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Summary

The cause of elevated level of amyloid b-peptide (Ab42) in com-

mon late-onset sporadic [Alzheimer’s disease (AD)] has not been

established. Here, we show that the membrane lipid peroxidation

product 4-hydroxynonenal (HNE) is associated with amyloid and

neurodegenerative pathologies in AD and that it enhances c-sec-

retase activity and Ab42 production in neurons. The c-secretase

substrate receptor, nicastrin, was found to be modified by HNE in

cultured neurons and in brain specimens from patients with AD,

in which HNE–nicastrin levels were found to be correlated with

increased c-secretase activity and Ab plaque burden. Furthermore,

HNE modification of nicastrin enhanced its binding to the c-secre-

tase substrate, amyloid precursor protein (APP) C99. In addition,

the stimulation of c-secretase activity and Ab42 production by

HNE were blocked by an HNE-scavenging histidine analog in a

3xTgAD mouse model of AD. These findings suggest a specific

molecular mechanism by which oxidative stress increases Ab42

production in AD and identify HNE as a novel therapeutic target

upstream of the c-secretase cleavage of APP.
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Introduction

Alzheimer’s disease (AD), the most common form of dementia, is charac-

terized pathologically by the presence of large numbers of neuritic pla-

ques and neurofibrillary tangles (Markesbery, 1997a). The major protein

component of these plaques is amyloid b-peptide (Ab), a 40- to 42-

amino-acid protein derived from amyloid precursor protein (APP) through

sequential proteolytic cleavages by b-secretase (BACE) and c-secretase

(Hardy & Selkoe, 2002). Molecular genetic analyses have demonstrated

that mutations in presenilin-1 (PS1) cause many cases of early-onset

familial AD, and subsequent studies have established that PS1 is an essen-

tial enzymatic component of c-secretase. Furthermore, mutations in PS1

have shown to increase the production of Ab42 and the Ab42 ⁄ Ab40

ratio, which is believed to cause synaptic dysfunction and neuronal death

in AD (Mattson, 2004). Three additional transmembrane proteins have

been identified as components of the c-secretase complex – nicastrin,

Pen-2, and Aph-1; it has been reported that the ectodomain of nicastrin

functions as a c-secretase substrate receptor (Shah et al., 2005). How-

ever, although mutations in APP and presenilins can result in increased

Ab42 production and AD, the cause of the high accumulation of Ab42

in the most common late-onset sporadic cases of AD has not been

determined.

Ab pathology has been associated with increased cellular oxidative

stress as demonstrated by elevated levels of oxidatively modified proteins

and lipids at sites of Ab deposits in patients with AD, transgenic mouse

models of AD, and cultured neurons exposed to synthetic Ab (McLellan

et al., 2003; Murray et al., 2007; Sultana et al., 2009). Furthermore, it

has been reported that lipid peroxidation precedes Ab deposition in a

mouse model of AD (Pratico et al., 2001), which suggests that oxidative

stress plays a role in Ab production and accumulation. In fact, the mem-

brane lipid peroxidation product 4-hydroxynonenal (HNE) has been

shown to accumulate in the brain during normal aging and to be associ-

ated with AD pathology (Montine et al., 1997; Sayre et al., 1997; Cutler

et al., 2004; Williams et al., 2006). The mechanism whereby lipid peroxi-

dation damages neurons involves the aldehyde HNE, which is liberated

from peroxidized membrane fatty acids. In addition, HNE can covalently

modify proteins and may thereby alter their structures and functions. Fur-

thermore, it has been suggested that HNE accumulates in membranes at

concentrations of 10 lM–5 mM in response to oxidative insults (Uchida,

2003). HNE is known to modify the functions of several membrane-asso-

ciated proteins in neurons including ion-motive ATPases, the neuronal

glucose transporter GLUT3, the astrocyte glutamate transporter GLT-1,

GTP-binding proteins, and tau (Uchida, 2003). Moreover, the major Ab-

degrading protease, neprilysin, is modified by HNE in the AD brain and in

neuronal cells (Wang et al., 2009).

Brain samples of patients with AD homozygous for the apoE e4

allele exhibit greater HNE adduct immunoreactivity than those of

AD patients with other apoE genotypes, which suggests that the

capacities of apoE isoforms to detoxify HNE differ (Montine et al.,
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1997; Pedersen et al., 2000). However, it has not been determined

whether or how HNE affects the amyloidogenic process in AD.

