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We investigate the effect of supersymmetry preserving mass deformation near the UV fixed point
represented by the N ¼ 6 Aharony-Bergman-Jafferis-Maldacena theory. In the context of the gauge/
gravity duality, we analytically calculate the leading small mass effect on the renormalized
entanglement entropy (REE) for the most general Lin-Lunin-Maldacena (LLM) geometries in the
cases of the strip and disk-shaped entangling surfaces. Our result shows that the properties of the
REE in (2þ 1) dimensions are consistent with those of the c function in (1þ 1) dimensions. We also
discuss the validity of our computations in terms of the curvature behavior of the LLM geometry in
the large N limit and the relation between the correlation length and the mass parameter for a special
LLM solution.
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I. INTRODUCTION

The entanglement entropy (EE) has become an important
quantity in a wide range of research areas, from condensed
matter physics to quantum gravity. In quantum field theory,
one of its well-known features is the appearance of the area
law describing short-range correlation in the vicinity of the
boundary of two subsystems. This correlation causes the
ultraviolet (UV) divergence in the continuum limit, which
can be regulated in terms of the UV cutoff [1,2]. This
implies that the EE is a UV sensitive quantity. However, the
EE also includes some UV insensitive information for the
degrees of freedom related to the long- range correlations of
the system. One important task for further exploration of
such long-range degrees of freedom is to define an
appropriate finite quantity in the continuum limit, analo-
gous to the Zamolodchikov c function in two-dimensional
quantum field theory [3].
As for the actual computation of the EE itself, it is usually

known that it is hard to evaluate the EE when the theory of
interest is an interacting one. Actually, the majority of the
computations of EE have been done in free field theories.
However, the situation changes if a field theory has its
gravity dual in the context of AdS/CFT correspondence.
According to the suggestion of [4,5] known as the holo-
graphic EE (HEE),1 the EE of the boundary field theory is
given by the minimal surface area in the bulk under the

condition that the boundary of the minimal surface is the
entangling surface in the boundary theory. Because the HEE
concerns only the geometric object, the minimal surface,
which is simpler than the direct quantum computation of
boundary theory, it can be regarded as a practical way to
compute even the EE of interacting field theory, at least in
the case where the system is in its ground state.
Among many possible boundary field theories appearing

in the AdS/CFT correspondence, those originating from the
explicit brane configurations are particularly interesting
because they are related to the dual gravity or M/string
theory stringently and believed to play an important role
in uncovering the nature of AdS/CFT correspondence. One
such theory is the ð2þ 1Þ-dimensional N ¼ 6 supercon-
formal Chern-Simons matter theory with the gauge group
UðNÞk × UðNÞ−k at Chern-Simons level k. It describes the
N M2-branes probing a C4=Zk orbifold and is called the
Aharony-Bergman-Jafferis-Maldacena (ABJM) theory [7].
One feature of this theory is that it allows the supersym-
metry preserving mass-deformation [8,9]. It has been
shown in [10] that the gravity dual of the supersymmetric
vacua of this mass-deformed ABJM (mABJM) theory for a
given N and k is identified with the half-BPS Lin-Lunin-
Maldacena (LLM) geometry [11,12] with SOð2; 1Þ ×
SOð4Þ × SOð4Þ isometry in 11-dimensional supergravity.
Interestingly, it was conjectured in [12] that this type of
LLM geometry (corresponding to k ¼ 1 case) is dual to the
supersymmetry preserving mass-deformation of theN ¼ 8
CFT, even before the appearance of the ABJM theory.
Since the mABJM theory is a deformation from the

conformal ABJM theory, it gives us a chance to study the
behavior of the ABJM theory away from the UV conformal
fixed point with respect to the change of the deformation

*kimkyungkiu@gmail.com
†okabkwon@ewha.ac.kr
‡cyong21@ewha.ac.kr
§hyeonjoon@kias.re.kr
1For comprehensive review on the subject of HEE including

related references, see [6].

PHYSICAL REVIEW D 90, 126003 (2014)

1550-7998=2014=90(12)=126003(12) 126003-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.126003
http://dx.doi.org/10.1103/PhysRevD.90.126003
http://dx.doi.org/10.1103/PhysRevD.90.126003
http://dx.doi.org/10.1103/PhysRevD.90.126003


parameter. At this point, the EE can be regarded as a good
measure for exploring such behavior. However, since the
mABJM theory is highly interacting one, it is practically
too hard to compute its EE. Fortunately, the dual geom-
etries corresponding to various supersymmetric vacua have
been constructed [13] as alluded to above and thus the HEE
can be considered instead of EE.
In this paper, we are interested in the mABJM theory

near the UV fixed point. Our main goal is to compute the
HEE’s for general supersymmetric vacua and to investigate
the effect of the mass deformation from the viewpoint of
renormalization group (RG) flow. The RG flow itself is
derived from the holographic renormalized EE (REE),
which has been proposed by Liu and Mezei [14] to define
a UV finite quantity from a given EE. It was shown that the
REE for any (2þ 1)-dimensional Lorentz invariant field
theories always monotonically decreases along the RG
trajectory [15]. See also [16–20] for related works.
Especially in [20], the present authors have done a study
on the topic related with the REE of the mABJM theory,
which is a preliminary work of our present work. There, a
circle was taken as the entangling surface and the HEE for
the most symmetric LLM geometry was calculated. In the
present work, we extend the previous one. We study the
REEs of a strip as well as a circular-shaped entangling
surface on the general LLM geometries, which correspond
to all possible supersymmetric vacua of the mABJM
theory. We also discuss the validity of our computation
in terms of gauge/gravity duality in the large N limit.
The organization of this paper is as follows. In the next

section, we briefly review the supersymmetric vacuum
structure of mABJM theory and the corresponding dual
LLM geometry in terms of droplet picture. The HEE of
the mABJM theory is studied in Sec. III. As mentioned
above, two types of entangling surface, strip and circular
one, are considered. The configuration of droplet we take
is quite general except that it represents the weakly curved
LLM geometry. Based on the results of HEE, we compute
the REE for each entangling surface. Finally, the sum-
mary of our results and discussion follow in Sec. IV. In
Appendix A, we find the relation between the mass
parameter and the correlation length which comes from
a cutting off the tip of the minimal surface without mass-
deformation. In Appendix B, we discuss the large N
behavior of the Ricci scalar at the y ¼ 0 region.

