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Abstract. Optimization of land surface models has been
challenging due to the model complexity and uncertainty. In
this study, we performed scheme-based model optimizations
by designing a framework for coupling “the micro-genetic al-
gorithm” (micro-GA) and “the Noah land surface model with
multiple physics options” (Noah-MP). Micro-GA controls
the scheme selections among eight different land surface pa-
rameterization categories, each containing 2–4 schemes, in
Noah-MP in order to extract the optimal scheme combina-
tion that achieves the best skill score. This coupling frame-
work was successfully applied to the optimizations of evap-
otranspiration and runoff simulations in terms of surface wa-
ter balance over the Han River basin in Korea, showing out-
standing speeds in searching for the optimal scheme combi-
nation. Taking advantage of the natural selection mechanism
in micro-GA, we explored the model sensitivity to scheme
selections and the scheme interrelationship during the micro-
GA evolution process. This information is helpful for better
understanding physical parameterizations and hence it is ex-
pected to be effectively used for further optimizations with
uncertain parameters in a specific set of schemes.

1 Introduction

Land surface models (LSMs) have significantly advanced in
recent years, but their optimization has been challenging due
to their increased complexities and number of uncertainties,
which require tremendous computing resources. LSMs are
generally developed to represent better large-scale character-
istics of surface hydrology, biophysics, and bio-geochemistry
in terms of interactions between the land and atmosphere.
However, models inevitably have uncertainties due to our in-
sufficient knowledge of nature. The uncertainties often result
from the unreasonable representation of the spatio-temporal
surface heterogeneity. In order to address this issue for more
extensive application studies, model optimizations through
parameter calibrations have been essentially used. Model op-
timization, which calibrates uncertain parameters based on
observations, is one of the widely used methods that apply
model runs to large-scale studies. Such methods often in-
clude parameter sensitivity analyses for effective optimiza-
tions (Gupta et al., 2000; Jackson et al., 2003; Mo et al.,
2008; Nasonova et al., 2011; Rosero et al., 2010; Williams
and Maxwell, 2011). To make model runs more reliable, pre-
vious studies have calibrated several uncertain parameters
in only one or two schemes related to their targeted vari-
ables (Cretat and Phol, 2012; Essery et al., 2013; Miguez-
Macho and Fan, 2012), sometimes multiple parameters in
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many schemes (Moriasi et al., 2007; Rosolem et al., 2013).
However, this type of optimization tends to be limited to only
a few sites due to the tremendous computing resources and
time.

Model optimization techniques that maximize computa-
tion effectiveness were recently developed. One of the meth-
ods increasingly used for model calibration is “the genetic
algorithm” (GA). The fundamental concept of GA is the
natural selection of genes (parameters) for object evolution
(Holland, 1992). A marked advantage of GA is its smart
search for an optimal combination of parameters by consid-
ering interactions among various uncertain parameters, skip-
ping separate model sensitivity experiments. In light of this
advantage, GA has been used for various numerical models
and spotlighted as an effective and reliable technique for han-
dling the issues of the quantitative increase in uncertain pa-
rameters in numerical models (Fang et al., 2003; Rosolem et
al., 2013; Yu et al., 2013).

Another considerable problem in model optimizations is
a possible opposite effect among the implemented schemes
in a complex model. For example, improvement of a single
physical process through certain parameter optimizations can
be followed by exacerbations of other processes. However,
this opposite effect may not be sufficiently addressed by con-
sidering merely uncertain parameter interactions, because the
increased complexity of models is associated with not only
the increases in the number of uncertain parameters but also
the augmentations of new parameterization schemes. Rosero
et al. (2010) revealed that model sensitivity to parameters can
vary according to the choice of scheme as well as parameters
associated with land surface heterogeneity. Their study im-
plies that interactions among the implemented schemes in a
model may induce further considerable uncertainty for model
optimization. This issue is of great importance when con-
structing a new model from various pre-developed parame-
terization schemes for their large-scale applications.

In the preceding context, the model’s sensitivity to the im-
plemented schemes and the interrelationship among schemes
need to be investigated for more effective model optimiza-
tion. In this study, we designed a model optimization sys-
tem by applying a GA technique to a multi-scheme LSM
in order to investigate the model sensitivity to schemes and
the scheme interrelationship. In this system, GA induces
scheme-based optimization by controlling the LSM. We used
an efficient version of GA, the so-called “the micro-genetic
algorithm” (micro-GA), that uses a small number of investi-
gation samples.

The purpose of the application of this coupled system is
(1) to maximize the effectiveness of extracting an optimal
scheme set from the LSM and (2) to assess how the interrela-
tionship among the schemes contributes to the effectiveness
of posterior parameter optimizations by taking advantage of
the smart searching mechanism of GA. In order to disclose
the interrelationship among the implemented schemes, we
target two different variables – evapotranspiration (ET) and

runoff in this study. These are important processes to evalu-
ate the accuracy of the model’s surface water balance. Since
the two variables are closely linked in terms of surface wa-
ter partitioning, it will be useful to check a possible opposite
effect between them.

