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ABSTRACT

A sample of 427 gamma-ray bursts (GRBs) from a database (2002 February–2008 April) of the RHESSI satellite
is analyzed statistically. The spectral lags and peak-count rates, which have been calculated for the first time in
this paper, are studied, completing an earlier analysis of durations and hardness ratios. The analysis of the RHESSI
database has already inferred the existence of a third group with intermediate duration, apart from the so-called
short and long groups. The first aim of this article is to discuss the properties of these intermediate-duration bursts in
terms of peak-count rates and spectral lags. The second aim is to discuss the number of GRB groups using another
statistical method and by also employing the peak-count rates and spectral lags. The standard parametric (model-
based clustering) and non-parametric (K-means clustering) statistical tests together with the Kolmogorov–Smirnov
and Anderson–Darling tests are used. Two new results are obtained. (1) The intermediate-duration group has
properties similar to those of the group of short bursts. Intermediate and long groups appear to be different. (2) The
intermediate-duration GRBs in the RHESSI and Swift databases seem to be represented by different phenomena.
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1. INTRODUCTION

Mazets et al. (1981), Norris et al. (1984), Kouveliotou
et al. (1993), and Aptekar et al. (1998) have suggested the
division of gamma-ray bursts (GRBs) into two categories,
short and long, according to their duration (at ∼2 s). Many
observations demonstrate different properties of short and long
bursts. They have different redshift distributions (Bagoly et al.
2006; O’Shaughnessy et al. 2008) and may have different
celestial distributions (Balázs et al. 1998, 1999; Mészáros et al.
2000; Litvin et al. 2001; Mészáros & Štoček 2003; Vavrek et al.
2008). At present, the predominant opinion is that they are
physically different phenomena (Norris et al. 2001; Balázs et al.
2003; Fox et al. 2005; Kann et al. 2011).

There are also statistical indications of a third “intermediate”
group. The division of GRBs into three groups has been studied
statistically over different databases: BATSE (Horváth 1998,
2002; Mukherjee et al. 1998; Balastegui et al. 2001; Horváth
et al. 2006; Chattopadhyay et al. 2007), BeppoSAX (Horváth
2009), Swift (Horváth et al. 2008, 2010; Huja et al. 2009; Veres
et al. 2010), and Ramaty High Energy Solar Spectroscopic
Imager (RHESSI; Řı́pa et al. 2009). These three groups may
also have different celestial distributions (Mészáros et al. 2000;
Vavrek et al. 2008), at least for the BATSE database. No test has
given statistically significant support for the existence of four
or more groups. Only the BATSE database gave a weak 6.2%
significance level for such a possibility (Horváth et al. 2006).

One cannot exclude an eventuality that the separation of this
third group is simply a selection effect (Hakkila et al. 2000;
Rajaniemi & Mähönen 2002). In other words, a separation

from the statistical point of view does not necessarily indicate
astrophysically different phenomena. In principle, it is still
possible that the class of intermediate GRBs constitutes a
“tail” of either the short or the long group. The article by
Veres et al. (2010) claims that—at least for the Swift database
(Sakamoto et al. 2008)—the third group is related to the so-
called X-ray flashes (XRFs), which need not be physically
distinct phenomena (Kippen et al. 2003; Soderberg et al. 2006).
Two models of XRFs are favored; they are either ordinary long
GRBs viewed slightly off-axis (Zhang & Mészáros 2002) or
intrinsically soft long-duration GRBs (Gendre et al. 2007).
Hence, at least in the Swift database, the problem of the
intermediate class seems to have been solved.

However, for three reasons the situation has not yet been
clarified. First, with regard to the Swift database, another study
suggests that even the short group should be further separated
(Sakamoto & Gehrels 2009). Second, there is additional obser-
vational evidence against the simple scheme that maintains the
existence of only two types of bursts (short/hard and long/soft)
separated at duration of ∼2 s: the GRB 060614 event, which
is clearly long at duration (�100 s) but in any other properties
resembles a short GRB; and subsequent short bursts with soft
extended emission also challenged this scheme (Gehrels et al.
2006). To avoid the limitations of a short–long separation ter-
minology, the designations “Type I” and “Type II” have been
proposed (Zhang 2006; Zhang et al. 2009; Kann et al. 2011)
because duration alone is hardly sufficient for a correct divi-
sion into categories. Third, it remains possible that in other
databases the discovered intermediate group is not represented
by XRFs. Concerning this third reason, the mean duration of the
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intermediate group appears to vary according to the database in
which it is found. For the Swift data (Horváth et al. 2008; Huja
et al. 2009) the mean duration is ∼12 s, which resembles the
durations of the long GRBs, but for the RHESSI and BATSE
data (Horváth 1998; Mukherjee et al. 1998; Horváth et al. 2006;
Řı́pa et al. 2009) this mean is far below 10 s.

It is clear that any new result to aid in the classification scheme
of GRB groups is desirable. In this article we study the RHESSI
database, where in addition to Řı́pa et al. (2009), the spectral
lags and peak counts are also included. We have two concrete
aims here: first, to provide further statistical tests concerning
the GRB classes and, second, to provide additional information
concerning the physical significance of the RHESSI intermediate
group found by Řı́pa et al. (2009).

The paper is organized as follows: In Section 2, the
RHESSI satellite and its GRB data sample are described. In
Section 3, distributions of spectral lags, normalized lags,
and peak-count rates are studied using Kolmogorov–Smirnov
(K-S) and Anderson–Darling (A-D) tests along with Monte
Carlo (MC) simulations. In Section 4, we discuss the results of
these tests, compare the results with the BATSE and Swift data
samples, and discuss the number of GRB groups using model-
based and K-means clustering methods. Section 5 summarizes
the results of this paper.

2. THE RHESSI DATA SAMPLE

RHESSI 8,9 is a satellite designed for the observation of hard
X-rays and gamma rays from solar flares (Lin et al. 2002), but it
is also able to detect GRBs. There is no automatic search routine
for GRBs, and the RHESSI data are searched for a GRB signal
only if a message from any other instruments of the International
Planetary Network occurs. Therefore, our data set includes only
events confirmed by other satellites.

