
of the tunneling universe, to which it is not possible to
extend the field theory formalism. Moreover, quantum
gravity should be taken into account in the early Uni-
verse, and our approach may provide a mechanism for
the quantum gravity eKect to the matter fields. For
example, the perturbed quantum Friedmann-Robertson-
Walker model [23] may provide us with a quantum cos-
mological model in which the entropy increase due to the
gravitational wave modes as well as the scalar field modes
from a small inhomogeneity can explain the present
amount of entropy, whose quantitative study will be pre-
sented elsewhere [14].

After completing this paper, we were informed. that
there is one particular time-symmetric solution of the
quantum cosmological model [24] in which the entropy
defined by the squeeze parameter in Eq. (33) is time
symmetric with respect to the time of the maximum
expansion. In a sequel [25] to this paper, it is found
that each mode of a free scalar field in the time-
changing Friedmann-Robertson-Walker universe has a
time-dependent harmonic oscillator of the form of Eq.
(15) whose most general three-parameter-dependent in-
variant can be expressed analytically in terms of the so-
lutions of the classical equation of motion. According
to this result, for a toy model with a frequency squared



4258 SANG PYO KIM AND SUNG-WON KIN sa

which is time symmetric around a particular time cor-
responding to the maximum expansion of the quantum
cosmological model, the generalized invariant is in gen-
eral not time symmetric. However, one particular situa-
tion with the same asymptotic &equency both in the far
remote past and in the far remote future is observed in
which the generalized invariant becomes time symmet-
ric. For a quantum cosmological model with the same
static gravitational configuration as asymptotic regions
before and after the maximum expansion, there is no net
entropy production at all when the Universe starts from
the asymptotic region and returns to the same asymp-
totic region. During the expansion and the subsequent
recollapse of the Universe, the amount of entropy produc-
tion varies according to Eq. (33) but eventually vanishes

in returning to these asymptotic regions. From the in-
vestigation of a quantum cosmological model it can be
inferred that the direction of the thermodynamic time is
in general not time symmetric during an expansion and
the subsequent recollapse of the Universe except for the
particular case with the same asymptotic region. This
does not imply necessarily that the arrow of thermody-
namic time agrees with the arrow of the other times.
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