2 Methods

2.1 Noah LSM with multiple physics options

For a multi-scheme LSM, a new version of the Noah LSM
with multiple physics options (hereinafter Noah-MP) was
used. The Noah LSM has evolved through the cooperative
efforts of various institutions such as the National Center for
Environmental Prediction (NCEP) and the Air Force Weather
Agency. Using Noah LSM 3.0v as the baseline, Noah-MP
was augmented with multiple physics options with regard to
10 different land surface processes (Niu et al., 2011). The
augmentations were basically intended to improve the Noah
LSM in terms of phenology computation, snow treatment,
and groundwater representation. Among the ten physical cat-
egories, dynamic vegetation and its paired scheme for the
stomatal resistance, the Ball–Berry scheme (Ball et al., 1987;
Collatz et al., 1991), were fixed in this study. Thus, eight pa-
rameterizing categories were totally used to generate scheme
combinations as summarized in Table 1.

There are two available options (schemes) in the paratem-
terizing surface exchange coefficient for heat (SFC). The
difference in two options is related to the effect of surface
roughness length on the heat transfer of the land surface to
the atmosphere. SFC(1) determines the surface heat coeffi-
cient by the roughness length of heat and momentum while
SFC(2) treats the effect of the roughness lengths with the
zero-displacement height (Chen et al., 1997). The schemes
for supercooled liquid water in frozen soil (FRZ) deal with
liquid water around frozen soil particles that has different
freezing-point depressions with soil depths. FRZ(1) uses
more general form of the equation (Niu and Yang, 2006),
but FRZ(2) uses a variant freezing-point depression equa-
tion with increased soil-water interface (Koren et al., 1999).
The schemes for frozen soil permeability (INF) are involved
in parameterizations of soil hydraulic properties such as in-
filtration in frozen soil, with two available options; INF(1)
defines the soil permeability using soil moisture (Niu and
Yang, 2006) while INF(2) uses only the liquid water vol-
ume (Koren et al., 1999). There are two available options in
the snow surface albedo schemes (ALB); ALB(1), adopted
from Biosphere–Atmosphere Transfer Model (BATS), com-
putes more albedo (considering various snow properties such
as snow age and impurity) than ALB(2), adopted from Cana-
dian Land Surface Scheme (CLASS). Four options are avail-
able in the runoff category (RUN), and their differences are
mainly related to dealing with subsurface runoff. The base
scheme of RUN(1) and RUN(2) is the topography-based
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Table 1.Summary of scheme options available in Noah-MP.

Physical processes Options References

Surface exchange coefficient for heat (SFC) (1) Noah type
(2) Monin–Obukhov scheme

Chen et al. (1997)
Brutsaert (1982)

Supercooled liquid water in frozen soil (FRZ) (1) Generalized freezing-point
depression
(2) Variant freezing-point depression

Niu and Yang (2006)
Koren et al. (1999)

Frozen soil permeability (INF) (1) Defined by soil moisture
(2) Defined by liquid water volume

Niu and Yang (2006)
Koren et al. (1999)

Snow surface albedo (ALB) (1) BATS
(2) CLASS

Dickinson et al. (1993)
Verseghy (1991)

Runoff and Groundwater (RUN) (1) SIMGM
(2) SIMTOP
(3) Free-drainage scheme
(4) BATS

Niu et al. (2007)
Niu et al. (2005)
Schaake et al. (1996)
Yang and Dickinson (1996)

Soil Moisture Factor controlling stomatal resis-
tance,β factor (BTR)

(1) Noah type
(2) CLM type
(3) SSiB type

Chen et al. (1996)
Oleson et al. (2004)
Xue et al. (1991)

Two-stream radiation transfer (RAD) (1) Canopy gaps from 3-D structure and
solar zenith angle
(2) no canopy gap
(3) Gaps from vegetated fraction

Niu and Yang (2004)

Partitioning precipitation into rain and snow
(SNF)

(1) Complex functional form
(2) Snowfall atTair < Tfrz+ 2.2 K
(3) Snowfall atTair < Tfrz

Jordan (1991)
Niu et al. (2011)

CLM (Community Land Model); SSiB (Simplified Simple Biosphere Model); SIMGM (Simple TOP runoff and Groundwater Model); SIMTOP (Simple TOP
Runoff Model); BATS (Biosphere–Atmosphere Transfer Model); CLASS (Canadian Land Surface Scheme).

hydrological model (TOPMODEL). A simple groundwa-
ter model was added to TOPMODEL in RUN(1) (Niu et
al., 2007) in spite of an equilibrium water table concept
in RUN(2) (Niu et al., 2005). RUN(3) and RUN(4) are the
scheme from the original Noah LSM (Schaake et al., 1996)
and from BATS (Yang and Dickinson, 1996), respectively,
both of which uses free drainage concept for subsurface
runoff. Three options are available in the schemes for the
soil moisture factor controlling stomatal resistance (BTR);
BTR(1) from Noah LSM uses soil moisture (Chen et al.,
1996) and BTR(2) and BTR(3) that are from BATS (Oleson
et al., 2004) and the Community Land Model (CLM) (Xue et
al., 1991), respectively, uses metric potential to compute the
factor.