II. VACUA OF THE mAJM THEORY
AND THE LLM THEORY

The N ¼ 6 ABJM theory allows the supersymmetry
preserving mass deformation [8,9] by imposing the same
mass to four-complex scalars and their superpartners. One
intriguing feature of the mABJM theory is that it has
discrete Higgs vacua which are classified by the partition of
N. HereN is the number of M2-branes in the ABJM theory.
The supersymmetric vacua [10] of the mABJM theory with

Chern-Simons level k ¼ 1 have one-to-one correspondence
with the Lin-Lunin-Maldacena (LLM) background with
SOð2; 1Þ × SOð4Þ × SOð4Þ isometry in 11-dimensional
supergravity [11,12]. In this section we briefly review this
correspondence and discuss the asymptotic properties of
the LLM geometry.

A. Supersymmetric vacua of the mABJM theory

In this subsection, we summarize the supersymmetric
vacua [10] of the mABJM theory. Before discussing it, we
consider the classical vacuum equations, which are
obtained by setting the bosonic potential of the mABJM
theory to zero [7]. Since the SU(4) global symmetry of the
original ABJM theory is broken to SUð2Þ × SUð2Þ × Uð1Þ
symmetry in the mABJM theory, it is convenient to split the
SU(4)-symmetric four-complex scalars into two SU(2)-
symmetric complex scalars, i.e.,

YA ¼ ðZa;W†aÞ;
Y†
A ¼ ðZ†

a;WaÞ; ð2:1Þ

where A ¼ 1; 2; 3; 4, a ¼ 1; 2, and Y†
A is the Hermitian

conjugation of YA. Then the vacuum equations are written as

ZaZ†
bZ

b − ZbZ†
bZ

a ¼ −
μk
2π

Za;

W†aWbW†b −W†bWbW†a ¼ μk
2π

W†a;

WaZbWb −WbZbWa ¼ 0;

ZbWbZa − ZaWbZb ¼ 0: ð2:2Þ

Solutions of these equations in (2.2) have been found in the
form of the GRVV matrices [9]. Each vacuum solution is
well represented as a direct sum of irreducible rectangular

n × ðnþ 1Þ matrices, MðnÞ
a ða ¼ 1; 2Þ, and their Hermitian

conjugates, M̄ðnÞ
a , [10,13]

MðnÞ
1 ¼

0
BBBBBBBB@

ffiffiffi
n

p
0ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p
0

. .
. . .

. ffiffiffi
2

p
0

1 0

1
CCCCCCCCA
;

MðnÞ
2 ¼

0
BBBBBBBB@

0 1

0
ffiffiffi
2

p

. .
. . .

.

0
ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p

0
ffiffiffi
n

p

1
CCCCCCCCA
: ð2:3Þ
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In terms of these matrices, the vacuum solutions are

Za ¼
ffiffiffiffiffiffi
μk
2π

r

0
BBBBBBBBBBBB@

Mðn1Þ
a

. .
.

MðniÞ
a

0ðniþ1þ1Þ×niþ1

. .
.

0ðnfþ1Þ×nf

1
CCCCCCCCCCCCA
;

W†a ¼
ffiffiffiffiffiffi
μk
2π

r

0
BBBBBBBBBBBB@

0n1×ðn1þ1Þ

. .
.

0ni×ðniþ1Þ

M̄ðniþ1Þ
a

. .
.

M̄
ðnfÞ
a

1
CCCCCCCCCCCCA
; ð2:4Þ

where 0i×j denotes i × j null matrix. Since Za and W†a are
N × N matrices for the gauge group UðNÞ × UðNÞ,2 we
have the following constraints,

XN−1

n¼0

½nNn þ ðnþ 1ÞNn
0� ¼ N;

XN−1

n¼0

½ðnþ 1ÞNn þ nNn
0� ¼ N; ð2:5Þ

where Nn ðNn
0Þ denotes the number of blocks of MðnÞ

a

ðM̄ðnÞ
a Þ.

Any combination of ðNn; Nn
0Þ satisfying the constraint

(2.5) can be the solution of the vacuum equation (2.2).
However, it was found that the possible combinations of
ðNn; Nn

0Þ are much more than the number of the expected
configurations [9] in dual gravity theory, which are known
as the LLM geometries. This problem was resolved by
introducing quantum fluctuations to classical vacua. It was
found that the occupation numbers for the quantum-level
supersymmetric vacua are further constrained by the
Chern-Simons level k,

0 ≤ Nn ≤ k; 0 ≤ Nn
0 ≤ k; ð2:6Þ

for every n [10]. Thus, only a subset of classical vacua
remains supersymmetric at the quantum level.

B. LLM geometry with Zk quotient

It was already conjectured in [12] that the LLM
geometry with SOð2; 1Þ × SOð4Þ × SOð4Þ isometry in
11-dimensional supergravity should correspond to the
N ¼ 8 effective field theory of M2-branes. Subsequently,
there has been much progress in this direction, for instance,
explicit matrix representation of discrete vacua [9], super-
symmetric vacua [10], one-to-one mapping between the
supersymmetric vacua of the mABJM theory and the LLM
geometries for general k andN [13], etc. See also [22,23] for
other developments.
The LLM geometry with Zk quotient is given by

ds2 ¼ −Gttð−dt2 þ dw2
1 þ dw2

2Þ þGxxðdx2 þ dy2Þ
þGθθds2S3=Zk

þG~θ ~θds
2
~S3=Zk

ð2:7Þ

with

ds2S3=Zk
¼ dθ2 þ sin22θdϕ2

þ ððdλþ dφ=kÞ þ cos 2θdϕÞ2;
ds2~S3=Zk

¼ d~θ2 þ sin22~θd ~ϕ2 þ ðð−dλþ dφ=kÞ
þ cos 2~θd ~ϕÞ2;

where

2It can be also be extended to the vacuum solution of the
mass-deformed ABJ theory [21] with the gauge group UðNÞ ×
UðN þ lÞ having integer l. See for the details [13]. In this paper,
we mainly focus on the mABJM theory with UðNÞ × UðNÞ
gauge symmetry.
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−Gtt ¼