In this paper, we study the same list of bursts that was
published in Řı́pa et al. (2009). We consider 427 GRBs from the
period between 2002 February 14 and 2008 April 25. Contrary
to Řı́pa et al. (2009), the spectral lags and the peak counts—
calculated for the first time for RHESSI—in addition to the
durations and hardnesses are used. They are collected, together
with their uncertainties, in Table 9. These new observational
data allow further study of the questions concerning the GRB
classification. There are two arguments for the choice of the
same list of bursts. First, both in Řı́pa et al. (2009) and in the
present work, similar statistical studies are performed. Hence,
for comparison, it is reasonable to study the structure of groups
found in the RHESSI database over the same set. The second
argument concerns an instrumental effect. The measurements
of the hardness ratio of the events during the year 2008 and later
have been systematically affected by an “annealing” procedure10

executed on the RHESSI detectors in late 2007 (Bellm et al.
2008). The RHESSI team decided to anneal the detectors
to recover its deteriorating spectral sensitivity. However, the
sensitivity at low energies was not recovered as well as that at
high energies; hence, the measured GRB hardness ratios from
the post-annealing period are systematically shifted to higher
values (Veres et al. 2009; Řı́pa et al. 2010). In order to eliminate
this instrumental influence, more sophisticated modeling is
required. However, this is beyond the scope of this article.

8 http://hesperia.gsfc.nasa.gov/hessi
9 http://grb.web.psi.ch
10 http://hesperia.gsfc.nasa.gov/hessi/news/jan_16_08.htm

Table 1
Six RHESSI GRBs with Corrected T90 Durations and Hardness Ratios

GRBa Peak Timeb T90
c Hardness Ratio, log Hd

(s)

030518B 03:12:23.050 (1.86 ± 0.07)E+1 (2.90 ± 0.27)E-1
030519A 09:32:22.500 (3.20 ± 0.27)E+0 (5.31 ± 0.61)E-1
031024 09:24:14.350 (4.30 ± 0.17)E+0 −(2.06 ± 0.31)E-1
040220 00:55:15.800 (1.80 ± 0.07)E+1 (9.39 ± 2.72)E-2
050216 07:26:34.275 (4.50 ± 0.56)E-1 (2.33 ± 0.48)E-1
050530 04:44:44.900 (2.40 ± 0.26)E+0 (2.41 ± 0.63)E-1

Notes.
a RHESSI GRB number.
b Peak time of the count light curve in UTC.
c The uncertainties were calculated though the same procedure used in Řı́pa
et al. (2009).
d The hardness ratio was defined as the ratio of GRB counts at two different
bands, H = S(120–1500) keV/S(25–120) keV.

In order to compare the spectral lags and the peak counts
of bursts belonging to the different groups, one must pro-
vide a rule by which the particular GRBs are sorted into
the concrete groups. We proceeded in the following manner.
The probability density function employed in the fitting of the
duration–hardness plane in Řı́pa et al. (2009) is composed
from the summation of three bivariate lognormal functions,
f (x, y) = f1(x, y) + f2(x, y) + f3(x, y), where x is the base
10 logarithm of the duration and y is the base 10 logarithm of
the hardness ratio; f1, f2, and f3 are components corresponding to
the particular groups. A burst at the point [x0; y0] is considered
short, intermediate, or long depending on whether f1(x0, y0),
f2(x0, y0), or f3(x0, y0) is maximal. In essence, we follow a
procedure identical to that of Horváth et al. (2006, 2010) uti-
lized on the BATSE and Swift data sets.

In order to sort the given GRBs into the groups, we employ
the measurements of the durations and hardness ratios as given
in Table 7 of Řı́pa et al. (2009) with the exception of six events.
We find that for these six events the values mentioned in Řı́pa
et al. (2009) were not corrected for a so-called decimation,
which is an instrumental mode used to conserve the onboard
memory. Table 1 presents these six events, now corrected for
this decimation.

The group members used in this study were determined from
the best maximum likelihood (ML) fit (Řı́pa et al. 2009) in
the duration–hardness plane of 427 GRBs. In this sample, the
six events with corrected decimation were included along with
the remaining 421 events taken from Řı́pa et al. (2009). The
best ML fit with two bivariate lognormal components gives
logarithmic likelihood ln L2 = −313.4. The best fit with three
components gives logarithmic likelihood ln L3 = −303.4. The
ML ratio test tells us that the difference in the logarithmic
likelihoods multiplied by 2, i.e., 2(ln L3 − ln L2) = 20.0, should
follow a χ2 distribution with six degrees of freedom (Horváth
et al. 2006). Therefore, the ML ratio test, employed in Řı́pa
et al. (2009) and now applied on the duration–hardness plane
with these 427 GRBs including the six events corrected for
decimation, again gives a statistically significant intermediate
group at the significance level of 0.3%. The new (former) best-
fit model parameters of the intermediate group are 0.12 (0.11)
for the mean logarithmic duration, 0.25 (0.27) for the mean
logarithmic hardness, 4.1% (5.3%) for the weight, and 0.0 (0.59)
for the correlation coefficient. The group members are shown in
Figure 1 and listed in Table 9.
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Figure 1. Hardness ratio H plotted against the duration T90 for the RHESSI
database with the best ML fit of three bivariate lognormal functions. The
different GRB group members are denoted with different symbols: crosses,
full circles, and triangles correspond, respectively, to the short, intermediate,
and long bursts. CL means “confidence level.”

The spectral lags L of the RHESSI data were calculated
by fitting the peak of the cross-correlation function (CCF) of
the background-subtracted count light curves at two channels,
400–1500 keV and 25–120 keV, by a third-order polynomial.
The position of the maximum of the polynomial fit measures the
spectral lag. An example of such a fit is shown in Figure 2. The
method is similar to that employed in previous studies (Norris
et al. 2000; Norris 2002; Foley et al. 2008, 2009) on the BATSE
and INTEGRAL data. This is the first time that the spectral lags
have been calculated for the RHESSI GRBs.