Results

The membrane lipid peroxidation product HNE increases

c-secretase activity and Ab production

To determine whether membrane-associated oxidative stress can affect

c-secretase activity, we treated primary cultured rat cerebral cortical neu-

rons with HNE for 3 h and then measured c-secretase activity. Neurons

exposed to HNE at concentrations of 1–10 lM, which have been previ-

ously reported to occur in AD and in experimental models of AD (Mark

et al., 1997; McGrath et al., 2001), exhibited significantly greater c-sec-

retase activity than vehicle-treated control neurons (Fig. 1A-C). Iron

(Fe2+), which induces membrane lipid peroxidation and HNE production,

was also found to significantly increase c-secretase activity. Further-

more, treatment of neurons with glutathione-ethyl ester (GSH), a cell-

permeant form of reduced glutathione that scavenges HNE (Kruman

et al., 1997; Mark et al., 1997), largely prevented HNE- and Fe2+-

induced increases in c-secretase activity (Fig. 1A-D). Vitamin E, which

inhibits membrane lipid peroxidation but does not directly interact with

HNE, was found to be less effective than GSH at inhibiting the effect of

HNE on c-secretase activity. It was further observed that the c-secretase

inhibitor L-685 458 (GSI) significantly suppressed HNE- and Fe2+-

induced c-secretase activities (Fig. 1A,D), suggesting a possible direct

effect of HNE on c-secretase protein.

In addition, HNE-induced c-secretase activity was confirmed using a

luciferase or green fluorescent protein (GFP) c-secretase reporter assay.

Exposure of SH-SY5Y cells to HNE, Fe2+or Ab42 was found to increase

luciferase activity (Fig. 1E,F) and GFP fluorescence intensity (Fig. S1), and

pretreatment with GSH or GSI blocked these c-secretase-dependent

increases in GFP fluorescence. Because Ab can induce membrane lipid

peroxidation and HNE production in neurons (Mark et al., 1997), the abil-

ity of GSH to block Ab42-induced c-secretase activity suggests that Ab
may amplify the amyloidogenic processing of APP via HNE-mediated posi-

tive feedback activation of c-secretase. No significant changes in cell via-

bility were detected under these experimental conditions (Fig. S1).

To explore the mechanistic basis for the enhancement of c-secretase

activity by HNE, c-secretase complex was immunoprecipitated with anti-

PS1-CTF antibody from SH-SY5Y cell lysates, and the isolated complex

obtained was then incubated with HNE at concentrations that have been

reported in various biological tissues (0.1–5 lM). It was found that incuba-

tion of c-secretase complex with 1 or 2 lM HNE for 30 min significantly

increased the activity of c-secretase by 30% as compared with vehicle-

treated controls, which demonstrated that HNE has a direct effect on

c-secretase complex (Fig. 1G).

The membrane lipid peroxidation product HNE increases

Ab42 ⁄ Ab40 ratio and APP intracellular domain (AICD)

production

We next examined whether the stimulation of c-secretase activity by

HNE increases the Ab42 ⁄ Ab40 ratio. It was found that HNE increased

the production of both Ab40 and Ab42 and the Ab42 ⁄ Ab40 ratio in

SH-SY5Y cells stably overexpressing the Swedish APP mutant and that

this was inhibited by GSH (Fig. 2A,B). It is also possible that oxidative

stress-mediated Ab production was caused by elevated b-secretase

activity, rather than by increased c-secretase activity (Tamagno et al.,

2002; Jo et al., 2010). Therefore, the levels of C99 and C83 in BACE1-

deficient cells were used to quantitate c-secretase activity. As expected,

C99 levels were diminished by HNE treatment in cells overexpressing

(A) (B)

(E) (G)(F)

(C) (D)

Fig 1 The lipid peroxidation product 4-hydroxynonenal (HNE) enhances c-secretase activity. Cultured rat cortical neurons (A and B), hippocampal neurons (C and D), and SH-

SY5Y cells (E and F) were pre-incubated with 500 lM GSH or 2 lM GSI for 1 h, or with vitamin E (50 ng mL)1) for 24 h before being treated with HNE. Cells were collected

after 3 h of incubation with HNE or FeSO4. Lysates of primary cultured cortical (A and B) and hippocampal (C and D) neurons were tested for c-secretase activity. Values are

the mean ± SD. of at least three independent experiments. *P < 0.01, **P < 0.05. (E and F) SH-SY5Y cells were transfected with the constructs of C99-GVP with UAS-

luciferase reporter gene. Cells were collected after 3 h of incubation with HNE or FeSO4. Values are the mean ± SD of at least three independent experiments. *P < 0.01,

**P < 0.05 vs. controls. ##P < 0.05 vs. HNE- or FeSO4-treated samples. (G) Total extracts of 2 · 108 SH-SY5Y cells were immunoprecipitated with anti-PS1 antibody.

Immunoprecipitants were incubated with HNE at 37 �C for 30 min and analyzed for c-secretase activity in vitro. Values are the mean ± SD of at least three independent

experiments. *P < 0.01 vs. non-treated control.
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C99 (Fig. 2C, left panel), and in BACE1 knockout mouse embryonic

fibroblasts (BACE1KO MEF), HNE diminished C83 levels, which is the

only APP-derived c-secretase substrate in the b-secretase-deficient cells

(Fig. 2C, right panel). Furthermore, treatment with a GSI blocked the

ability of HNE to reduce C99 and C83 levels (Fig. 2C).