0
B@4μ20y

ffiffiffiffiffiffiffiffiffiffiffiffi
1
4
− z2

q
f2

1
CA

2=3

;

Gxx ¼

0
B@f

ffiffiffiffiffiffiffiffiffiffiffiffi
1
4
− z2

q
2μ0y2

1
CA

2=3

;

Gθθ ¼

0
B@fy

ffiffiffiffiffiffiffiffiffiffi
1
2
þ z

q
2μ0ð12 − zÞ

1
CA

2=3

;

G~θ ~θ ¼

0
B@fy

ffiffiffiffiffiffiffiffiffiffi
1
2
− z

q
2μ0ð12 þ zÞ

1
CA

2=3

;

fðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4z2 − 4y2V2

q
: ð2:8Þ

The mass parameter μ0 corresponds to turning on a non-
vanishing 4-form field strength. The LLM geometry in
(2.7) is completely determined in terms of zðx; yÞ and
Vðx; yÞ,

zðx; yÞ ¼
X2NBþ1

i¼1

ð−1Þiþ1ðx − xiÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − xiÞ2 þ y2

p ;

Vðx; yÞ ¼
X2NBþ1

i¼1

ð−1Þiþ1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − xiÞ2 þ y2

p ; ð2:9Þ

where NB is the number of the black droplets and xi’s
represent the locations of the boundary lines between the
black and white strips. The black and white strips in such
a droplet representation indicate the ∓ 1

2
values of the

function z along the y ¼ 0 boundary. One example of
droplet representation for NB ¼ 2 is shown in Fig. 1. For
the detailed prescription of the droplet representation for
general k, see [13].

III. HEE OF THE mABJM THEORY

The LLM geometry introduced in the previous section is
asymptotically AdS4 × S7=Zk, which means that the con-
formal symmetry is restored in the UV limit and the dual
field theory becomes the ABJM theory without mass
deformation. Due to the mass deformation, the conformal
symmetry of the system is broken and the dual geometry
should be modified in the deep IR region. This correspon-
dence makes it possible to investigate the effect of the mass
deformation on the HEE near the UV conformal fixed point
of the ABJM theory. Interestingly, it was shown that the
REE derived from the HEE at the UV fixed point is
consistent with the free energy of the ABJM theory
obtained by the localization technique on S3 [24]. In this
section, we compute the HEE and investigate the REE near
the UV fixed point of the mABJM theory with a small mass

deformation for two types of entangling surface, strip and
disk. For consistency check of our results, we will discuss
the validity of the dual LLM geometry.

A. Strip

First, let us consider the HEE of the strip defined at the
boundary of the LLM geometry. Unlike the case of
AdS5 × S5, where the role of the compact manifold is
trivial, the LLM geometry is not a simple product space so
that one should be careful in evaluating the HEE. For the
HEE of the strip, we regard a nine-dimensional surface
embedded in the LLM geometry which is called a holo-
graphic entangling surface for simplicity. Its boundary of
course is identified with the boundary of the strip. If the
coordinates of the holographic entangling surface are
denoted by σi with i ¼ 1;…; 9, the induced metric can
be represented as a functional of the embedding function
XMðσiÞ

gij ¼ GMN
∂XM∂XN

∂σi∂σj ; ð3:1Þ

where GMN is the 11-dimensional LLM metric. Then, the
surface shape is governed by the following action

γA ¼
Z

d9σ
ffiffiffiffiffiffiffiffiffiffiffiffi
det gij

q
: ð3:2Þ

It was conjecture in [4,5] that the minimal area correspond-
ing to the on-shell action is proportional to the HEE of the
strip

EF

k
l1

l0

l0 '

l1 '

x

k

l1

l1 '

x5

x4
x3

x2

x1

FIG. 1. An example for NB ¼ 2: EF is the Fermi-energy which
is the level of black droplet defined when all excited black
droplets sink down. The k unit length divides the x-axis into
sections denoted by indices n ¼ 0; 1; 2;…, and each section has
ln or l0n which is the length of black part or white part,
respectively. They are identified with Nn and N0

n describing a
field theory vacua.
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SA ¼ MinðγAÞ
4GN

: ð3:3Þ

The boundary space of the LLM geometry can be repre-
sented by R1;2 × S7=Zk. If we consider a static strip
configuration, it should be extended in the two-dimensional
noncompact flat space and wrap the seven-dimensional
compact manifold. Let us suppose that the strip is extended
in w1 direction infinitely and has a finite width l in w2

direction. Then, the holographic entangling surface
describing the HEE of the strip can be parameterized as
follows

w1 ¼ σ1;

�
−
L
2
≤ w1 ≤

L
2

�
;

w2 ¼ σ2;

�
−
l
2
≤ w2 ≤

l
2

�
;

α ¼ σ3; θ ¼ σ4; ϕ ¼ σ5;

~θ ¼ σ6; ~ϕ ¼ σ7; λ ¼ σ8; φ ¼ σ9; ð3:4Þ

where the infinite length of w1 is regularized to L for
convenience. The holographic entangling surface is also
extended in the radial direction r which generally becomes
a function of the noncompact coordinates. However, the
translation symmetry in the w1 direction requires r to be a
function of w2 only, r ¼ rðw2Þ.
Substituting the LLM metric into the induced metric

formula leads to

ds2 ¼ jGttjðdw1Þ2 þ ðjGttj þGxxr02Þðdw2Þ2
þGxxr2dα2 þ Gθθds2S3=Zk

þ G~θ ~θds
2
~S3=Zk

: ð3:5Þ

Then the action of the holographic entangling surface, after
performing the integrations over all angles but α, reduces to