Vegetation distribution affects radiation transfer at the land
surface with solar zenith angle. The three schemes of two-
stream radiation transfer (RAD) treat the gaps differently
with regard to the pattern of vegetation distribution as fol-
lows; RAD(1) considers three-dimensional structure of veg-
etation canopy (Niu and Yang, 2004), RAD(2) does not con-
sider the canopy gab, and RAD(3) treats the gab from unity
minus the green vegetation fraction. Partitioning of precipita-
tion into rainfall and snowfall (SNF) is determined generally

based on air temperature in most LSMs. While SNF(2) and
SNF(3) use only a single reference temperature to differen-
tiate between rain and snow, SNF(1) uses a complex func-
tional form for differential partitioning rate based on air tem-
perature (Jordan, 1991). Using the eight categories, the to-
tal number of possible scheme combination is 1728. The
more detailed description of each scheme, including equa-
tions and parameter settings, the reader should refer to Niu et
al. (2011).

2.2 Micro-GA

GAs, the idea behind which was borrowed from biological
evolution and adaptation concepts in genetics, are heuris-
tic optimization methods based on natural genetic variation
and natural selection that pursue a cost-effective solution
(Holland, 1992; Hu et al., 2006; Mitchell, 1998; Wang et
al., 2002). These methods have been increasingly applied
to parameter optimizations in various hydrological models
(Bastani et al., 2010; Bulatewicz et al., 2009; Uddameri and
Kuchanur, 2007) and to those in numerical weather predic-
tions (Fang et al., 2009; Krishnakumar, 1989; Lee et al.,
2006; Yu et al., 2013). Micro-GA applied to this study is an
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improved version of GA with smaller generation sizes and
simplified genetic modifications, hence efficiently reducing
the computational resources (Krishnakumar, 1989; Reeves,
1993; Wang et al., 2010). The fundamental mechanism of
micro-GA for model optimization is to evaluate individual
members in a group (or generation) to select an elite (natu-
ral selection) based on a fitness function (or skill score), to
bear new offspring members using the genes in the selected
elite through stochastic modifications of their chromosomes,
such as a crossover mechanism, and then to reconstitute a
new generation with the offspring members. While the re-
constitutions with the natural selection and crossover mech-
anism are repeated, the generations evolve and converge to
the optimum.

2.2.1 Coupling micro-GA with Noah-MP

Micro-GA was applied for the scheme-based optimization
using Noah-MP (hereinafter MP–MGA). In this coupled sys-
tem, a scheme combination represents an individual, and a
group of multiple scheme combinations represents a genera-
tion. Each scheme combination is constituted with the eight
physical categories as mentioned in Sect. 2.1, and each cat-
egory acts like a chromosome. The generation of a scheme
combination from various multi-optional physical processes
is easily controlled by discrete numbers from micro-GA;
each scheme option in a category is assigned to a unique dis-
crete number in the MP–MGA coupled system.

In the MP–MGA, micro-GA controls the choices of phys-
ical schemes to produce scheme generations and conducts
a series of model runs using Noah-MP. The flow chart in
Fig. 1 summarizes the optimization process in MP–MGA.
Two basic parameters must be set to operate micro-GA: the
number of individual members in a generation and the num-
ber of generations for iteration. These numbers are critical
to evaluate the efficiency of the MP–MGA optimization. In
this study, each generation was set to 10 individual members
and the number of generations was set through the validation
experiment (see Sect. 3).

The first basic task of micro-GA is to generate 10 sets
of scheme combinations by selecting one discrete number
for one category. Once micro-GA establishes the 10 scheme
combinations, it applies these combinations to Noah-MP by
editing the “namelist.input” file one by one. The second task
is to select the best scored scheme combination based on a
customized fitness function (see Sect. 2.2.2). Until Noah-MP
finishes all the 10 simulations, micro-GA collects the skill
scores of each simulation. The skill scores are calculated by
comparing the simulations to the observations based on the
fitness function. The last task of micro-GA is to generate
the next generation through the “crossover” mechanism (ex-
change of the chromosomes) using the best scored scheme
combination from the previous generation. Micro-GA con-
tinues this task, exploring better generations than the previ-
ous ones until the optimization process converges upon the

optimal value. The MP–MGA operation procedure can be
summarized as follows (see Fig. 1):

1. Micro-GA produces an initial set of scheme combina-
tions through random selections. The random selections
are generated from a uniform random deviate between
0 and 1.

2. Micro-GA controls Noah-MP by editing the
“namelist.input” file for the scheme choices and
executing the model.

3. After Noah-MP finishes one simulation with the given
scheme selections, its skill score is calculated through
statistical comparison to the observation data based on
the fitness function.

4. Micro-GA collects the skill scores until all the simula-
tions for the current generation are completed.

5. Once micro-GA collects all the skill scores of the gen-
eration, it selects the best one (elitism) and stores the
selected scheme combination for the next generation.

6. Another set of scheme combinations for the next gen-
eration is produced through the “crossover” mechanism
using the selected one from the previous step.