The 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propane-

sulfonate (CHAPSO)-solubilized c-secretase assay system was employed

to confirm that HNE increases c-secretase activity (Li et al., 2000; Fraering

et al., 2004). CHAPSO-solubilized c-secretase was prepared from HNE

(10 lM)- or vehicle-treated SH-SY5Y cells and then incubated with the

APP-based recombinant substrate C100-Flag. AICD production was

found to be significantly increased by the solubilized c-secretase from

HNE-treated cells (Fig. 2D, lane 3) as compared with control cells (Fig. 2D,

lane 2). In addition, AICD production was found to be completely blocked

in GSI-treated membranes (Fig. 2D, lane 4), and GSI treatment was found

to significantly reduce the production of AICD in the membranes of HNE-

treated cells (Fig. 2D, lane 5). Next, the dodecyl-maltoside-solubilized

c-secretase assay system was employed to confirm that HNE increases

c-secretase activity (Fig. 2E).

HNE modifies nicastrin, one of the four c-secretase proteins

4-Hydroxynonenal (HNE) can covalently modify cysteine, lysine, and

the histidine residues of proteins by Michael addition (Uchida, 2003).

Furthermore, GSH (a tripeptide with a cysteine residue) scavenges HNE

and thereby prevents binding between HNE and cellular proteins. To

determine whether c-secretase components are susceptible to HNE

modification, SH-SY5Y cells were exposed to HNE, and HNE-modified

proteins were immunoprecipitated using a monoclonal antibody against

HNE-modified proteins and then immunoblotted using antibodies against

nicastrin, PS1, Aph-1, or Pen-2. It was found that nicastrin was modified

by HNE but that PS1, Aph-1, and Pen-2 were not (Fig. 3A). Furthermore,

the modification of nicastrin by HNE was markedly lower in cells pretreated

with GSH. Nicastrin was then immunoprecipitated from HNE-treated

cells, and nicastrin-associated proteins were immunoblotted using an

HNE antibody (Fig. 3B). It was found that HNE immunoreactivity was

present in the expected band for nicastrin (�120 kDa) in HNE-treated

cells but not in vehicle-treated cells. In addition, GSH or vitamin E

pretreatment reduced the amount of HNE-modified nicastrin (Fig. 3B).

PS1 was then immunoprecipitated from HNE-treated cells, and it was

found that HNE-modified nicastrin was present as a complex, which

showed that nicastrin remains associated with c-secretase complex when

modified by HNE (Fig. 3C). Furthermore, levels of PS1, nicastrin, Aph-1,

and Pen-2 were found to be unchanged in cells exposed to HNE for 3 h

(Fig. 3A), which suggested that HNE does not increase c-secretase activity

by increasing the levels of c-secretase proteins. To confirm HNE modifica-

tion of nicastrin in vitro, the c-secretase complex was immunoprecipi-

tated with nicastrin antibody from SH-SY5Y cell lysates, and the

(A) (B)

(E)

(C) (D)

Fig. 2 The membrane lipid peroxidation product 4-hydroxynonenal (HNE) increases Ab42 ⁄ Ab40 ratio and AICD production. (A and B) HNE treating increased the amounts of

secreted Ab40, Ab42, and Ab42 ⁄ Ab40. After treating SH-SY5Y cells stably expressing mutant (Swedish) amyloid precursor protein (APP) with HNE for 24 h, media were

harvested and analyzed by sandwich ELISA for secreted Ab40 (dark bars) and Ab42 (light bars). In control cultures, the concentrations of Ab40 and Ab42 were

2067 ± 134 pg mL)1 protein and 848 ± 56 pg mL)1, respectively (mean ± SD; n = 3). *P < 0.01 vs. controls, #P < 0.01 vs. HNE-treated samples. (C) C99 ⁄ SH-SY5Y cells

(left panel) and BACE1KO MEF (right panel) were treated for 3 h with HNE (10 lM) in the presence or absence of the c-secretase inhibitor DAPT (GSI; 1 lM). C99 and C83

levels were then analyzed using anti-APP-CTF antibody. (D and E) C100-Flag was incubated with the CHAPSO (D)- or dodecyl-maltoside (E)-solubilized lysate of SH-SY5Y cells

at 37 �C, and the reaction was terminated at the indicated times by placing reaction tubes on ice. Reaction mixtures were separated in a 16% Tricine gel and subjected to

immunoblotting for AICD using APP-CTF antibody.
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immunoprecipitate obtained was incubated for 30 min with increasing

concentrations of HNE. Immunoblot analysis of the samples demon-

strated that HNE modified nicastrin in a concentration-dependent man-

ner (Fig. 3D). These HNE-treated samples were then examined for

c-secretase activity (Fig. 3E). Incubation with 1 or 2 lM HNE for 30 min

was found to increase the activity of c-secretase significantly as compared

with vehicle-treated controls (Fig. 3E).

It has been revealed that a nicastrin ectodomain binds c-secretase sub-

strates directly, which suggests that nicastrin is a receptor for c-secretase

substrates (Shah et al., 2005). Therefore, we decided to compare the

c-secretase substrate binding activities of non-modified nicastrin and

HNE-modified nicastrin using highly purified proteins (Fig. 3F). Purified

nicastrin ectodomain [Nct(ECD)] (Shah et al., 2005) was pre-incubated

with HNE at 1:0, 1:0.5, or 1:1 (mol:mol) molar ratios and then incubated

with purified C100-Flag, and a mixture of Nct(ECD) and C100-Flag was

then subjected to immunoprecipitation with anti-Flag M2-Agarose.