To obtain statistical errors, an MC method was utilized. The
following procedure was employed to prepare 1001 synthetic
count profiles for each GRB. The measured count profiles were
randomly influenced by Poisson noise, after which the back-
ground was subtracted. The RHESSI count rates are sometimes
“decimated,” which means that, as the rate becomes too high
or the onboard solid-state recorder becomes too full, some of
the recorded counts are removed. If decimation occurs, the frac-
tion (fd − 1)/fd of the counts below a decimation energy E0
is removed. fd is the decimation factor (weight), usually equal
to 4 or 6. All events above E0 are downlinked.11 To prepare

11 http://sprg.ssl.berkeley.edu/∼dsmith/hessi/decimationrecord.html

the synthetic count profiles, the number of counts in each bin
was changed according to the Poisson distribution. The 1σ er-
rors for non-decimated, fully decimated, and partially decimated
data are

√
C,

√
fd.Cdc, and

√
C1 + fd.C2,dc, respectively. C is

the measured count number in a bin for non-decimated data.
Cdc is the count number in a bin of fully decimated data and
consequently is corrected for this decimation. C1 is the count
number in the non-decimated portion and C2,dc is the corrected
count number in the decimated portion of the measured rate in
the case of partially decimated data. A detailed explanation is
provided in the Appendix. The CCF was fitted for each of the
1001 synthetic profiles and for each burst in our sample. The
median of such a distribution of 1001 maxima of polynomial
fits was taken as the true lag L for each burst. These median
lags L are used in the following statistical tests and are listed in
Table 9. The 2.5% and 97.5% quantiles of such a distribution of
1001 maxima of polynomial fits for each GRB delimit the 95%
CL statistical errors. These errors are also listed in Table 9.

We decided to calculate the spectral lags only for bursts with
a signal-to-noise ratio higher than 3.5 in both channels. This
signal-to-noise ratio is defined as ST90/

√
ST90 + 2BT90, where

ST90 is a GRB signal over the background level BT90, and
both S and B are counts in a T90 time interval over the range
25 keV–1.5 MeV. The choice of this limit was made to ensure
that the CCF was sufficiently smooth with a clear peak, allowing
determination of a reliable lag. Therefore, excluding the noisiest
data, the number of GRBs with calculated lags is 142. Their
distribution is presented in Figure 3.

The GRB peak-count number S was derived from the
light curve with the maximal count number C at the range
25 keV–1.5 MeV after subtracting the background B. The peak-
count rate F is given as the peak-count number S divided by
the width of the time bin δtres. This width was different for dif-
ferent GRBs, and covered a range between 2 ms and 3 s. The
dimensions of the peak-count rate are counts s−1.

The 1σ error σF of the peak-count rate F was calculated
as σF = σS/δtres , where the error σS of the GRB peak-count
number is σS =

√
(σC)2 + (σB)2. We assume that errors of the

maximal count numbers σC and of the background σB = √
B

are Poissonian and independent. The error σC is σC = √
C in the

case of non-decimated data, given by expression (A2) in case of
fully decimated data, and given by expression (A4) in case of
partially decimated data (see the Appendix). The peak counts
with errors were calculated for all 427 objects.

Figure 2. Left: an example of the cross-correlation function of two background-subtracted count light curves of the very bright GRB 060306 derived at two energy
bands, 400–1500 keV and 25–120 keV. Right: detail from the same curve with the third-order polynomial fit (thick solid curve). The position of the maximum of the
fit measures the spectral lag (dotted line). The boundaries of the polynomial fit are marked with dashed lines.
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Figure 3. Left panels: the spectral lags of RHESSI GRBs sorted along the y-axis with respect to the value of (+error + |−error|) for short-, intermediate-, and
long-duration bursts. The median lags for each GRB were taken from the lags of 1001 synthetic background-subtracted count time profiles obtained by Monte Carlo
simulations of the measured profiles that were randomly influenced by the Poissonian noise. The error bars are composed of the 95% CL statistical error and the
profile time resolution. A positive lag means that the low-energy counts are delayed. Right panels: the cumulative distributions of the median lags obtained for the
three groups of bursts are shown.

3. PROPERTIES OF THE GRB GROUPS

3.1. Distribution of Spectral Lags

In this section we use the A-D test (Anderson & Darling
1952; Darling 1957) to compare distributions of spectral lags of
different GRB groups (see Figure 3) found by the ML method
applied to durations and hardness ratios (see Section 2). The
short (intermediate, long) group contains 26 (11, 105) objects.
The mean values of the spectral lags of these groups are similar;
hence, we use the A-D test because it is particularly sensitive to
the tails of the distributions tested (Scholz & Stephens 1987). For
its calculation, we employ the adk package of the R software12

(R Development Core Team 2011). The results are summarized
in Table 2.

12 http://cran.r-project.org

Table 2
A-D Tests of the Spectral Lag Distributions for the RHESSI Database

Groups A-D P Group Mean L Median L σ

(%) (ms) (ms) (ms)

Inter.–short 16.8 Short 4.9 1.9 16.7
Inter.–long 4.2 Inter. 28.7 5.9 78.4
Short–long <10−3 Long 178.0 50.8 874.9

Notes. Left: the results of the A-D tests are presented. The null hypothesis is that
the two samples are drawn from the same distribution. P denotes the P-value of
the test. Right: the means, medians, and standard deviations σ of the lags are
listed.

The A-D test gives a significance of 16.8% (the probability
that the two samples are drawn from the same distribution)
for the short–intermediate pair, and it yields a significance of
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Figure 4. Cumulative distributions of the normalized lags for the three RHESSI
GRB groups.

Table 3
A-D Tests of the Equality of the Normalized Lag Distributions Between

Different RHESSI GRB Groups

Groups A-D P Group Mean Median σ

(%) L(ms)/T90(s) L(ms)/T90(s)

Inter.–short 54.2 Short 21.3 15.8 63.3
Inter.–long 45.0 Inter. 17.6 5.5 63.0
Short–long 6.0 Long 10.2 3.4 32.0

Notes. Left: the results of the A-D tests are presented. P denotes the P-value of
the test. Right: the means, medians, and standard deviations σ of the normalized
lags are also mentioned.

4.2% for the long–intermediate pair. Therefore, in the cases
of short and intermediate groups, we cannot reject the null
hypothesis that the two samples are drawn from the same
distribution on a sufficiently low level (5%). On the other hand,
this null hypothesis can be rejected in the case of long and
intermediate groups, but the significance is not far below the
5% level. The same test applied to the lags of the short–long
pair yields a significance of <10−3%. Therefore, in this case,
the null hypothesis can be rejected with a high significance. This
strongly supports the well-known claim that the short and long
GRBs are really different phenomena and confirms the results
of Norris et al. (2001) (obtained with BATSE), but now by using
the RHESSI instrument.

3.2. Distribution of Normalized Lags

In this section we compare the distributions of normalized
lags (Figure 4), i.e., L/T90, with the absolute values of the lags.
Again, we use the A-D test between the different GRB groups
mentioned in the previous section. The number of events within
the groups is therefore the same. The results are summarized in
Table 3.