7. Micro-GA repeats the steps from two to five above until
the generations converge upon the optimal value.

Through the evolution process above, the optimization can
possibly converge upon two types of optimal values: global
(or true) and local (or false) optimum. The global optimum
is the true best skill score the model can produce. In other
words, it is the ultimately maximized evolution point of the
generations. The local optimum, on the other hand, is a pos-
sible premature point that the optimization process can fall
into. To avoid any convergence of model optimizations upon
a local optimum, micro-GA exerts “restart” of the natural
selection processes at some iteration point, keeping alive
the best individual obtained through the previous iterations.
This “restart” point is determined through the calculation of
the total number of chromosome crossovers. The number of
chromosome crossovers is supposed to gradually decrease
with the progression of the generation evolution because the
natural selection mechanism gives more surviving chance to
the chromosomes that have advantages to improve model ac-
curacy. Thus, micro-GA decides that the model optimization
process is converged upon an optimum when the number of
chromosome crossovers at an iteration is less than 5 % of the
total number of chromosomes. Once micro-GA decides the
optimum convergence, a random generation is regenerated
through random chromosome selections, with the addition of
the finally survived elite member from the previous iteration.
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Figure 1. A flow chart describing the scheme-based optimization process from the coupled micro-GA and Noah-MP model.

2.2.2 Fitness function

In the GA optimization, we need to define a functional to
be optimized – the fitness function. Evaluation skills used
in the fitness function are very subjective, depending on the
study objectives. We may use various statistical indices such
as correlation coefficient and root mean square error for a
reliable model evaluation. However, because GA uses only
one fitness function, we should be very careful to select an
evaluation skill for more comprehensive model evaluation.
In this study, we used a skill scoring technique, using com-
monly used statistical indices: correlation coefficient (R),
normalized standard deviation (σnorm), and normalized av-
erage (υnorm) based on observation data. It produces a sin-
gle skill score (S) from the three statistical indices following
(Taylor, 2001) as

S = R ·
4(

σnorm+
1

σnorm

)2
·

4(
υnorm+

1
υnorm

)2
. (1)

The closer the skill score is to unity, the more accurate
the model output is. In this study, we evaluate the MP–MGA
coupled system for surface water budget components: evap-
otranspiration and runoff.

2.3 Study domain and data

The land surface processes in the model were forced by
six meteorological fields from the Global Land Data As-
similation System (GLDAS) Version 1 data (Rodell et al.,
2004) – (1) precipitation, (2) downward shortwave radia-
tion, (3) downward longwave radiation, (4) near-surface air
temperature, (5) near-surface wind speed, and (6) surface
pressure. This data set has been developed by the National
Aeronautics and Space Administration (NASA) Goddard
Space Flight Center (GSFC) and the National Oceanic and
Atmospheric Administration (NOAA) NCEP. The GLDAS
meteorological forcing has been processed, using the at-
mospheric data assimilation system (ADAS) reanalysed by
various operational forecasts and observations. Especially,
the latest decade data (from 2001 to 2010) have been
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Figure 2. Geographic location of the Han River basin (dark shaded
area) in South Korea. The gray lines in the basin indicate the river
channels.

generated from NOAA Global Data Assimilation System
(GDAS) atmospheric analysis fields, the NOAA Climate Pre-
diction Center Merged Analysis of Precipitation (CMAP),
and observation-based downward radiations by the Air Force
Weather Agency’s Agricultural Meteorological modelling
system (ARGMET).

The 3 year GLDAS forcing data from 2001 was processed
for the Han River basin in Korea (Fig. 2). The basin area is
about 23 000 km2. For the model’s static input for the land
surface characteristics, the Kongju National Land Cover data
(KLC; Kang et al., 2010) and soil texture map from the Farm
and Organization of the United Nations (FAO, 2002) were
used. The KLC data are recently developed and represent
land cover for East Asia, using the satellite vegetation prod-
ucts from Moderate Resolution Imaging Spectro-radiometer
(MODIS). The study region is under a moderate humid cli-
mate condition with about 2.5 mm day−1 and 12◦C of annual
average precipitation rate and temperature, respectively. The
major vegetation is mixed forest according to KLC. The pre-
vious six month data (July to December 2000) were utilized
for the model initialization.

For the evaluation of ET simulations, the monthly MODIS
ET data set (MOD16A2) was utilized. This data set was es-
timated from land cover, surface albedo, leaf area index, and
fraction of photosynthetically active radiation using an im-
proved ET algorithm based on the Penman–Monteith equa-
tion (Monteith, 1965; Mu et al., 2011). Mu et al. (2011)
addresses that the MODIS ET uncertainties can be intro-
duced from many sources: uncertainties from input data such
as MODIS leaf area index and meteorological data, those
from up-scaling processes (tower to landscape), and those

of model parameters used in the derivation algorithm. The
ET data have been validated for North American flux tower
sites. There is a flux tower (located at 37.76◦ N, 127.15◦ E)
available for ground-based ET monitoring in the Han River
basin (Kang et al., 2009), but the measurements are not cov-
ering the research period of this study (2001–2003). How-
ever, according to the flux tower observations, the 5 year av-
erage of ET from 2004 to 2008 was about 0.93 mm day−1.
MODIS ET of the grid point covering the flux tower site
showed 0.95 mm day−1 with a reasonable correlation coef-
ficient (0.86) with the observation for the same period. Thus,
it is considered that the possible errors of MODIS ET would
not be great at least for the Han River basin.