γA ¼ 4π4L
k

Z
l=2

−l=2
dw2

×
Z

π

0

dαr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jGttjGxxG~θ ~θ

3Gθθ
3ðjGttj þ Gxxr02Þ

q
;

ð3:6Þ

where the prime means a derivative with respect to w2. Note
that x, y and r have length square dimension. Let us
introduce two dimensionless variables and a new radial
coordinate with length dimension

~x ¼ 4x
R2

; ~y ¼ 4y
R2

and u ¼ R3

4r
; ð3:7Þ

which are related to each other as follows:

~x ¼ R
u
cos α and ~y ¼ R

u
sin α: ð3:8Þ

By using the relation between parameters,

R ¼ ð32π2k ~NÞ1=6lP; ð3:9Þ

the action can be rewritten as

γA ¼ π4LR9

32kμ0

Z
l=2

−l=2
dw2

Z
π

0

dα
fsin2α
u3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2u02

4μ20sin
2αu2

s
;

ð3:10Þ

with

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4z2 − 4y2V2

q
;

z ¼
X2NBþ1

i¼1

ð−1Þiþ1ðx − xiÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − xiÞ2 þ y2

p
¼ 1

2

�
cos αþ

X∞
k¼1

X2NBþ1

i¼1

�
xi
r

�
k
ð−1Þiþ1ðP1ðcos αÞPkðcos αÞ − Pk−1ðcos αÞÞ

�
;

V ¼
X2NBþ1

i¼1

ð−1Þiþ1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − xiÞ2 þ y2

p ¼ 1

2

X∞
k¼0

X2NBþ1

i¼1

�
1

r

�
kþ1

xki ð−1Þiþ1Pkðcos αÞ; ð3:11Þ

where NB is the number of black droplets.
Generally speaking, the Lagrangian density for the

minimal surface is very complicated in the full LLM
geometry and so it is hard to avoid difficulty in performing
angle integration. However, our main goal is to see the
small mass deformation effect. For this, it is enough to take

into account the limit μ0 ≪ r rather than the full geometry.

In this approximation the mass deformation effect on the

HEE appears as deviation from the HEE obtained in AdS4.

More specifically, using (3.11), the function f in the small

mass limit is expanded as follows:
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f ¼ D0μ0u sin α½1þD1μ0u cos α

þ ðD2 þD3 cosð2αÞÞμ20u2 þOðμ30Þ�; ð3:12Þ

where

D0 ¼
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 − C2

1

q
;

D1 ¼ −
ðC1C2 − C3Þffiffiffi

2
p ;

D2 ¼
1

16
ð−5C2

2 − 2ðC3 − C1C2Þ2 − 4C1C3 þ 9C4Þ;

D3 ¼
1

16
ð−3C2

2 − 2ðC3 − C1C2Þ2 − 12C1C3 þ 15C4Þ:
ð3:13Þ

The coefficient Ck appearing in the above formula is
defined as

Ck ¼
X2Nbþ1

i¼1

ð−1Þiþ1

�
x̂iffiffiffiffiffiffi
Nk

p
�

k
ð3:14Þ

and satisfies ðC2 − C2
1Þ ¼ 2. Here x̂i is defined as

xi ¼ 2πl3pμ0x̂i. When the Chern-Simon level k is equal

to 1, a vacuum of the mass deformed ABJM theory can be

represented by a Young diagram with x̂i as shown in Fig. 2,

whose area is given by N. This area implies the number of

M2-branes [12].
Expanding the action with the small μ0, one can easily

perform integration for the angle α. Up to μ20 order, γA is
expanded as

γA ≈
π4LR9

12k

Z
l=2

−l=2
dw2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02 þ 1

p

u2
þ μ20ð2ðD2

1 þ 10D2 − 6D3Þu04 þ 3ðD2
1 þ 10D2 − 6D3Þu02 þ 10D2 − 6D3Þ

10ðu02 þ 1Þ3=2
�
: ð3:15Þ

If we regard w2 as time, then γA can be viewed as an action of the mechanical problem. Since the Lagrangian is independent
on w2, one may construct a conserved Hamiltonian as follows:

H ¼ −
π4LR9

12ku2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02 þ 1

p −
π4μ20LR

9ðð−3D2
1 þ 10D2 − 6D3Þu02 þ 10D2 − 6D3Þ
120kðu02 þ 1Þ5=2 : ð3:16Þ

At the turning point denoted by u0, u0ðw2Þ vanishes. Applying this condition, the Hamiltonian turns out to be

H ¼ −
π4LR9

12ku20
þ π4ð6D3 − 10D2Þμ20LR9

120k
: ð3:17Þ

Comparing above two expressions, u0 can be written in terms of u,

u0 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u40 − u4

p
u2

þ μ20ð−3D2
1u

10 þ ð3D2
1 − 10D2 þ 6D3Þu40u6 þ 2ð5D2 − 3D3Þu100 Þ

10u2u40
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u40 − u4

p : ð3:18Þ

By integration of this equation, the width l and the minimal area γA are presented as functions of u0 up to μ20 order,

l ¼
ffiffiffi
2

π

r
u0Γ

�
3

4

�
2

þ μ20u0ð5ð3D2
1 þ 35D2 − 21D3Þu20Γð14ÞΓð54Þ þ 21ð3D3 − 5D2Þu20Γð34Þ2Þ

105
ffiffiffiffiffiffi
2π

p ;