The A-D test gives a significance level of 54.2% for the
short–intermediate pair, and it gives a significance level of
45.0% for the long–intermediate pair. The significances are
considerably above the 5% level; therefore, the null hypothesis
that the samples are drawn from the same distribution cannot
be rejected. For the short–long pair, the A-D test gives a
significance level of 6.0%. Where the normalized lags are
concerned, the difference between the short and long bursts
is not definite.

Table 4
K-S Tests Applied to the Peak-count Rates F for the RHESSI Database

Groups D K-S P Group Mean Median σ

(%) F (s−1) F (s−1) (s−1)

Inter.–short 0.44 0.9 Short 9 485 5 163 20 418
Inter.–long 0.55 3 × 10−5 Inter. 4 412 2 546 5 586
Short–long 0.69 <10−6 Long 2 589 1 038 7 673

Notes. Left: the results of the K-S tests are presented. The K-S distance D
and the K-S significance P are given. Right: the means, medians, and standard
deviations of the peak-count rates are listed.

Table 5
Monte Carlo Double-check of Results from the Statistical Tests

Tests Inter.–Short Inter.–Long Short–Long

Lags 8 556 (85.6%) 6 938 (69.4%) 0 (0.0%)
Norm. lags 9 936 (99.4%) 8 862 (88.6%) 1 458 (14.6%)
Peak rates 47 (0.5%) 0 (0.0%) 0 (0.0%)

Notes. The number of cases out of 10,000 MC cycles (and their percentages)
is given for A-D (lags and norm. lags) and K-S (peak rates) probability values
exceeding 5% for tests done on spectral lags, normalized lags, peak-count rates,
and different pairs of GRB groups.

3.3. Distribution of Peak Counts

Here, we used K-S test (Kolmogorov 1933; Smirnov 1948) to
compare the cumulative distributions of the peak counts among
the different GRB groups. The short (intermediate, long) group
contains 42 (18, 367) objects. The results are presented in Table 4
and shown in Figure 5.

The results of the K-S tests imply that the distributions of the
peak-count rates are different over all three groups. In particular,
the K-S significance level for the intermediate versus short bursts
is 0.9%, for intermediate versus long bursts it is 3×10−5%, and
for short versus long bursts it is <10−6%.

3.4. Monte Carlo Simulations

In order to test the robustness of the results obtained by the
A-D tests applied on lags L, normalized lags L/T90, and K-S
tests applied on peak-count rates F, one can use the MC method.

In the case of spectral lags we proceeded in the following way.
The procedure described in Section 2—calculation of statistical
errors of the lags by application of Poisson noise—provided a
distribution of 1,001 lags for each GRB. Thus, for each GRB we
randomly selected one lag from its distribution and made 10,000
data samples. Then, the A-D tests for these 10,000 samples were
calculated.

In the case of peak rates, we proceeded as follows. We applied
the Poisson noise to the measured light curves and subtracted
the background in order to obtain the simulated data. Then we
derived the peak-count rate for the same peak time when the
peak was found in the measured light curves. We proceed in
this way for each GRB. Afterward, we calculated K-S tests and
repeated this sequence 10,000 times.

The number of cases in which the A-D and K-S probability
reached values higher than 5% for tests done on different pairs of
GRB groups is given in Table 5. The results of MC simulations
comparing spectral lags and normalized lags are shown in
Figure 6.

The MC method confirms that the distributions of spectral
lags between short and long GRB groups are different. Let us
compare results from the MC simulations of lags and normalized

5
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Figure 5. Left panel: peak-count rates F of RHESSI GRBs as a function of T90 durations for the three GRB groups, identified by the analysis of the hardnesses and
durations, are displayed. Right panel: cumulative distributions of these peak-count rates F for the short-, intermediate-, and long-duration bursts are shown.

Figure 6. Left panel: The A-D probabilities of the tests applied to the samples of lags (left panel) and normalized lags (right panel) obtained from 10,000 MC cycles
for different GRB groups. The horizontal solid line denotes the 5% threshold.

lags between the intermediate–short and intermediate–long
pairs with the results of the tests applied directly to median
lags (Table 2) and median normalized lags (Table 3). Then,
one can see that MC simulations give an A-D probability >5%
more often than expected. This can be caused by the fact that
for some GRBs, weak and noisy ones, the distribution of lags
found by the MC method might not follow the real distribution,
because after applying the Poisson noise the polynomial fit of
the CCF may not well describe the CCF peak. The reason for this
conjecture is that the fitting range remained fixed and the same
for the simulated data as for the measured data. In other words,
the fitting range suitable for the measured data need not be
suitable for the simulated data. In this case, we think that the A-
D tests applied to the median lags give more reliable results than
do the MC simulations. However, one mutual behavior is seen
here: the intermediate–short pair has distributions of lags and
normalized lags more similar than does the intermediate–long
pair. This feature is seen both in the A-D tests applied to the
median lags/normalized lags and in the A-D tests of the MC
data samples.

MC simulations also confirm results of K-S tests applied
directly to the measured peak rates. We can conclude that the
short-, intermediate-, and long-duration bursts have different
distributions of peak-count rates. The results of MC simulations
comparing spectral lags and normalized lags are shown in
Figure 7.

Figure 7. K-S probabilities of the tests applied to the samples of peak-count
rates obtained from 10,000 MC cycles for different GRB groups.

4. DISCUSSION

4.1. Comparison with the BATSE Database

The lags of GRBs from the BATSE data set are different for
the short and long groups (Norris et al. 2001): for the short
bursts the lags on average are close to zero, but for the long
bursts they are positive. Norris and his collaborators did not

6
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Figure 8. Cumulative distributions of the spectral lags (left panel) and peak fluxes (right panel) for the three BATSE GRB groups are shown.

Table 6
A-D Tests of the Equality of the Spectral Lag Distributions for the

BATSE GRBs

Groups A-D P Group Mean L Median L σ

(%) (ms) (ms) (ms)

Inter.–short 51.3 Short 177.1 72.0 454.6
Inter.–long 3.8 Inter. 207.5 60.0 464.2
Short–long 9.7 Long 390.7 94.0 848.2

Notes. Left: the results of the A-D tests are presented. P denotes the P-value of
the test. Right: the mean, median, and standard deviations σ of the lags.

study the lags of the intermediate bursts separately (Norris et al.
2001; Norris 2002; Norris & Bonnell 2006). For the sake of
completeness we have attempted to do this for the publicly
available data. Horváth et al. (2006) define membership within
the groups for all BATSE GRBs. Additionally, Norris (2002)
defines the lag for any GRB with T90 > 2 s.13 Compilation of
these two lists and the application of the A-D test to the lags of
the three BATSE groups (here for the first time) produced the
results collected in Table 6 and shown in Figure 8. The short
(intermediate, long) group contains 33 (119, 1179) objects here.
Of course, one must keep in mind that this sample is drastically
truncated for the short bursts. Hence, the short–intermediate
and the short–long comparisons can serve only as qualitative
indicators. Even the intermediate–long pair cannot be taken as
representative because the truncation T90 > 2 s can also omit
several intermediate GRBs.