For the runoff observation data, we obtained the stream
flow observation from the Water Management Information
System in Korea (WAMIS), and the daily-base observations
are available viahttp://www.wamis.go.kr. We assumed that
the monthly-base stream flow observation at the final outlet
point of the Han River basin represents the monthly variation
of runoff over the entire basin.

The models were evaluated for ET and runoff through
monthly-averaged comparisons after the area aggregations
for the Han River basin. The actual spatial and temporal res-
olutions in the simulations were 0.25 degrees and 3 h, respec-
tively.

3 Evaluation of MP–MGA for the scheme-based
optimization

This section addresses the evaluation of MP–MGA, in terms
of capability and efficiency by comparing 3 year simulations
in the Noah-MP stand-alone mode and the MP–MGA cou-
pled mode.

3.1 Model sensitivity to scheme choices in
a physical category

For proper model initialization, we first examined the spin-up
time when the ET and runoff simulations from the Noah-MP
model reaches equilibrium. Since each set of scheme combi-
nation represents an individual model, it is interesting to in-
vestigate how the model spin-up time varies with the choices
of schemes. Model runs for 2001 were repeatedly performed
for all scheme combinations until the variables reached equi-
librium. The criterion for the equilibrium is defined as the
time when the difference in annual means between two con-
secutive one-year simulations is less than 0.1 % of the means
(Cai et al., 2014; Yang et al., 1995).

The spin-up periods of the all scheme combinations were
no more than two years, and their differences were quite
small among the scheme choices even though the scheme
choices in RUN showed the greatest differences. The spin-
up periods for ET simulation were slightly lower than those
for runoff simulation, but the differences are also negligible.
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From the Noah-MP stand-alone mode, the three statisti-
cal indices and the skill scores for all scheme combinations
were obtained. Table 2 displays averaged indices for simula-
tions of all scheme combinations with one fixed scheme in a
certain physical category. The physical categories that show
bigger differences in the averaged skill scores are considered
to be more sensitive to model performances.

For the ET simulations, the scheme combination hav-
ing the best skill score (0.806) is as follows: SFC(2),
FRZ(1), INF(1), ALB(1), RUN(3), BTR(1), RAD(1), and
SNF(3). The order of categories based on the sensitiv-
ity (or skill-score differences with scheme choices) from
the largest to the smallest is RAD> SFC> RUN> BTR
> INF > FRZ> ALB > SNF. For the runoff simulations,
the best skill score was 0.809 but scheme combination
was very different from the best one for ET: SFC(1),
FRZ(1), INF(1), ALB(1), RUN(4), BTR(1), RAD(2), and
SNF(2). The order of categories based on the sensitivity is:
RUN> SFC> RAD > INF > BTR> FRZ> ALB > SNF.

This result obviously shows that the scheme selections in
RAD category are the most important to obtain higher sim-
ulation accuracies for ET (RUN for runoff simulation) due
to their direct involvement in the variable estimations. It also
turns out that three categories – RAD, SFC and RUN – are
the most important for accurate simulations of both ET and
runoff through proper combination of schemes.

It is noteworthy that the scheme sets chosen to produce
the most accurate simulations are very different between
ET and runoff, especially in the most influential categories
(i.e., RAD, SFC, and RUN in this study). This implies that
the model optimization for a single variable (e.g., ET) can
degrade simulation accuracy of the other variables (e.g.,
runoff). This opposite effect between the ET and runoff sim-
ulations is presented in Table 3, which displays each statisti-
cal index when the model returned the best skill score for ET
(upper row) and runoff (lower row). For example, the scheme
combination for the best ET simulation (S = 0.806) showed
a lower skill score for the runoff simulation (S = 0.693).
Similarly, the scheme set for the best runoff simulation
(S = 0.794) depicted a lower skill score for the ET simulation
(S = 0.659). It is also observed that the normalized means
(υnorm; bold numbers in Table 3) show the largest differences
between the ET and runoff simulations. For instance, the nor-
malized mean of ET with the best skill score was 1.037, but
it was lowered to 0.815 with the best scheme combination for
runoff. In the same way, the normalized mean of runoff with
the best skill score was 0.860, but lowered to 0.743 with the
best scheme combination for ET.

This indicates that the opposite effect on the skill scores
between ET and runoff is mainly reflected in the normalized
means of the ET and runoff simulations. The opposite ef-
fect between the variables can make difficulty in optimiza-
tions for more than two variables. Since this opposite ef-
fect is mainly related to the quantitative estimations, interre-
lationship between parameterizations of physical processes

associated with surface water partitioning into ET and runoff
might have played a crucial role in this discrepancy. It im-
plies that, to make the optimized scheme combinations have
the best performance for the ET and runoff simulations si-
multaneously, uncertainties of parameterizations in the pro-
cesses related to both ET and runoff should be depleted;
hence further optimizations of model parameters involved in
the surface water partitioning estimation are essential as the
next step.