HNE-modified Nct(ECD) was found to show higher binding affinity with

C100-Flag than unmodified Nct(ECD) after washing five times (Fig. 3F,

(A)

(B)

(E)

(F)

(C)

(D)

Fig. 3 Nicastrin is modified by 4-hydroxynonenal (HNE). (A) Left) SH-SY5Y cells were pre-incubated with GSH (500 lM) for 1 h before being treated with HNE (10 lM) or

vitamin E (50 ng mL)1), both for 24 h, before HNE treatment (3 h). The cell lysates (25 lg per lane) obtained were then immunoblotted using antibodies for the indicated

c-secretase subunits. Right Cell lysates (800 lg) in SDS-IP buffer were immunoprecipitated with an anti-HNE antibody and then subjected to immunoblot analysis using

antibodies against nicastrin (Nct), PS1, Aph-1, or Pen-2 (*the band corresponding to the light chain of anti-HNE antibody). (B) Cell lysates in SDS-IP buffer were

immunoprecipitated with anti-nicastrin antibody, and HNE–nicastrin conjugates were then detected using an antibody against HNE–protein adducts. (C) HNE-modified

nicastrin remained in the c-secretase complex. Cell lysates in CHAPSO-IP buffer were co-immunoprecipitated with anti-PS1 antibody and then immunoblotted using

antibodies against HNE–protein adducts or nicastrin. (D) Nicastrin was modified by HNE in vitro. Total extracts of 2 · 108 SH-SY5Y cells were immunoprecipitated with anti-

nicastrin antibody. The immunopurified nicastrin obtained was incubated with increasing concentrations of HNE for 30 min at 37 �C. After incubation, samples were

separated by SDS-PAGE and blotted, and lipid-protein conjugates and immunopurified nicastrin were detected using antibodies against HNE–protein adducts or nicastrin.

(E) Immunoprecipitants in (D) were incubated with HNE for 30 min at 37 �C and analyzed for c-secretase activity. Values are the mean and ±SD of at least 3 independent

experiments. *P < 0.01, **P < 0.05 vs. the controls. (F) The binding affinity of HNE-modified nicastrin for C100-Flag. To estimate the relative strength of binding between

C100-Flag and non-modified and HNE-modified nicastrins, purified nicastrin ectodomain [Nct(ECD)] was pre-incubated with HNE at molar ratios of 1:0, 1:0.5, or 1:1 and then

incubated with purified C100-Flag. After 5 washes, HNE-modified Nct(ECD) was co-precipitated with C100-Flag. The addition of Flag peptide to this mixture prevented the

precipitation.
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second and third panels), whereas both HNE-modified and unmodified

Nct(ECD) proteins were found to remain bound to C100-Flag after

washing the precipitants twice (Fig. 3F, fourth panel). In the presence of

Flag peptides, Nct(ECD) did not bind to C100-Flag (Fig. 3F).

The levels of c-secretase activity and HNE-modified nicastrin

were enhanced in sporadic AD brains

To determine whether HNE plays a role in amyloidogenesis in AD, levels

of c-secretase proteins, c-secretase activity, and HNE modification

of c-secretase components were measured in rapidly autopsied

(PMI = 2.98 h ± 0.89) specimens from the inferior parietal lobule of

patients with AD and age-matched control subjects. The age, sex, times

postmortem interval, and amyloid plaque counts are shown in Table S1

(Supporting Information). Levels of nicastrin, PS1, Aph-1, and Pen-2

showed no difference in two specimen types (Fig. 4A), but BACE1 levels

were greater in patients with AD (Fig. 4A), and these increases corre-

sponded with increases in b-secretase activity (Fig. 4B), as has been previ-

ously reported (Li et al., 2004). In addition, a positive correlation was

found between BACE1 protein levels and b-secretase enzymatic activities,

and between plaque numbers and b-secretase activities (Fig. S2). Further-

more, despite no change in c-secretase protein levels, c-secretase activity

was significantly greater in samples from patients with AD (Fig. 3C). We

then reexamined c-secretase activities in human brain tissue samples

(A) (B)

(C)

(F)

(H)

(G)

(E)

(D)

Fig. 4 HNE-modified nicastrin is associated with increased c-secretase and BACE1 enzymatic activities in sporadic Alzheimer’s disease (AD) brain tissue samples.

(A) Immunoblots showing relative levels of each protein in c-secretase complex and BACE in samples from the inferior parietal lobule of patients with AD and control subjects.