Keeping all this in mind, if the lags are taken into considera-
tion we can say that there is some similarity between the BATSE
and the RHESSI databases. First, there is a similarity with re-
gard to the intermediate–long pair: the difference is confirmed,
though not at a high significance level; remarkably, the signifi-
cances from the A-D test are comparable (3.8% and 4.2%). Sec-
ond, there is a similarity with regard to the intermediate–short
pair: in both databases the A-D test reveals that for these two
groups the distributions of GRB lags are similar; the signifi-
cances are 51.3% for BATSE and 16.8% for RHESSI. However,
one must again keep in mind that our BATSE sample of short
bursts is truncated, as is the sample of intermediate bursts. Third,
both databases show a difference between the average lags for
the short–long pairs (for the BATSE databases the difference
between the distributions is shown to be insignificant; the A-D

13 http://heasarc.gsfc.nasa.gov/docs/cgro/analysis/lags/web_lags.html

Table 7
K-S Tests Applied to the Peak Fluxes of the BATSE GRBs

Groups D K-S P Group Mean Median σ

(%) F F

Inter.–short 0.30 <10−6 Short 4.00 2.15 6.80
Inter.–long 0.13 1.0 Inter. 3.15 1.29 4.91
Short–long 0.21 <10−6 Long 4.09 1.51 10.31

Notes. Left: the results of the K-S tests applied to the peak fluxes F (photons
cm−2 s−1) are presented. The notation is as defined in Table 4. Right: the means,
medians, and standard deviations of the peak fluxes are listed.

P-value is only 9.7%, probably as a result of the sample trunca-
tion, but Norris et al. (2001) make this claim unambiguously).

The results of the K-S tests applied to the peak fluxes of the
64 ms resolution light curves for the BATSE data imply that
the distributions are different over all three groups. The short
(intermediate, long) group contains 502 (169, 1282) objects
here, and the K-S tests are summed in Table 7 and shown in
Figure 8. These results are to be expected because, for example,
Nakar (2007) claimed that the peak fluxes of short GRBs are
roughly 20× smaller than those of the long ones. It is also known
that the intermediate BATSE group is “intermediate” concerning
the fluence (Mukherjee et al. 1998).

Therefore, our comparison of these RHESSI and BATSE
groups finds similarities. In the case of the BATSE database, all
three groups are different in respect to two quantities (duration
and peak flux). It is remarkable that for BATSE the hardness
of the intermediate group is strongly anticorrelated with the
duration (Horváth et al. 2006). Since the hardness of the
intermediate group differs from the hardnesses of the short and
long ones, these studies support the opinion that all three BATSE
groups represent different phenomena.

4.2. Comparison with the Swift Database

The lags of the GRBs from the Swift data set are also different
for the short and long groups (de Ugarte et al. 2011). de
Ugarte et al. (2011) also discussed the lags of the intermediate
bursts, and they found a behavior which does not resemble
the cases found in the RHESSI and BATSE data sets. Swift’s
intermediate–long pair has on average similar lags, but there is
a statistically significant difference in the short–intermediate
pair. Thus, if the lags are considered, Swift’s intermediate
group is similar to its long group (de Ugarte et al. 2011).
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On the other hand, the peak fluxes differ significantly in the
short–intermediate and intermediate–long pairs, respectively.
The peak fluxes of the short–long pair are not different from
the statistical point of view (Veres et al. 2010). Nevertheless, de
Ugarte et al. (2011) concluded that “Swift’s intermediate bursts
differ from short bursts, but exhibit no significant differences
from long bursts apart from their lower brightness.” In other
words, in the Swift database there is a clear similarity between
the intermediate group and the long one. The physical difference
between the short and long bursts in the Swift database also holds
(Veres et al. 2010; de Ugarte et al. 2011).

Comparison with Swift’s groups leads to the conclusion that
the third group in the Swift database is strongly related to the
long group, as stated by Veres et al. (2010) and de Ugarte
et al. (2011), and only the short group might represent another
phenomenon. There is a difference in the hardness, peak flux,
and duration for the intermediate–long pair (Horváth et al.
2008; Veres et al. 2010), but no clear separation occurs for
the lags (de Ugarte et al. 2011). We have no reason to query the
conclusions of Veres et al. (2010) that the intermediate group is
related to XRFs, which in turn can be related to standard long
GRBs. We add that the separation within the long group itself
into harder and softer parts is not fully new (Pendleton et al.
1997; Tavani 1998). We allow the claim that the intermediate-
duration bursts in the RHESSI and Swift databases are different
phenomena. These results follow exclusively from the statistical
analyses.

4.3. Discussion of the Number of Groups

In order to provide an extended discussion of the number of
GRB groups, we apply clustering methods to our data sample.
This also serves to extend the statistical analysis performed by
Řı́pa et al. (2009). In general, the clustering methods can be
divided into parametric and non-parametric types. Parametric
methods assume that the data follow a pre-defined model (in our
case a sum of multivariate Gaussian functions). These methods
assign for each GRB a probability of membership in a certain
group. The non-parametric methods, e.g., K-means clustering,
provide definite assignments of each burst to a given group.
More details about these methods can be found in the book by
Everitt et al. (2011). Model-based clustering is also described
in McLachlan & Peel (2000).

We apply model-based clustering and K-means clustering
methods to our RHESSI data sample by using the algorithms
implemented in the R software.

4.3.1. Model-based Clustering Method

In this method, we assume that the distributions of the
parameters tested (logarithms of durations, hardness ratios,
peak-count rates, and normalized lags) follow a superposition
of Gaussian functions. A similar analysis for GRB classification
was performed by Mukherjee et al. (1998), Horváth et al. (2006),
and Veres et al. (2010).