3.2 The efficiency of the MP–MGA coupled system

In the previous section, we showed how the model is sensi-
tive to scheme choices and what scheme combination shows
the highest accuracy through the stand-alone Noah-MP ex-
periments. In this section, we address how accurately and ef-
ficiently the MP–MGA coupled system can search for the
optimal scheme combinations that produce the highest skill
score.

Separate experiments with the MP–MGA for ET and
runoff optimization were performed to examine how fast
the MP–MGA reaches the global optimum (the highest skill
score). We set 10 for the number of individual members in a
generation and 30 for the number of generations

Figure 3 shows the evolution of generations with an in-
crease in the number of generations. In the ET optimization
process (Fig. 3a), the MP–MGA reached the maximized evo-
lution (the point that the MP–MGA converged upon the high-
est average skill score) at the 18th generation and found the
global optimum at the 12th generation. Meanwhile, in the
runoff optimization process (Fig. 3b), MP–MGA converged
upon the maximized evolution at the 12th generation and
found the global optimum at the 3rd generation. The big drop
in Fig. 3b indicates the “restart” point (see Sect. 2.2.1) due to
the early convergence of the runoff optimization. In both the
ET and runoff evolution processes, the MP–MGA didn’t fall
into any local optimum, and the global optimums are exactly
the same as the ones from the stand-alone Noah-MP exper-
iments shown in the previous section. However, there exists
a significant difference between the ET and runoff optimiza-
tions in the speed of searching for the global optimum. This
indicates that the efficiency of micro-GA to find the optimal
scheme set for the best output may vary with the target vari-
able. Although the speed of the ET optimization process is
slower than that of the runoff optimization process, the MP–
MGA required only 120 simulations (12 generations with 10
scheme sets each) to obtain the global optimum.

In addition, Fig. 3 also shows the optimization evolution of
one target variable (say, ET) along with that of the other vari-
able (say, runoff) for comparison. It confirms the opposite ef-
fect between the ET and runoff optimization as described in
the previous section. In other words, an optimization target-
ing one component of water balance may debase the forecast
accuracy of the other component. Specifically, our results re-
veal that the accuracy of ET simulation improves through
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Table 2.Averaged statistical indices for (a) ET and (b) runoff to the observations (R: correlation coefficient;υnorm: normalized mean;σnorm:
normalized standard deviation;S: skill score). Each index indicates the averaged one for simulations of all scheme combinations with one
fixed-scheme in a certain scheme category.

Options
(a) Statistical indices for ET (b) Statistical indices for runoff

R υnorm σnorm S R υnorm σnorm S

SFC
1 0.760 0.944 0.779 0.707 0.885 0.788 0.634 0.683
2 0.785 1.087 0.851 0.755 0.873 0.712 0.620 0.624

FRZ
1 0.777 1.009 0.815 0.736 0.876 0.753 0.624 0.650
2 0.768 1.022 0.815 0.727 0.882 0.747 0.630 0.657

INF
1 0.764 1.023 0.821 0.725 0.899 0.747 0.634 0.673
2 0.781 1.008 0.809 0.738 0.859 0.753 0.620 0.634

ALB
1 0.773 1.011 0.820 0.734 0.880 0.752 0.627 0.656
2 0.772 1.020 0.810 0.729 0.877 0.748 0.627 0.652

RUN

1 0.774 1.013 0.813 0.733 0.826 0.748 0.613 0.601
2 0.742 1.060 0.846 0.710 0.883 0.723 0.590 0.608
3 0.787 0.997 0.804 0.742 0.890 0.763 0.657 0.695
4 0.787 0.991 0.798 0.740 0.917 0.766 0.648 0.710

BTR
1 0.792 0.986 0.787 0.738 0.887 0.766 0.631 0.667
2 0.768 1.024 0.823 0.731 0.878 0.745 0.626 0.650
3 0.757 1.037 0.835 0.724 0.877 0.739 0.624 0.644

RAD
1 0.785 1.041 0.838 0.754 0.877 0.736 0.621 0.640
2 0.748 0.956 0.774 0.690 0.883 0.781 0.638 0.681
3 0.784 1.049 0.833 0.751 0.877 0.733 0.622 0.640

SNF
1 0.771 1.016 0.816 0.730 0.878 0.750 0.628 0.653
2 0.771 1.016 0.817 0.731 0.878 0.750 0.628 0.653
3 0.775 1.014 0.812 0.733 0.881 0.751 0.626 0.654

Table 3.Statistical indices when the model returned with the best skill score for ET (upper row) and runoff (lower row). The bold numbers
indicate the indices showing the largest differences between ET and runoff simulations.

Statistical indices for ET Statistical indices for runoff

R υnorm σnorm S R υnorm σnorm S

Best for ET 0.835 1.037 0.831 0.806 0.906 0.737 0.652 0.693
Best for runoff 0.766 0.815 0.716 0.659 0.937 0.860 0.682 0.794

optimization but that of the runoff simulation deteriorates,
and vice versa.