Loaded protein levels were normalized vs. b-actin. Experiments were performed at least three times. (B and C) BACE1 (B) and c-secretase (C) enzymatic activities were

evaluated using AD enzymatic crude extracts incubated with fluorescent-labeled peptides bearing the b-site or c-site of amyloid precursor protein (APP). BACE1 and

c-secretase enzymatic activities in AD brain extracts were normalized vs. mean values in controls. BACE1 and c-secretase activities were significantly greater in patients with

AD (P < 0.0001). (D) C100-Flag was incubated with CHAPSO-solubilized membrane lysates of inferior parietal lobule specimens from the brains of patients with AD (A1-6)

and neurologically normal subjects (N1-6) at 37 �C; reactions were terminated after 1 h by placing reaction tubes on ice. Reaction mixtures were separated in 16% Tricine gel

and immunoblotted for AICD. (E) Nicastrin was modified by HNE in the AD brain. Proteins in brain tissue samples from patients with AD and control subjects were

immunoprecipitated using antibodies against nicastrin and then immunoblotted. (F) Linear regression analysis of c-secretase activity vs. HNE–nicastrin levels in inferior parietal

lobes from clinically diagnosed and neuropathologically confirmed patients with AD and non-demented control subjects. (G) Linear regression analysis of HNE–nicastrin levels

vs. neuritic Ab plaque numbers in AD and control brains. (H) Linear regression analysis of c-secretase activities vs. numbers of neuritic Ab plaques.
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using the CHAPSO-solubilized assay system. CHAPSO-solubilized c-secre-

tase was prepared from brain tissue samples of patients with AD and neu-

rologically normal control subjects and then incubated with purified

C100-Flag peptide. Considerably more AICD was found in the samples of

patients with AD than in non-demented samples (Fig. 4D). This latter

observation is consistent with the result of the c-secretase assay per-

formed using a fluorogenic peptide substrate (Fig. 4C). In samples from

cerebellum, a brain region with little or no amyloid pathology, no signifi-

cant differences were found between the b-secretase and c-secretase

activities of patients with AD and controls (Fig. S3). To determine

whether levels of HNE–nicastrin adducts were increased in AD, nicastrin

protein was immunoprecipitated from AD and control brain samples and

immunoblotted using a HNE antibody (Fig. 4E). It was found that levels of

HNE-modified nicastrin were greater in samples from patients with AD.

Linear regression analysis revealed a significant positive correlation

between levels of HNE–nicastrin adducts and c-secretase activity in our

samples (Fig. 4F). In addition, significant correlations were found

between HNE–nicastrin levels and Ab plaque numbers (Fig. 4G), and

between c-secretase activities and Ab plaque numbers (Fig. 4H).

Nicastrin is redistributed to an APP-CTF-enriched lipid raft

fraction in response to HNE

Amyloid precursor protein processing is believed to occur in lipid rafts,

regions of membrane rich in cholesterol and sphingomyelin, which con-

tain all components of c-secretase complex (Vetrivel et al., 2004; Grimm

et al., 2005). To gain mechanistic insight into c-secretase activity regula-

tion by lipid peroxidation, we examined the distributions of APP, nicastrin,

PS1, and c-secretase activity in the lipid rafts of HNE-treated SH-SY5Y

cells, and inferior parietal lobule specimens of patients with AD and con-

trols (Fig. 5). Two lipid raft fractions (4 and 5) contained the raft marker

protein flotillin-1. In untreated cells, the amounts of APP and PS1 were

found to be greater in lipid raft fraction 4 than in lipid raft fraction 5, and

this was unchanged in cells treated with HNE (Fig. 5A). In contrast, HNE

was found to induce significant increase in the amount of nicastrin in

fraction 4 and a corresponding decrease in the amount of nicastrin in

fraction 5 (Fig. 5A,D). A similar enrichment of nicastrin in fraction 4 was

observed in samples from patients with AD but not in controls (Fig. 5B,E).

The redistribution of HNE-modified nicastrin to fraction 4 in samples from

AD brains and HNE-treated cells was then examined (Fig. 5C). Lipid raft

fractions 4 and 5 were immunoprecipitated using antibody against HNE-

modified proteins, and precipitated proteins were immunoblotted for nic-

astrin (Fig. 5C). It was found that nicastrin and HNE-modified nicastrin

were elevated in lipid raft fraction 4 of HNE-treated cells and in AD brains

(Fig. 5A-C,E) and that these increases were associated with commensu-

rate increases in c-secretase activity in fraction 4 (Fig. 5F,G). These results

suggest that modification of nicastrin by HNE alters its location within the

membrane in a manner that increases its associations with APP-CTF and

PS1 and that these changes increase Ab production. These results concur

with our previous observation of increased binding affinity between HNE-

modified Nct(ECD) and C100-Flag (Fig. 3F).

Administration of HNE-scavenging Agent Reduces

c-Secretase Activity and Ab42 Production in

a Murine Model of AD

We reported that the histidine analog AG ⁄ 01 is highly effective at scav-

enging HNE and that it significantly protects against focal ischemia-

induced brain damage (Tang et al., 2007). Accordingly, we sought to

determine whether AG ⁄ 01 is effective at preventing HNE-mediated

increases in c-secretase activity, Ab42 production, Ab42 ⁄ Ab40 ratio, and

Nct modification. Indeed, HNE-induced c-secretase activity was found to

be suppressed by AG ⁄ 01 in primary cultured rat cortical neurons (Fig. S4),

and AG ⁄ 01 was also found to inhibit HNE-induced Ab42 production in

SH-SY5Y cells stably overexpressing the Swedish APP mutant (Fig. S4).