γA ¼ π4LR9

6k

�
1

ϵ
−

Γð3
4
Þ2ffiffiffiffiffiffi

2π
p

u0
þ μ20u0ð15D2

1Γð14Þ2 þ 7ð5D2 − 3D3Þð5Γð14Þ2 − 4Γð3
4
Þ2ÞÞ

280
ffiffiffiffiffiffi
2π

p
�
; ð3:19Þ

where ϵ denotes a UV cutoff. Substituting u0 into γA, the strip entanglement entropy up to μ20 order reads in terms of l,

x1 x2

x3 x4

x7 x8

x2 x3

x5 x6

FIG. 2. k ¼ 1 case: The area of the Young diagram is given by
ð2πμ0l3pÞ2N.
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SA ¼ γA
4GN

¼ π4LR9

24GNk

�
1

ϵ
−
Γð3

4
Þ4

πl
− μ20l

ð21D3 − 3D2
1 − 35D2ÞΓð14Þ4

336π2

�
; ð3:20Þ

whereGN ¼ ð2πlPÞ9=ð32π2Þ denotes the 11-dimensional Newton’s constant with the Planck length lP. The first and second
terms on the right-hand side are consistent with the HEE obtained in AdS4, as mentioned before, and the third term is the
leading correction caused by the mass deformation in the small mass limit. According to [17], we can define a holographic c
function of the strip,

F stripðlÞ≡ l2∂lŜA ¼ π3R9

24GNk

�
Γ
�
3

4

�
4

− μ20l
2

�
πΓð1

4
Þ2ð21D3 − 3D2

1 − 35D2Þ
168Γð3

4
Þ2

��
; ð3:21Þ

where ŜA ≡ SA=L. If the coefficient of the μ20l
2 is negative,

F 0
stripðlÞ becomes negative, which implies that the holo-

graphic c function monotonically decreases along the RG
flow.
For more concrete example, now let us take into account

the symmetric configuration where the parameters are
given by

D1 ¼ 0; D2 ¼ −1=8; and D3 ¼ 9=8: ð3:22Þ

Then the free energy or c function of the symmetric strip
reduces to

F stripðlÞ ¼
π3R9Γð3

4
Þ4

24kGN
− μ20l

2
R9π2Γð1

4
Þ4

288kGN
: ð3:23Þ

In this case the coefficient of the μ20l
2 is a negative number.

This fact implies that the holographic c function shows the
monotonically decreasing behavior along the RG flow.
Before going to the disk case, we would like to give a

comment on another way of the mass deformation. In [5],
the authors considered the mass deformation of CFT in a
bottom-up approach. So it is meaningful to make a
comparison between our top-down result and theirs. We
discuss the identification between them in Appendix A.

B. Disk

We now turn to the REE of a disk near the UV fixed
point. Let us take a circular region with radius l on the two
spatial directions of the boundary noncompact manifold.
The nine-dimensional holographic entangling surface with
two noncompact directions is embedded into the target
space (2.7) as

u ¼ uðρÞ; w1 ¼ ρ cos σ1; w2 ¼ ρ sin σ1;

α ¼ σ3; θ ¼ σ4; ϕ ¼ σ5; ~θ ¼ σ6;

~ϕ ¼ σ7; λ ¼ σ8; φ ¼ σ9; ð3:24Þ
where the radial coordinate of AdS4 is given by u ¼
R=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2 þ ~y2

p
and is a function only of ρ due to the rotation

symmetry in the ðw1; w2Þ plane. α ¼ tan−1ð~y=~xÞ is the

angle in the ðx; yÞ plane and the range of ρ is given by
0 ≤ ρ ≤ l. The action describing the holographic entan-
gling surface, after integrating out angular variables of the
compact space, reduces to

γA ¼ π5R9

16kμ0

Z
l

0

dρ
Z

π

0

dα
fρsin2α

u3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2u02

4μ20sin
2αu2

s
;

ð3:25Þ
where the prime means a derivative with respect to ρ, and f
in the small mass limit is given in (3.12). In this small mass
limit, the α integration up to μ20 order leads to

γA ¼ π5R9

6k

Z
l

0

dρρ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u02

p

u2
þ ð5D2 − 3D3Þμ20

5ð1þ u02Þ3=2

þ 3ðD2
1 þ 10D2 − 6D3Þð3u02 þ 2u04Þμ20

10ð1þ u02Þ3=2
�
; ð3:26Þ

where the normalization used in the previous section
D0 ¼ 2 is adjusted. Note that, unlike the strip case, there is
no conserved charge due to the explicit dependence
on ρ. So we can not apply the method used in the previous
section to the disk case. Here we follow a different
strategy.
The minimum value of γA is given by the on-shell action.

In the μ0 → 0 limit, γA should be reduced to that of the
AdS4 up to an overall factor caused by the volume of the
seven-dimensional compact manifold. In this zero mass
limit, it is well known that a circle appears as a special
solution satisfying the boundary conditions, u0ð0Þ ¼ 0 and
uðlÞ ¼ 0,

u0ðρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − ρ2

q
: ð3:27Þ

In order to figure out the mass deformation effect near the
UV fixed point, we can take into account a small mass
perturbation around the known circular solution. The
leading contribution appears at μ20 order, so we take an
ansatz:
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uðρÞ ¼ u0ðρÞ þ ðμ0lÞ2δuðρÞ: ð3:28Þ

Then, the fluctuation field δu is governed by an inhomogeneous second-order differential equation

0 ¼ δu00 þ ðl2 − 2ρ2Þ
l2ρ − ρ3

δu0 −
2l2

ðl2 − ρ2Þ2 δuþD2
1ð−6l4 þ 14l2ρ2 − 9ρ4Þ − 2ð5D2 − 3D4Þl2ð3l2 − 2ρ2Þ

5l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − ρ2

p ; ð3:29Þ

which allows two integration constants. For the fluctuation solution to be determined unambiguously, we must impose two
natural boundary conditions. In the asymptotic region (u → 0), the effect of the mass deformation is negligible, so the
deformed solution should reduce to the undeformed one, uðlÞ ¼ u0ðlÞ. This fact implies that the fluctuation field δuðlÞ
vanishes at the boundary. Assuming that the action in (3.25) is regular, the holographic entangling surface should be
smooth. This smoothness, together with the rotational symmetry in the ðw1; w2Þ plane, enforces δu0ð0Þ ¼ 0 at the turning
point. Imposing these two boundary conditions fixes the fluctuation field uniquely:

δuðρÞ ¼ l3

300
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðρ=lÞ2

p ½þ81D2
1ðρ=lÞ6 − ð61D2

1 þ 100D2 − 60D3Þðρ=lÞ4 þ ð112D2
1 þ 700D2 − 420D3Þðρ=lÞ2 − 69D2

1

− 700D2 þ 420D3 − 8ð11D2
1 þ 125D2 − 75D3Þðtanh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðρ=lÞ2

q
þ lnðρ=lÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðρ=lÞ2

q
Þ�: ð3:30Þ

In Fig 3, we plot the deformed holographic entangling
surface in the symmetric case in which the mass deforma-
tion pushes the turning point toward the AdS4 center.
After integrating over ρ, the on-shell action up to μ20

order leads to the HEE of the disk in terms of the radius l,

Sdisk ¼
π5R9

12kGN

�
l
ϵ
− 1 −

75D3 − 11D2
1 − 125D2

75
ðlμ0Þ2

�
;

ð3:31Þ

where the UV cutoff in the u coordinate is denoted by ϵ.
In the above, the first two terms on the right-hand side
correspond to the HEE of a disk in the ABJM theory and
the last is the first correction caused by the mass deforma-
tion. For instance, in the simplest symmetric case of the
droplet picture with k ¼ 1, the parameters xi have

x1 ¼ −
ffiffiffiffi
N

p
; x2 ¼ 0; and x3 ¼

ffiffiffiffi
N

p
; ð3:32Þ

which give rise to D1 ¼ 0, D2 ¼ −1=8 and D3 ¼ 9=8.
Then, the HEE of the symmetric configuration is given by

Ssymm ¼ π5R9

12kGN

�
l
ϵ
− 1 −

4

3
ðlμ0Þ2

�
: ð3:33Þ

The free energy corresponding to the c function of this
system then reduces to

F symm ≡
�
l
∂
∂l − 1

�

Ssymm ¼ π5R9

36kGN
½3 − 4ðlμ0Þ2�: ð3:34Þ

This result shows that at a given μ0 the free energy
decreases along the RG flow when the system size l
increases. As expected, this result coincides with the F
theorem, F 0

symm < 0.
For general droplets, we finally obtain the REE up to μ20

order,

F diskðlÞ ¼ FABJM −
π5R9ð75D3 − 11D2

1 − 125D2Þ
900kGN

ðlμ0Þ2;

ð3:35Þ
where FABJM ¼ π5R9

12kGN
is the free energy of the original

ABJM theory. The REE counts the effective degrees of
freedom of a given system at the length scale l and is
expected to play a role of a c function in the holographic
point of view. Since the mass deformation we consider is
a relevant deformation with the dimensionless coupling
constant g ¼ lμ0, the monotonic decreasing of the REE
along the RG flow is guaranteed by the following relation:

FIG. 3 (color online). Minimal surfaces for the symmetric case:
The upper surface is a deformed minimal surface due to the mass
deformation and the lower surface is for the conformal case

KIM et al. PHYSICAL REVIEW D 90, 126003 (2014)

126003-8



75D3 − 11D2
1 − 125D2 > 0: ð3:36Þ

If this relation is satisfied, our result supports the F theorem
in three-dimensional field theory [25,26]. In general drop-
lets, it seems to be difficult to prove the above inequality. We
first take into account the symmetric droplet configurations.
In these cases, the validity of the dual LLM geometry, as will
be shown in the next subsection, depends on the parameter
regions. In the regions where the dual LLM geometry is
weakly curved, the above inequality is really satisfied. As a
result, the REE in (3.35) shows the desired holographic
c-function behavior near the UV fixed point and, as the
system size l increases, monotonically decreases consistently
with the F theorem along the RG flow.

C. Validity

The results of REE given in (3.21) and (3.35) are for
general LLM geometries near the UV fixed point for the strip
and the disk cases, respectively. To guarantee their validity,
we have to check whether the LLM geometries we have
considered are weakly curved everywhere in the large N
limit. Here we sketch the validity of our calculations of the
REE in the point of view of the gauge/gravity duality. The
validity of the LLM geometry for the symmetric droplet case
has already been considered in [23], where it was shown that
the magnitude of the curvature scalar is decreasing from the
droplet point y ¼ 0 as y increases. On the contrary, the
validation is broken for the cases where the curvature scalar
does not decrease and remains constant near y ¼ 0 in the
large N limit. Therefore, in checking the validity, it is
sufficient to investigate the behavior of the curvature at the
droplet point, y ¼ 0. Following the same logic, we extend
the discussion to more general droplet cases.
Let us consider the general droplet characterized by the

data xi, which specify zðx; yÞ and Vðx; yÞ of (2.9) describ-
ing the full geometry. As one can find in Appendix B, if a
given geometry does not have any strongly curved region, it
is represented as a droplet whose associated Young diagram
has only the long edges of order

ffiffiffiffi
N

p
[20,23]. If there is a

strongly curved region, the validity of the HEE is not
guaranteed. As an example we consider the droplet
corresponding to the rectangular-shaped Young diagram
with sides of lengths w and b. By parametrizing the lengths

as w ¼
ffiffiffi
N

p
σ̂ ; b ¼ σ̂

ffiffiffiffi
N

p
, (3.13) leads to

D1 ¼ −
~σffiffiffi
2

p ; D2 ¼
1

8
ð ~σ2 − 1Þ; D3 ¼

1

8
ð5~σ2 þ 9Þ;

ð3:37Þ

where ~σ ¼ σ̂ − 1
σ̂. Here k ¼ 1 is taken for simplicity. Using

these relations we obtain the REE for the strip and the disk,

F stripðlÞ ¼
π3R9

24GN

�
Γ
�
3

4

�
4

−
πΓð1

4
Þ2ð29~σ2 þ 112Þ
672Γð3

4
Þ2 ðlμ0Þ2

�
;