3.3 The natural selection mechanism in MP–MGA as
model sensitivity to scheme selections

Another important capability of the MP–MGA is that it pro-
vides information on the model sensitivity to scheme choices
in terms of the model accuracy through the natural selec-
tion mechanism in micro-GA. The sensitivity analysis to
scheme selections can be performed more easily, but more
clearly by simply counting the schemes selected via the MP–
MGA. Through the natural selection mechanism, micro-GA
gives more surviving chance (or selective chance) to the

chromosomes (or scheme options) that have more advantage
to achieve higher model accuracy. Therefore, the larger num-
ber of selections of a certain scheme through the entire op-
timization process accounts for its higher advantage to the
model accuracy.

Figure 4 displays how many times each scheme was se-
lected throughout the optimization process and hence which
scheme is dominant in its physics category. It is noted
that schemes in three categories – FRZ, INF and BTR
– have mostly been selected during the optimization pro-
cesses of both ET and runoff. Furthermore, each category
had highly selected schemes in common for both ET and
runoff optimizations, that is, FRZ(1), INF(1) and BTR(1).
This clearly indicates that these highly selected schemes are
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Figure 3. Evolution of generations during the processes of the MP–MGA optimization for(a) ET and(b) runoff. The red and blue lines
indicate the averages of ET and runoff in each experiment, respectively.

Figure 4. Percentage of selections of each scheme to the total number of simulations (300 simulations) from micro-GA during the entire
optimization processes for(a) ET and(b) runoff. Each colour indicates the available options in each scheme category.

advantageous to produce better performance in both ET and
runoff simulations, and that they are not likely to cause the
opposite effect between the two simulations. On the other
hand, some other physics categories, such as SFC, ALB,
RAD, and SNF, showed counter scheme selections between
the two optimization processes. For instance, in terms of the
SFC category, SFC(2) had been highly selected in the ET
optimization while SFC(1) had been mostly chosen in the
runoff optimization. It seems that such schemes cause the
opposite effect between the ET and runoff optimization (see
Sect. 3.1).

Interestingly, in terms of the RUN category, the ET opti-
mization process was dominated by two schemes – RUN(3)
and RUN(4), showing similar chances of being selected. This
signifies that the selection between these two schemes makes
no significant difference in the ET simulation accuracy. How-
ever, considering that RUN(4) is remarkably dominant in the
runoff optimization process, we can conclude that RUN(4)
is the best choice for higher accuracy in both ET and runoff
simulations.

Finally, the combination of the dominant schemes be-
comes the optimal set of schemes through the natural selec-
tion mechanism.

3.4 The MP–MGA optimization for the water balance

Additional experiments were performed for the scheme-
based optimization in terms of water balance (WB) without
any parameter calibration. Here the WB optimization is tar-
geting two variables simultaneously, i.e., both ET and runoff.
Skill score for evaluating WB simulation (SWB) used in this
study is defined as a simple multiplication of each skill scor-
ing function (SWB = SET × Srunoff) from Eq. (1). Thus,SWB
ranges from 0 to unity; the closer to unity the skill score
is, the better performance the model has in the WB simula-
tion. The parameter settings for micro-GA run are the same
as those from the previous separate MP–MGA optimization
experiments.

Figure 5a shows the evolution progress of the WB opti-
mization in the MP–MGA coupled system. It also displays
the evolution progress of the skill scores of each WB com-
ponent (i.e., ET and runoff). The highest skill score obtained
from MP–MGA wasSWB = 0.608. This skill score was first
obtained at the 12th iteration, and was exactly the same as
the skill score obtained from the stand-alone Noah-MP ex-
periments. When the combined WB optimization reached
the highestSWB value, the skill score of each WB compo-
nent (SET = 0.785 andSrunoff = 0.774) was lower than that
from the separated MP–MGA optimization (SET = 0.806 and
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Figure 5. (a)Evolution of generations during the process of the MP–MGA optimization for the WB estimation as in Fig. 3, and(b) percentage
of selections of each scheme to the total number of simulations during the optimization process as in Fig. 4.

Srunoff = 0.794) in the previous sections. In this combined
WB optimization, both the ET and runoff optimizations are
performed simultaneously and the opposite effect between
ET and runoff is not observed as in the separate optimiza-
tions (cf. Fig. 3). In addition, the fluctuation of evolution
process in the runoff optimization is larger than that in the
ET optimization, which implies that the accuracy of the WB
simulation might be sensitive to the simulation performance
of runoff than that of ET.