We then employed a 3xTg-AD mouse model of AD (Oddo et al., 2003;

Halagappa et al., 2007) to confirm the abilities of AG ⁄ 01 in vivo. Mice

were administered AG ⁄ 01 intraperitoneally every other day, at

20 mg kg)1 for a month. It was found that the levels of brain c-secretase

activity, Ab42 level, HNE-modified Nct, and Ab42 ⁄ Ab40 ratio were signif-

icantly lower in 3xTgAD mice administered AG ⁄ 01 than in vehicle-treated

controls (Fig. 6).

Discussion

The present study provides first evidence that amyloidogenic c-secretase

activity is increased in sporadic AD and suggests a mechanism responsible

for increased c-secretase activity and Ab42 production. We show that the

membrane lipid peroxidation product HNE is associated with amyloid

pathology and neuronal degeneration in AD and that it enhances c-secre-

tase activity and Ab42 production in neurons. Nicastrin, one of the four

c-secretase proteins, is found to be covalently modified by HNE in the cul-

tured neurons and brain tissues of patients with AD, in which HNE–nicas-

trin levels were found to be correlated with increased c-secretase

activities and Ab levels. Furthermore, HNE modification of nicastrin

increases its binding to the C99, a c-secretase substrate. In addition, the

results of our examination of lipid rafts suggest that modification of nicas-

trin by HNE alters its location within the membrane in a manner that

increases its association with substrates of c-secretase and PS1 and that

these associations result in increased Ab production.

We also found that c-secretase activity and Ab production were signifi-

cantly reduced by an HNE-scavenging histidine analog (AG ⁄ 01) in the

3xTgAD mouse model of AD. We recognize that it is possible that GSH

can attenuate the effects of HNE on c-secretase activity and Ab42 pro-

duction by a mechanism in addition to directly binding HNE. Indeed, that

is why we determined whether a different agent AG ⁄ 01 that binds HNE

also inhibits HNE-induced c-secretase activity and Ab42 production. Aside

from binding HNE, the properties of AG ⁄ 01 are dissimilar to those of

GSH, and we therefore conclude that the abilities of both GSH and

AG ⁄ 01 to inhibit HNE-induced c-secretase activity and Ab42 production

are indeed because of ‘scavenging’ of HNE.

Interestingly, recent FRET-based studies show that pathogenic changes

in PS1 ⁄ c-secretase conformation occur in sporadic AD brain, and HNE

can alter PS1 ⁄ c-secretase conformation in vitro toward the pathogenic

state favoring production of Ab42 (L. Wahlster and O. Berezovska, per-

sonal communication). These findings establish correlations between the

HNE modification of nicastrin, c-secretase activity, and amyloid deposi-

tion in AD and, when taken together with the finding that HNE modifies

nicastrin and increases c-secretase activity and Ab production in cultured

neurons, suggest a key role for lipid peroxidation and HNE in the amyloi-

dogenic processing of APP in AD.

Increasing evidence suggests that oxidative stress in neurons precedes

and accompanies the accumulation of Ab in AD (Bonda et al., 2010). Lev-

els of HNE–lysine and HNE–histidine adducts increase progressively in the

brain during normal aging (Cutler et al., 2004), and in association with

Ab deposition and neuronal degeneration in AD (Montine et al., 1997;

Sayre et al., 1997). Furthermore, increased levels of oxidative stress,

including membrane lipid peroxidation, have been detected prior to and

during Ab accumulation in transgenic mouse models of AD (Pratico

et al., 2001; Yao et al., 2004) and in human subjects with AD and mild
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cognitive impairment (Nunomura et al., 2001; Pratico et al., 2002;

Markesbery et al., 2005). In addition, manipulations known to reduce

oxidative stress in brain, such as caloric restriction and antioxidants,

reduce Ab production and accumulation in AD mice (Wang et al., 2005;

Halagappa et al., 2007; Nishida et al., 2009). Our findings suggest a

mechanism whereby oxidative stress increases Ab production. In particu-

lar, HNE was found to increase c-secretase activity and modify nicastrin in

cultured neurons, and this modification was found to be correlated with

increased c-secretase activities and Ab levels in AD brain tissue samples.

Oxidative stress is known to be associated with increased BACE1 expres-

sion and b-secretase activity (Tamagno et al., 2002;; Jo et al., 2010), and

recently, we found that c-secretase regulates oxidative stress (HNE)-

induced BACE1 expression in AD (Tamagno et al., 2008;; Jo et al., 2010).

In addition, we found that ischemic and hypoxic conditions (Arumugam

et al., 2006) and oxidative stress (HNE) increase c-secretase activity, which

further supports the idea that BACE1 induction by oxidative stress is medi-

ated by c-secretase. The increased Ab production observed under the con-

ditions of oxidative stress may therefore result from a combination of

elevated activities of b- and c-secretase, and the generation of Ab42 as the

result of the HNE-induced c-secretase cleavage of APP may be of particular

importance to the pathophysiology of AD because of the neurotoxic

actions of Ab42 (Markesbery, 1997a; Mattson, 2004).