The ML method is used to find the best-fit model parameters.
Adding more free parameters to a fitted model can increase
the likelihood, but may also result in overfitting. It is possible
to penalize a model for more free parameters. This can be
done by a method called the Bayesian information criterion
(BIC), presented by Schwarz (1978). The function, which
must be maximized to get the best-fit model parameters, is
BIC = 2 ln lmax–m ln N, where lmax is the ML of the model,
m is the number of free parameters, and N is the size of

the sample. In our work we use the BIC to determine the
most probable model, its parameters, and the number of its
components.

For model-based clustering, we use the Mclust package14

(Fraley & Raftery 2000) of R. For an explanation of the different
models, see the Mclust manual.15 The nomenclature of the
different models in Mclust involves the following designations:
the volumes, the shapes, and the orientation of the axes of all
clusters may be equivalent (E) or may vary (V), and the axes
of all clusters may be restricted to parallel orientations with the
coordinate axes (I).

4.3.2. Model-based Clustering—Two Variables

First, we start with a two-dimensional case and fit T90
durations and hardnesses H. The data sample consists of 427
bursts (Table 7 of Řı́pa et al. 2009 and Table 1).

In this case, the number of free parameters of the model with k
bivariate Gaussian components is 6k−1 (2k means, 2k standard
deviations, k correlation coefficients, and k−1 weights, because
the sum of the weights is 1). For the most general model, all
parameters are free. However, sometimes we want to test models
in which some of the parameters between different components
are related to other parameters, e.g., all components have the
same weight or shape, etc. In this case, the number of degrees
of freedom is reduced.

As seen in Figure 9, the best-fit model has k = 2 components
with equal volumes, variable shapes, and with the axes of all
clusters parallel to the coordinate axes (EVI model). This best-fit
model has a value of BIC = −681.5. The EVI model with
one component gives BIC = −899.1, and the one with three
components gives BIC = −701.8. For all other models tested
with k = 1 component, the highest BIC is −820.3 and with
k = 3 components −694.3, which are clearly below the
maximum.

The difference between the BIC of two models gives us
information about the goodness of fit. According to Kass &
Raftery (1995) and Mukherjee et al. (1998), a difference in BIC
of less than 2 represents weak evidence, a difference between
2 and 6 represents positive evidence, between 6 and 10 strong
evidence, and a difference greater than 10 represents very strong
evidence in favor of the model with the higher BIC.

In our case, the difference between the best-fit model (EVI)
with two components and the EVI models with one or three
components is always higher than 10. This gives strong support
for the EVI model with k = 2 components.

The two components are the short/hard and long/soft groups.
The intermediate-duration bursts shown in Figure 1 are assigned
to the short/hard group by this test.

4.3.3. Model-based Clustering—Three Variables

Next, we perform model-based clustering of three variables:
T90 durations, hardnesses H, and peak-count rates F. Since the
peak rates were measured for all events, the sample here also
consists of all 427 bursts (Table 9).

The best-fit model has k = 3 components (see Figure 9) with
equal volumes, equal shapes, and equal correlation coefficients
between all clusters (EEE model). This best model has a value of
BIC = −1156.6. The EEE model with two components gives
BIC = −1168.7, and for four components BIC = −1174.6.
Markedly high values of BIC are also obtained for the EEI,

14 http://cran.r-project.org/web/packages/mclust/index.html
15 http://www.stat.washington.edu/research/reports/2006/tr504.pdf
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Figure 9. Left panel: Bayesian information criterion (BIC) values for different models as a function of the number of bivariate Gaussian components. The higher
the BIC value, the more probable the model. The most probable model is EVI with two components. The data sample consists of two variables: T90 durations and
hardness ratios. Right panel: BIC values for different models plotted against the number of components. The most probable model is EEE with three components. The
data sample consists of three variables: T90 durations, hardness ratios H, and peak-count rates F.

VEI, and VVI models with k = 3 components: BIC = −1166.2,
BIC = −1162.5, and BIC = −1166.1, respectively.

The difference in BIC between the EEE model with three
components and the EEE models with two or four components
is >10. The other models with other numbers of components
(except the above-mentioned EEI, VEI, and VVI models with
three components) give BIC values lower by at least 10. This
provides strong evidence in favor of the EEE model with k = 3
components. The group structure of this model with three
components is shown in Figure 10.

The intermediate-duration bursts shown in Figure 1 are
assigned to the short/hard group by this test. A new result here
is that the group of long bursts is separated into high and low
peak-flux clusters.

4.3.4. Model-based Clustering—Four Variables

Spectral lags of BATSE GRBs, i.e., the time delay between
low- and high-energy photons from short and long groups, have
been found to differ. For short bursts, an average lag is ∼20–40
times shorter than for long bursts, and the lag distribution is
close to symmetric about zero—unlike long bursts (Norris et al.
2001; Norris 2002; Norris & Bonnell 2006). This result gave us
the idea to incorporate the spectral lags as well.

In this section, we apply the model-based clustering to GRB
peak-count rates F, T90 durations, hardness ratios H, and a
new addition to the variables, normalized lags L/T90. Since
the RHESSI spectral lags were calculated for only 142 bursts
(Table 9), our sample is truncated.

The best-fit model has k = 2 components and is uncon-
strained, i.e., it has variable volumes, variable shapes, and vari-
able correlation coefficients (VVV). The best BIC value for
this model is BIC = −1768.4. However, the VVV model with
k = 3 components gives a similar value of BIC = −1768.5. The
other models give BIC values lower by at least 10. This strongly
supports the VVV model with k = 2 components. There is
no need to introduce the VVV model with three components,
which has more free parameters. The two components are sep-
arated according to the values of normalized lags into zero- and
non-zero-lag events.

4.3.5. Summary of Model-based Clustering

The model-based clustering of two-parameter data (T90 and
H) gives strong evidence in favor of the EVI model with
two components. The analysis of three-parameter data (T90,

Table 8
A Summary of the Results from the Model-based Clustering

Model k BIC ΔBIC ΔBIC ΔBIC ΔBIC Evidence
k = 1 k = 2 k = 3 k = 4

Two par. EVI 2 −681.5 >10 × >10 Very strong

Three par. EEE 3 −1156.6 >10 × >10 Very strong

Four par. VVV 2 −1768.4 >10 × >10 Very strong

Notes. The results for model-based clustering applied to two, three, and four
parameters are presented. The values of BIC for the best-fitted models with k
components are listed, as are the differences from the models with other numbers
of components.