The analysis of the natural selections during the WB op-
timization process is displayed in Fig. 5b. Note that in the
separate optimizations, categories SFC, ALB, RAD and SNF
showed different scheme selections for different target vari-
able – ET vs. runoff (see Fig. 4). In the combined WB
optimization, the natural selections in categories SFC was
made in favour of the runoff optimization, that is, SFC(1)
was mostly selected to improve the runoff simulation ac-
curacy. In contrast, the most highly selected scheme from
category ALB and RAD in the combined WB optimiza-
tion was ALB(1) and RAD(1), respectively, which were
both favoured by the ET optimization. In category RUN,
the RUN(4) scheme was most widely selected, which was
favoured by both ET and runoff optimizations. It is inter-
esting that category SNF had SNF(2) as the most selective
scheme in the WB optimization, but it was not favoured by
either ET or runoff in the separate optimizations. This im-
plies that each physics category plays its own role in the
combined WB optimizations through the natural selections
in micro-GA runs. For example, in category SFC, micro-GA
selects schemes with more weight to the runoff optimiza-
tion, while in categories ALB and RAD it selects schemes
with more weight to the ET optimization. In category RUN,
a scheme is chosen in the way to give similar weight in both
the ET and runoff optimization. It seems like micro-GA tend
to make adjustments or balance between the ET and runoff
optimization by selecting a scheme (SNF(2)) that played an
important role in neither the ET optimization nor the runoff
optimization.

4 Summary and conclusions

This study was conducted to design and test a framework for
a scheme-based model optimization by coupling an intelli-
gent model optimization technique with a multi-physics land
surface model. The micro-genetic algorithm (GA), which
enables smart and fast searching for the optimum, was in-
troduced and applied to a new version of the Noah Land
Surface Model (LSM) with multiple physics options (Noah-
MP) in various physical parameterization categories. We im-
plemented an interface between Noah-MP and micro-GA
and developed a coupled system (MP–MGA). The optimiza-
tion in terms of water balance (ET and runoff) through this
MP–MGA coupled system successfully demonstrated how
micro-GA can effectively seek the optimal set of the physi-
cal scheme combination from Noah-MP over the Han River
basin in South Korea. Through the stand-alone Noah-MP ex-
periment, we first examined the model sensitivity of ET and
runoff simulations to scheme selections in each available pa-
rameterization category. Then we evaluated the effectiveness
of MP–MGA system on the scheme-based model optimiza-
tion. The searching speed for the global optimum and the op-
timal set of schemes is quite outstanding though the speeds
are different between the ET and runoff optimization pro-
cesses – only 120 of the total 1728 simulations for the ET
optimization and much less for the runoff optimization. This
indicates that, compared to the brute force approach, the MP–
MGA coupled system significantly reduces the computing
time for searching and extracting the optimal scheme com-
bination through the natural selection and crossover mecha-
nism in micro-GA.

In addition, this study showed a potential advantage of the
MP–MGA coupled system to model diagnosis. That is, the
natural selection mechanism through the micro-GA’s evolu-
tionary process of generations (multiple sets of scheme com-
binations) provides information on scheme sensitivity and
interrelationship that is useful to build a valuable base for
further calibrations and improvements. This information is
beneficial especially when the optimization is performed for
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more than two variables. For example, we identified that a
scheme set optimized for a single target variable (e.g., ET)
may degrade the simulation accuracies of other variables
(e.g., runoff). Since ET and runoff are mutually related, such
opposite effect between the ET and runoff estimations makes
difficulty to assess model accuracy in terms of surface water
balance (WB).

It is also noted that the natural selection mechanism in
micro-GA provides information on schemes mainly con-
tributing to the opposite effect in the separate ET and runoff
optimization. For example, the dominant schemes commonly
selected in both the ET and runoff optimizations through
the natural selection bring a synergistic contribution to better
model performance. The dominating schemes that were se-
lected disparately from the same categories between the two
separate optimizations (e.g., SFC(2) for ET vs. SFC(1) for
runoff) cause the opposite effect. In the combined WB opti-
mization process with both ET and runoff as target variables,
the most highly selected schemes, via the natural selection,
played their own role to improve the model accuracy for the
target variables. For example, some schemes acted upon im-
provement of the ET optimization while some others oper-
ated upon amelioration of the runoff optimization.

It appears that the scheme-based optimization through
the MP–MGA coupled system does not assure the ultimate
modelling performance we can obtain from Noah-MP. Fur-
ther optimizations on uncertain parameters in parameteriza-
tion schemes are still required with deep understanding of
the physical parameterization methods in the model. Fur-
thermore, additional experiments for combined scheme- and
parameter-based optimization are essentially required to in-
vestigate the effect of parameter calibrations on the model
sensitivity to scheme selections. However, considering that
the recent trend of increased model complexity with the con-
sequent increase of uncertain parameters may require more
efforts and time for parameter optimization and calibration,
the approach such as the MP–MGA coupled system provides
more insightful understanding of the implemented physical
schemes and their interrelationships that are essential for
more effective model optimization. For instance, the optimal
set of scheme combination obtained from the MP–MGA sys-
tem can be a base model for faster and more effective model
optimization and improvement.

Moreover, the model sensitivity to scheme selections
shown in this study is likely to be region specific because
the simulation performances will also vary with large-scale
characteristics such as by climate, land covers, and even ge-
ographical features. For example, the schemes that showed
relatively low sensitivity were related mainly to winter sea-
son variations. This might have been induced by moderately
warm climate condition of the Han River basin. The regions
in higher latitudes may show very different sensitivities to
those schemes. Thus, additional experiments for different re-
gions are required to obtain more generalized and extensive
model applicability.
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