Ab42 can induce membrane lipid peroxidation in neurons, and this can

result in synaptic dysfunction and neuronal death by HNE-mediated

(A) (D)

(F)

(G)

(E)

(C)

(B)

Fig. 5 Nicastrin is redistributed to an amyloid precursor protein (APP)-enriched lipid raft fraction in Alzheimer’s disease (AD) brains and in response to direct exposure of

neural cells to HNE. (A and B) Control and HNE-treated (10 lM for 3 h) SH-SY5Y cells (A), and AD and control inferior parietal lobes (B) were lysed in sodium carbonate buffer

and subjected to flotation sucrose gradient centrifugation to isolate lipid rafts. Equal volumes of fractions were immunoblotted with antibodies against PS1 CTF, nicastrin,

APP, APP-CTF, flotillin-1 (a lipid raft marker), and c-adaptin (a marker of clathrin-coated, non-raft membranes). (C) Lipid raft fractions (fractions 4 and 5) were

immunoprecipitated using an antibody against HNE-modified proteins, and precipitated proteins were immunoblotted using anti-nicastrin antibody. (D and E) The signal

intensities of PS1 CTF and nicastrin were quantified, and fraction 4 ⁄ fraction 5 (F4 ⁄ F5) ratios were calculated for these proteins. The values shown are mean and SD (n = 5;
#P < 0.01, *P < 0.05 vs. controls). (F and G) c-secretase activities in fractions 4 and 5 are reported as F4 ⁄ F5 ratios. Values are the mean and SD (n = 5; *P < 0.05 compared to

control).
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mechanisms (Markesbery, 1997a,b). The findings of the present study

therefore suggest a scenario for the pathogenesis of AD in which

membrane lipid peroxidation increases Ab42 production, which, in turn,

induces further lipid peroxidation resulting in extensive localized Ab
deposition and associated synaptic dysfunction. An understanding of the

molecular processes involved in the production and accumulation of Ab
would accelerate the developments of treatments that prevent neuronal

dysfunction and death. In fact, inhibitors of c-secretase or b-secretase

have been developed that can inhibit Ab production, but c-secretase

cleaves several different protein substrates, including Notch, which

suggests that GSIs are likely to have serious side effects (Pollack & Lewis,

2005). Importantly, we found that treatment of cultured neurons and

3xTgAD mice with the HNE scavenger AG ⁄ 01 reduced c-secretase activity

and Ab42 production. These observations provide direct evidence of a

role for HNE in the amyloidogenic processing of APP in vivo. Our findings

suggest that HNE can be targeted for therapeutic intervention upstream

of Ab42 production.

Experimental procedures

Cell culture and experimental treatments

Human SH-SY5Y, Swedish APP mutant expressing SH-SY5Y (swAPP ⁄
SH-SY5Y; kindly provided by W. Araki), and APP-C99 expressing SH-SY5Y

(C99 ⁄ SH-SY5Y; kindly provided by T. Hartmann) neuroblastoma cells

were cultured in Dulbecco’s minimum Eagle’s medium (DMEM; Gibco

Life Technologies, Carlsbad, CA, USA) supplemented with 10% fetal

bovine serum (FBS; Gibco Life Technologies) and 1% penicillin ⁄ strepto-

mycin (Gibco Life Technologies). Cells were maintained at 37 �C in a

humidified incubator under 95% air and 5% CO2. Primary dissociated cell

cultures of hippocampal and cortical neurons were prepared from

18-day-old rat embryos as previously described (Mattson et al., 1995).

4-Hydroxy-2,3-nonenal (HNE; Cayman Chemical Co., Ann Arbor, MI,

USA) was prepared as a 1000 · stock in ethanol; GSH (Sigma Chemical

Co., St. Louis, MO, USA) as a 50 · stock in water; FeSO4 as a 100 · stock

in water; and vitamin E (a-tocopherol) as a 500 · stock in ethanol. In all

experiments, an equivalent volume of vehicle was added to control

cultures.

Fluorometric detection of b- and c-secretases activities

The activities of b- and c-secretases in primary cultured neurons were

determined using commercially available secretase kits (R & D Systems,

Minneapolis, MN, USA). The fluorometric detection of activities of b- and

c-secretases in human brain tissues was performed as previously

described (Farmery et al., 2003).

Luciferase or GFP-based c-secretase reporter assay

UAS-responsive reporter gene construct MH100 and C99-GVP plasmid

have been described previously (Karlstrom et al., 2002). The cleavage of

C99-GVP by c-secretase releases the transcription factor that activates

luciferase expression, providing a quantitative measurement of c-secre-

tase activity. Transfections for GFP-based c-secretase reporter assays

were carried out in 6-well culture plates as previously described (Jo et al.,

2005).