H and F) shows that the best-fit model is EEE with three
components. Surprisingly, a new result is obtained here: the
group of long bursts is separated into high and low peak-flux
clusters. The analysis of four-parameter data (T90, H, F, and
L/T90) supports the VVV model with two components only.
The separation into the two components here is according to the
values of normalized lags into zero- and non-zero-lag events.
The summary of the results from the model-based clustering is
presented in Table 8.

4.3.6. K-means Clustering

One of the non-parametric clustering methods is K-means
clustering (MacQueen 1967). Before we use our data for this
method we scale them, i.e., we subtract the mean value and then
divide them by the standard deviation. The reason for this
procedure is that the clustering algorithm is sensitive to the
distance scale of the variables. For more details about the
application of the K-means method in a similar analysis of
GRB data, see, e.g., Chattopadhyay et al. (2007) or Veres et al.
(2010). For this clustering method we use the kmeans package
implemented in the R software.

To use the K-means method, one must set the number of
clusters beforehand. Then, the corresponding number of centers
is found by minimizing the sum of squared distances from each
burst to the center of the group to which they belong. There
is no precise way to determine the best number of clusters
with this method. However, it has been suggested that if one
plots the within-group sum of squares (WSS) as a function of
the number of clusters, then an “elbow” will indicate the best
number (Hartigan 1975). This method does not provide any
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Figure 10. Scatter plot of 427 bursts, with measured T90, H, and F assigned into three groups by the EEE model.

Table 9
The Spectral Lags and Peak-count Rates of the RHESSI GRBs

GRBa Groupb L (ms)c F (s−1)d σF (s−1)e

020214 3 42.4+56.7
−35.0 8885.9 221.3

020218 3 607.0+181.9
−205.4 3630.7 92.9

020302 3 632.6 62.7
020306 1 1.2+15.7

−17.3 9003.0 867.4

020311 3 641.9+570.7
−519.2 1571.9 119.7

020313 3 891.2 89.3
020315 3 504.1 91.6
020331 3 307.2 71.8
020407 3 775.9 72.4
020409 3 268.6 56.0

Notes.
a RHESSI GRB number.
b The assignment to the GRB group—1: short, 2: intermediate, 3: long.
c Spectral lags were calculated from the difference in the count light curves at
the energy intervals 400–1500 keV and 25–120 keV. The errors are the 95% CL
statistical uncertainty and the light curve’s time resolution.
d Peak-count rates derived in the 25–1500 keV band.
e 1σ statistical uncertainties of the peak-count rates.

(This table is available in its entirety in a machine-readable form in the online
journal. A portion is shown here for guidance regarding its form and content.)

probability indicating the significance or insignificance for the
given best number of clusters.

The calculated WSS as a function of the number of groups
for our data samples using two (T90, H), three (T90, H, F), and
four (T90, H, F, L/T90) variables are rather smooth and do not

demonstrate any remarkable and sharp “elbows;” thus, they do
not provide useful information on the GRB classification.

4.4. Discussion of the Results

The K-S tests applied to peak-count rates show that the
distributions are different over all three groups. The K-S
significance level for the short–long pair is <10−6%, for
the intermediate–long pair is 3 × 10−5%, and for the
intermediate–short one is 0.9%. The short and long GRBs have
clearly different distributions of peak rates. Also, the intermedi-
ate and long GRBs have clearly different distributions of peak
rates. The intermediate–short pair also exhibits different distri-
butions (K-S probability <5%), however less markedly than do
the other pairs of groups. These results are confirmed by MC
simulations.

The A-D tests applied to distributions of spectral lags unveil
that the A-D probability for the short–long pair is < 10−3%,
for the intermediate–long pair the A-D probability is 4.2%,
and for the intermediate–short one it is 16.8%. The short
and long GRBs have clearly different distributions of spectral
lags. The intermediate and long GRBs have A-D probability
<5%; however, in this case the difference is not strong. The
intermediate–short pair does not exhibit different distributions.
The difference in the spectral lag distributions of the short–long
pair of GRB groups is confirmed by MC simulations. In the
cases of intermediate–short and intermediate–long pairs, the MC
simulations reveal the same tendency as the A-D tests applied
directly to the measured values, i.e., the intermediate–short pair
has more similar distributions of spectral lags than does the
intermediate–long pair. However, MC simulations give A-D
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probability higher than 5% more often than expected. A possible
reason is noted in Section 3.4.

The A-D tests applied to distributions of normalized lags
show that these distributions cannot be claimed as different.
The A-D probability for the short–long pair is 6.0%, for the
intermediate–long pair is 45.0%, and for the intermediate–short
one is 54.2%. Here, one can see the same tendency as in the case
of A-D tests applied to spectral lags, i.e., the short–long pair
has the least similar distributions of lags, the intermediate–long
couple stays in the middle, and the intermediate–short pair has
the most similar distributions. This tendency also appears in the
MC simulations; however, the absolute frequency of the cases
when A-D probability exceeds the 5% level happens more often
than expected. The reason could be the same as in the case of
MC simulations applied to absolute values of spectral lags.

The model-based clustering of two-parameter data (T90
and H) gives strong evidence in favor of a model with two
components only. The two components are the short/hard and
long/soft groups. The intermediate-duration bursts shown in
Figure 1 are assigned to the short/hard group by this test. The
analysis of three-parameter data (T90, H, and F) shows that the
best-fit model has three components. A surprising point here is
that this method separates the group of long bursts into high
and low peak-flux clusters. The analysis of four-parameter data
(T90, H, F, and L/T90) supports a model with two components
that are separated accordingly to the values of normalized lags
into zero- and non-zero-lag events.

Surveying the A-D and K-S tests of the RHESSI data, it
should be noted that the difference between the short and
long bursts was again strongly confirmed. This follows from
the different distributions of the spectral lags and from the
different distributions of the peak-count rates; both results were
confirmed by the MC method. This is already an expected result,
but—usefully—in this case came from a new observational
database.

According to Figure 1, the intermediate–short pairs of groups
have similar hardness ratios. Also according to the results of
the A-D test of the spectral lags, the distributions of lags
are not different for the intermediate–short pair. However,
the intermediate-duration and short-duration bursts are not
completely the same because their peak-count rate distributions
differ. On the other hand, the intermediate–long pairs of groups
differ in hardness ratios, spectral lags, and peak-count rates.
Therefore, in our opinion, it is possible that the intermediate
group detected by RHESSI in Section 2 and by Řı́pa et al. (2009)
may be a longer tail of standard short/hard bursts. This can
also be supported by the fact that the model-based clustering
method applied to hardness ratios and durations unveils only
two clusters as the best solution: classical short/hard and
long/soft groups; the intermediate-duration bursts are assigned
to the short group.