F diskðlÞ ¼
π5R9

12GN

�
1 −

103~σ2 þ 400

300
ðlμ0Þ2

�
: ð3:38Þ

From (B1), we see that the finite σ̂ gives weakly curved
LLM geometry. So we expect that our result given in (3.38)
is valid. However, in the case σ̂ ∼

ffiffiffiffi
N

p
or σ̂ ∼ 1ffiffiffi

N
p , the

curvature scalar near y ¼ 0 region remains finite in the
large N limit. Therefore, the gauge/gravity duality may
not be valid anymore. In turn, the leading contributions of
the mass-deformation to the REE’s of (3.38) are going to
diverge, and thus invalidate the gauge/gravity duality.
In conclusion, as we discussed previously, in order to have
valid results of HEE we have to consider the Young
diagram including only long edges of order

ffiffiffiffi
N

p
.

IV. SUMMARY

Following the gauge/gravity duality, we have investi-
gated the REE of the mass deformed ABJM theory and its
RG flow. To do so, we have taken into account the LLM
geometry corresponding to vacua of the mABJM theory
which can be reinterpreted as droplets in the droplet picture.
In general, the REE crucially depends on the droplet
configuration, so it is a formidable take to find the analytic
form of the general REE in the entire region. In this paper,
we focused on the UV region where, due to the relatively
small mass deformation, the perturbative and analytic
studies on the mass deformation effect are possible. The
entanglement entropy is an important concept to under-
stand the degrees of freedom of a physical system.
Interestingly, it was shown that the REE of the disk is
associated with the free energy of an odd-dimensional
quantum field theory. The REE generally depends on the
shape of the system we consider so that different-shaped
systems result in different REE’s. Here, two types of the
REE with the strip and disk shapes have been regarded.
The LLM geometry near the asymptotic boundary can be

expanded in terms of the Legendre polynomials. In this
region, the REE’s of the strip and disk are given by nontrivial
functions of the expansion coefficients. We have shown the
explicit dependence of the mass deformation in those two
shapes. The first correction of the REE appears at ðlμ0Þ2
order, which implies that the variation of the REE with
respect to coupling g ¼ lμ0 always vanishes as l goes to
zero. Therefore, the REE at the UV fixed point is always
stationary.3 Near the UV fixed point, the variation of the REE
explains the nontrivial dependence on the deformation
parameter which is related to c functions along the RG flow.

3Stationarity near UV fixed point in (2þ 1) dimensions was
discussed in [17,19]. Especially in [19], the author classified the
behavior of the REE according to the dimension of the perturbed
relevant operators.
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In a simple example with a rectangular-shaped Young
diagram, if the ratio between width and height is given by 1
in the large N limit, it describes a symmetric droplet
configurations. In this case, the REEs of the strip and disk
have a negative slope. So the free energy corresponding the
REE monotonically decreases along the RG flow and
satisfies the F theorem. In the asymmetric case slightly
deviated from the symmetric one, the ratio runs away from
1 but still remains a finite value. As expected, this slight
modification does not change the desired F-theorem
behavior. In the droplet configurations largely deviated
from the symmetric one where the ratio becomes 0 or ∞,
we found that the variation of the REE has still a negative
but an infinite slope for ðμ0lÞ2, which breaks the perturba-
tive expansion. In this large asymmetric case, actually the
dual LLM geometry becomes highly curved so that the dual
gravity description of the mABJM theory is not allowed
and we should also be careful in applying the AdS/CFT
correspondence. Due to this reason, the appearance of the
infinite slope does not indicate the breakdown of the F
theorem and nonstationarity of the REE at the UV fixed
point. In more general droplet configurations, it is still
difficult to say whether the F theorem is still working or
not. Even in the parameter regions allowing the dual LLM
geometry, it is not clear that the slope of the REE is given
by a negative number. It would be interesting to clarify the
REE of the general droplet configurations along the RG
flow and helpful to understand the F theorem and the
property of the REE further. We leave it as a future work.
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APPENDIX A: CUTTING MINIMAL SURFACE
AND MASS DEFORMATION

In [4,5], the authors suggested a useful method for mass
deformation in a bottom-up approach. The idea is to cut off
the tip of the minimal surface in the conformal case,
denoted by u0, where the cutoff scale is interpreted as a
correlation length ξð< u0Þ. According to this idea, the
entanglement entropy for the strip is

Sstrip;ξ ¼ 2
R2L

4Gð4Þ
N

Z
ξ

ϵ
du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdw2

du Þ2 þ 1

q
u2

¼ R2L

2Gð4Þ
N

�
1

ϵ
−
1

ξ
þ
X∞
n¼1

rn
ξ4n−1

l4n

�
: ðA1Þ

rn’s are numerical values, some of which are

r1 ¼
2Γð3

4
Þ8

3π2
; r2 ¼

6Γð3
4
Þ16

7π4
;

r3 ¼
20Γð3

4
Þ24

11π6
; r4 ¼

14Γð3
4
Þ32

3π8
: ðA2Þ

When the correlation length is very close to u0, one may
take another approximation for (A1). If we express the
correlation length, ξ≡ u0ð1 − δ2Þ, in terms of a small
parameter δ, then the above entanglement entropy is
approximated as

Sstrip;ξ ∼
R2L

2Gð4Þ
N

�
1

ϵ
−
Γð3

4
Þ4

πl
−

ffiffiffi
2

π

r
Γð3

4
Þ2
l

δþOðδ3Þ
�
; ðA3Þ

where l of (3.19) has been used. Up to a multiplicative
overall factor, comparing this with (3.20) gives the follow-
ing expression for δ

δ ¼ μ20l
2
π5=2ð21D3 − 3D2

1 − 35D2Þ
84

ffiffiffi
2

p
Γð3

4
Þ6 : ðA4Þ

This allows us to relate the correlation length ξ of the
ABJM theory to the small mass deformation μ0 in the
mABJM theory. In the symmetric configuration (3.22), δ
is reduced to