Membrane preparations and immunoprecipitation

Co-immunoprecipitation assays were performed as described previously

(Farmery et al., 2003), except Fig. 2A,B. Detailed methods are included in

the Data S1.

Preparation of membrane fractions and c-secretase assays

CHAPSO-solubilized c-secretase preparations (Li et al., 2000; Fraering

et al., 2004) and dodecyl-maltoside-solubilized c-secretase preparations

(Wakabayashi et al., 2009) were prepared as previously described.

Detailed methods are included in the Data S1.

HNE modification and in vitro binding assay

Recombinant APP-derived c-secretase substrate C100-Flag was prepared

as described previously (Li et al., 2000), except that it was purified by M2

Flag chromatography (Sigma). Briefly, purified Nct(ECD) was incubated

with HNE at Nct(ECD) ⁄ HNE molar ratios of 1:0, 1:0.5, and 1:1 for 2 h at

37 �C. HNE-treated Nct(ECD) was incubated at room temperature for an

(A) (B)

(D) (F)

(E)

(C)

Fig. 6 The histidine analog histidyl hydrazide (AG ⁄ 01) reduces the Ab42 ⁄ Ab40 ratio, c-secretase activity, and HNE-modified Nct in the brains of AD mice. Seven-month-old

male 3xTg-AD mice were treated with AG ⁄ 01 (20 mg kg)1) or vehicle (PBS) intraperitoneally every other day for 1 month. (A-C) Ab40 and Ab42 levels and the Ab42 ⁄ Ab40

ratio in the hippocampal and neocortical tissues of 3xTg-AD mice treated with PBS or AG ⁄ 01. Values are the mean and SD (six mice per group). **P < 0.01 vs. vehicle-treated

mice. (D) Hippocampal and neocortical tissues were homogenized, and c-secretase activity was measured using fluorogenic substrates. The values shown are the means and

SD (six mice per group). *P < 0.05, **P < 0.01 vs. vehicle-treated mice. (E and F) Hippocampal and neocortical lysates were immunoprecipitated with anti-nicastrin antibody,

and HNE–nicastrin conjugates were detected using an antibody against HNE–protein adducts. Signal intensities of HNE–Nct and total amounts of immunoprecipitated

nicastrin were quantified, and HNE–Nct ⁄ total Nct ratios were calculated. Values (panel F) are the mean and SD. *P < 0.05 vs. vehicle-treated mice.
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additional 1 h with NaBH4 (final concentration 5 mM) and then desalted

using a Microcon filter. HNE-treated Nct(ECD) was incubated with either

C99-Flag or Flag peptide (Sigma) in binding buffer [1% Triton X-100,

1 mM EDTA (pH 7.5), 10 mM Tris–HCl (pH 7.5), 150 mM NaCl] at 4 �C for

6 h. M2 Flag Sepharose was then added for 2 h. Samples were then cen-

trifuged for 3 min and the pellets washed 5 times with binding buffer.

The pellets were incubated for 10 min at 90 �C in a buffer containing

10% DTT and 20% of LDS sample buffer (Invitrogen, Carlsbad, CA, USA)

and centrifuged for 3 min, and supernatants were loaded onto Bis–Tris

4–15% SDS-polyacrylamide gels.

Antibodies

4-Hydroxynonenal-modified proteins were immunoprecipitated using

mouse monoclonal antibodies (clone 1G4 and 1H4) that specifically rec-

ognize proteins covalently modified by HNE (Waeg et al., 1996). Anti-

APP polyclonal antibody (AB5300), and anti-PS1 CTF (MAB5232) and

BACE1 (MAB5308) monoclonal antibodies were purchased from Chem-

icon; rabbit anti-nicastrin (N1660) and anti-APP C-terminal polyclonal

antibodies were purchased from Sigma; monoclonal anti-nicastrin

(612290) and rabbit anti-HNE–Michael adducts antibodies (393207) were

purchased from Calbiochem (San Diego, CA, USA); anti-BACE1 poly-

clonal antibody was purchased from ProSci Inc. (Poway, CA, USA); anti-

Aph-1 antibody H2-D2 and anti-Pen-2 antibodies were kindly provided by

G. Yu and G. Thinakaran, respectively. Antibodies against c-adaptin and

flotillin-1 were from BD Transduction Laboratories (San Jose, CA, USA).

Ab40 and Ab42 quantitative assays

Quantitative ELISA of secreted Ab40 and Ab42 was performed as previ-

ously described with slight modification (Jo et al., 2001).

Animals and treatment with the histidine analog histidyl

hydrazide (AG ⁄ 01)

3xTgAD mice (swAPP, PS1-M146V, tau-P301L) that had been back-

crossed to C57BL ⁄ 6 mice for 8 generations were maintained in our ani-

mal facility under pathogen-free conditions on a 12-h light ⁄ 12-h dark

cycle with continuous access to food and water. Seven-month-old male

mice were treated with AG ⁄ 01 (20 mg kg)1, intraperitoneally) or vehicle

(PBS) every other day for a month. Animals were then euthanized, and

brains were removed for processing. All procedures were approved by

the NIA Animal Care and Use Committee.
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