The RHESSI intermediate and long groups seem to be differ-
ent phenomena. This difference is supported by the distribution
of the peak-count rates and spectral lags. The results show that
the intermediate group is also “intermediate” with regard to its
lags. The intermediate group detected by Swift was found to
be related to XRFs (Veres et al. 2010), and those may in turn
belong to the standard long GRBs (Kippen et al. 2003). In the
case of RHESSI, the longer and softer GRBs are more difficult
to detect, because RHESSI’s sensitivity declines rapidly below
≈50 keV and the weak and soft GRBs are not easily observable
(Řı́pa et al. 2009). On the other hand, Swift is less sensitive
in the photon energy range >150 keV. However, softer GRBs

are readily detectable with this instrument. Hence, in our opin-
ion, an instrumental effect may be responsible for the fact that
the two satellites (Swift and RHESSI) detected different inter-
mediate groups. This means that—from a statistical point of
view—different groups can be found if one looks at different
databases.

There are bursts observed with properties similar to the
short bursts (hardness, lag), except their durations exceed 2 s.
For example, in addition to Gehrels et al. (2006) and Kann
et al. (2011) already mentioned in the Introduction, Norris &
Bonnell (2006) claim that “short bursts with extended emission
(SGRBEE) can have T90 > 2 s.” Furthermore, others (de Barros
et al. 2011) also propose the astrophysical fragmentation of the
short GRB group.

Concerning SGRBEE, we inspected the light curves of all
18 RHESSI intermediate bursts but found no softer extended
emission coming after the main hard spike as is typical for
this kind of burst. Figure 3 of Perley et al. (2009) shows that
the average T90 duration of the initial spike of an SGRBEE
lies between the average durations of short and long bursts.
If RHESSI detects only the hard initial spike, and the softer
extended emission is lost in the noise, then the intermediate
group detected might be polluted by these objects. Therefore,
we also checked the light curves of the RHESSI intermedi-
ate bursts as observed by Konus-Wind (Aptekar et al. 1995),
because it also has good sensitivity below 50 keV (its range is
10–10,000 keV). It has an overlap with the following RHESSI in-
termediate bursts: GRB 020819A, GRB 030410, GRB 040329,
GRB 050530, GRB 070802, GRB 070824, and GRB 080408.
However, no extended emission was observed by Konus-Wind
for these seven bursts. This observation indicates the RHESSI
intermediate GRBs should not be dominantly polluted by
SGRBEEs.

Furthermore, there are also additional indications that GRBs
that do not belong to the long+XRF pair category may originate
from a broad range of astrophysical phenomena. For example,
Mukherjee et al. (1998) found four subclasses in the BATSE
database from the year 1998, but the fourth group was populated
by a single GRB. From a statistical point of view, such an object
is an outlier of uncertain origin. Likewise, similar situations
exist concerning the objects GRB 060614 (Gehrels et al. 2006)
and GRB 110328A (Cummings et al. 2011). Any study of such
a single unusual object is beyond the scope of this article, which
provides only statistical analyses.

5. CONCLUSIONS

The main results of this study can be summarized as follows.

1. The ML test in the duration–hardness plane of 427 RHESSI
GRBs, taken from Řı́pa et al. (2009) but now with six events
corrected for decimation, again exhibits a statistically
significant third, intermediate in duration, group. This
completes the work of Řı́pa et al. (2009) using the durations
and hardnesses only.

2. The spectral lags and peak-count rates have been calculated
for GRBs observed by the RHESSI satellite for the first
time. The spectral lags were obtained for 142 objects, and
the peak counts were obtained for all 427 GRBs. Hence, we
constructed a new observational database for this satellite.
Then, the three GRB subgroups were analyzed statistically
with respect to these new spectral lags and peak-count rates.
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3. The difference between short and long groups has been con-
firmed. Usefully, this result came from a new observational
database.

4. K-S and A-D tests applied to spectral lags and peak-count
rates indicate that the intermediate group in the RHESSI
database might be a longer tail of the short group or at
least has some properties in common with this short group.
Contrary to this, the intermediate and the long groups are
different.

5. The group of RHESSI intermediate-duration GRBs is not
dominantly populated by SGRBEEs.

6. The intermediate-duration bursts found in the RHESSI
and Swift databases seem to be represented by different
phenomena.
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APPENDIX

UNCERTAINTIES IN DECIMATED DATA

This Appendix describes the 1σ uncertainties in the bin counts
for the decimated RHESSI data (Curtis et al. 2002; Smith et al.
2002).

A.1. Full Decimation

The calculation of 1σ uncertainty σCdc for the bin counts Cdc
of the fully decimated data and then corrected for this decimation
is as follows. For corrected bin counts Cdc it holds that

Cdc = fd.Cd, (A1)

where fd is the decimation factor (weight), usually equal to 4 or
6 for the RHESSI data, and Cd is the number of counts in a bin
of the decimated signal. If we assume that the counts in a bin
follow Poisson statistics, then

σCdc =
∣∣∣∣∂Cdc

∂Cd

∣∣∣∣ σCd = fd

√
Cd =

√
fd.Cdc, (A2)

where σCd is the dispersion of Cd.

A.2. Partial Decimation

Now consider the situation in which counts in a bin are
only partially decimated, i.e., they consist of the non-decimated
counts C1 and the decimated signal C2,d. This situation may
happen when we sum counts over the energy band [E1;E2],
E1 < E0 < E2, and only the counts below the energy E0 are
decimated. Then, the corrected signal Cdc is equal to

Cdc = C1 + C2,dc = C1 + fd.C2,d, (A3)

where fd is again the decimation factor, and C2,dc is the corrected
part of the signal that was decimated. The 1σ uncertainty σCdc

is then given by

σCdc =
√(

∂C

∂C1

)2

σ 2
C1

+

(
∂C

∂C2,d

)2

σ 2
C2,d

=
√

σ 2
C1

+ f 2
d .σ 2

C2,d
=

√
C1 + f 2

d .C2,d = √
C1 + fd.C2,dc,

(A4)

where σC1 = √
C1 is the dispersion of the non-decimated part

of the bin counts and σC2,d = √
C2,d is the dispersion of the

decimated part of the bin counts.
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Horváth, I., Balázs, L. G., Bagoly, Z., & Veres, P. 2008, A&A, 489, L1
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