δ ¼ μ20l
2

π5=2

3
ffiffiffi
2

p
Γð3

4
Þ6 ∼ 1.21769μ20l

2: ðA5Þ

APPENDIX B: CURVATURE SCALAR AT y ¼ 0

To figure out the validity of the gauge/gravity duality in
the HEE calculation, we investigate the behavior of the
curvature for general droplets. As discussed in [23], for some
cases the geometry near y → 0 limit is highly curved even
in the large N limit. The results of the HEE for these cases
are not reliable. In thework [20], the authors concentrated on
the LLM geometries corresponding to the case of symmetric
droplet represented by a square-shaped Young diagram. Here
we generalize this case and investigate the behavior of the
curvature at y ¼ 0 in the large N limit.
The curvature scalar at y ¼ 0 for general droplet is

given by

l2PRðx; yÞjy¼0 ¼
1

6π
2
3

Qðx̂Þ
Pðx̂Þ ; ðB1Þ

where x̂ is a rescaled dimensionless coordinate, x̂ ¼
2πl3Pμ0x, and
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P ¼ ½g0ðg0 − 2g2Þ�73;
Q ¼ ½−40g4g03 − 8g2g04 þ 6g05 þ 40g3g02g00

− 12gg03g00 − 4g4g″2 − 2g2g0g″2 þ g02g″2�: ðB2Þ

The curvature scalar is determined by the function gðx̂Þ,

gðx̂Þ ¼ 1

2

�X2j
i¼1

ð−1Þiþ1

x̂ − x̂i
−

X∞
i¼2jþ1

ð−1Þiþ1

x̂ − x̂i

�
; ðB3Þ

where x̂2j ≤ x̂ ≤ x̂2jþ1 in the j-th black strip. The rescaled
coordinate originates from the quantization condition of
the four-form flux [13],

xiþ1 − xi ¼ 2πl3Pμ0ðx̂iþ1 − x̂iÞ ¼ 2πl3Pμ0Z; ðB4Þ
where Z represents an integer and hence x̂i’s can be set to
integers. Then the number of M2-branes is represented in
terms of x̂i as

N ¼ 1

2

�X∞
i¼1

ð−1Þiþ1x̂2i −
X∞
i¼1

X∞
j¼1

ð−1Þiþjx̂ix̂j

�
: ðB5Þ

In the Young-diagram representation, N corresponds to the
area of a given diagram.
To obtain reliable results from the gauge/gravity duality,

the dimensionless quantity l2PR should be smaller than 1
everywhere in the large N limit. Now we investigate the
behavior of l2PRðxÞ in two representative cases.

(i) x̂1 ¼ −a; x̂2 ¼ 0; x̂3 ¼ b, x̂4 ¼ x̂5 ¼ � � � ¼ 0 case:
In this case gðx̂Þ is given by

gðx̂Þ ¼ 1

2

�
1

x̂þ a
−
1

x̂
−

1

x̂ − b

�
: ðB6Þ

Eq. (B5) tells us the relation N ¼ ab with the range
1 ≤ a; b ≤ N. Let us look at the curvature scalar at
the boundary of the black and white droplet and at
the middle of the black droplet. For convenience, let
us set a ¼ α

ffiffiffiffi
N

p
with a constant α with the range,

1ffiffiffi
N

p ≤ α ≤
ffiffiffiffi
N

p
. For finite value of α, the curvature

behaves as l2PR ∼ N−1
3 in the large N limit. On the

other hand, in the large value of α, the leading
contribution to the curvature scalar is given by

l2PRð0Þ ¼ 1

3

�
4α

π
ffiffiffiffi
N

p
�2

3

; l2PR
�
b
2

�
¼

�
2α

π
ffiffiffiffi
N

p
�2

3

:

ðB7Þ

When α ∼
ffiffiffiffi
N

p
, the curvature scalar is nonvanishing

in the large N limit. That is, we see that the
corresponding LLM geometry becomes highly
curved near y ¼ 0 and the validity of the gauge/
gravity duality is doubtable.

(ii) x̂1 ¼ −a − b; x̂2 ¼ −b; x̂3 ¼ 0; x̂4 ¼ c; x̂5 ¼ cþ d
and x̂6 ¼ x̂7 ¼ � � � ¼ 0 case: Here we set a ¼ α

ffiffiffiffi
N

p
,

b ¼ β
ffiffiffiffi
N

p
, c ¼ b, d ¼ a for simplicity. Then due to

the relation (B5), we have the relation α ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ 1

p
− β with the range of β, 1ffiffiffi

N
p ≤ β ≤

ffiffiffi
N

p
2
.

When we consider the curvature scalar on the first
black droplet, the gðx̂Þ is given by

gðx̂Þ ¼ 1

2

�
1

x̂þ aþ b
−

1

x̂þ b

−
1

x̂
þ 1

x̂ − c
−

1

x̂ − b − c

�
: ðB8Þ

In the small β limit near x̂ ¼ 0, the leading con-
tribution to the curvature scalar is given by

l2PRð0Þ ¼ 1

3

�
2

πβ
ffiffiffiffi
N

p
�2

3

: ðB9Þ

Therefore, we see that when β ∼ 1ffiffiffi
N

p the curvature

scalar is finite in the largeN limit. On the other hand,
in the large beta limit, the leading contribution to the
curvature scalar is given by

l2PRð0Þ ¼ 4

3

�
β

π
ffiffiffiffi
N

p
�2

3

: ðB10Þ

We can also obtain the finite curvature scalar in the
case of β ∼

ffiffiffiffi
N

p
in the large N limit.

From the above investigation on the behavior of the
curvature scalar for general droplet near y ¼ 0, we con-
clude that, in order to obtain a geometry weakly curved
everywhere in the large N limit, the length of each edge in
the Young diagram should be proportional to

ffiffiffiffi
N

p
.
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