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ABSTRACT

We propose a novel, efficient and intuitive approach
of estimating mRNA abundances from the whole
transcriptome shotgun sequencing (RNA-Seq)
data. Our method, NEUMA (Normalization by
Expected Uniquely Mappable Area), is based on
effective length normalization using uniquely
mappable areas of gene and mRNA isoform
models. Using the known transcriptome sequence
model such as RefSeq, NEUMA pre-computes the
numbers of all possible gene-wise and isoform-wise
informative reads: the former being sequences
mapped to all mRNA isoforms of a single gene ex-
clusively and the latter uniquely mapped to a single
mRNA isoform. The results are used to estimate the
effective length of genes and transcripts, taking ex-
perimental distributions of fragment size into con-
sideration. Quantitative RT–PCR based on 27
randomly selected genes in two human cell lines
and computer simulation experiments
demonstrated superior accuracy of NEUMA over
other recently developed methods. NEUMA covers
a large proportion of genes and mRNA isoforms and
offers a measure of consistency (‘consistency coef-
ficient’) for each gene between an independently
measured gene-wise level and the sum of the
isoform levels. NEUMA is applicable to both
paired-end and single-end RNA-Seq data. We
propose that NEUMA could make a standard
method in quantifying gene transcript levels from
RNA-Seq data.

INTRODUCTION

The emerging RNA-Seq (whole transcriptome shotgun
sequencing) technology has been replacing microarray-
based expression profiling (1–6). Unlike microarrays,
RNA-Seq is free of background hybridization and
has less systematic bias (7). Its potential for discovery
of novel mRNA isoforms is another major advantage.
Moreover, RNA-Seq exhibits potentially unlimited
dynamic range, more than five orders of magnitude,
while microarrays have limited dynamic range due to
background noise and saturation of signals (3,8).
Estimation of mRNA abundance from aggregated reads

is not a trivial task. There is yet no standard protocol for
measuring mRNA levels from RNA-Seq data. We show
that a substantial improvement can be achieved in quan-
tification accuracy by properly treating the gene length.
Generally, the expected number of reads mapped on a
gene is proportional to both its transcript abundance
and length. Therefore, to obtain the mRNA expression
level, the number of reads must be normalized by the ef-
fective length. Despite its importance, one of the major
challenges in finding the right length is that the length of
a gene is not well defined, since a gene may have two or
more mRNA isoforms of different lengths. Another
problem is that some genes have spuriously fewer unam-
biguously mapped reads, because they contain more re-
petitive sequences than others.
Previously reported approaches include ‘projective nor-

malization,’ in which all reads mapped on a gene is divided
by the total number of exonic base pairs to compute
a gene’s total transcript level (3). This method has been
proven to work only for single isoform genes, by Trapnell
et al. (See its Supplementary Data) (6). Another approach,
the ‘average length’ method that considers the average
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isoform length as the gene length, tends to underestimate
the expression levels (6). Trapnell’s own approach
(Cufflinks) is to treat the abundance-weighted average of
isoform lengths as the gene length. Earlier, Sultan et al.
had developed the concept of virtual length, the number of
all uniquely mappable 27 nt from all the exons and splice
junctions of each gene and used it for normalizing the
number of reads uniquely mapped on the gene (1).
Sultan’s method partly serves as a basis for developing
our method, but our method solves the two major
length problems of ambiguous length definition and re-
petitive sequences effectively.
For a precise definition of length, one needs to first

clarify what exactly is to be quantified. To this end, we
separated gene level quantification and mRNA isoform
level quantification, by utilizing regions common to all
the isoforms of a gene and specific to individual isoform,
respectively. This concept is not new in the RNA quanti-
fication field. In fact, traditional methods such as northern
blotting, RNase protection assay and quantitative
RT–PCR rely on design of probes or primers common
to or specific to a gene’s mRNA isoforms. However,
such distinction has not been made in high-throughput
quantification methods.
In this article, we propose a simple and intuitive

algorithm that deals with the gene length effectively.
According to the experimental and computer simulation
tests, our method achieved accuracy far superior to other
recently developed methods by implementing simple yet
elegant concepts. In the following sections, we describe
the overview of the algorithm and performance tests
based on simulated and real data.

MATERIALS AND METHODS

Expected uniquely mappable area (EUMA)

The central idea of our method lies in precise estimation
of effective length both at gene and isoform levels using
informative reads only. To explain this concept more
clearly, we first define an isoform-specific informative
read as a read mapped only to a specific mRNA
isoform. Likewise, a gene-wise informative read is
defined as a read commonly mapped to all the mRNA
isoforms of the gene but not to any other genes. The
expected uniquely mappable area (EUMA) serves as the
length for a gene’s common area (gEUMA) or for an
isoform-specific area (iEUMA). The mapping is done on
the transcriptome sequence (the whole set of known
mRNA sequences) rather than the genome, to make the
calculations straightforward.
Our algorithm can be described in two steps—the

sample-independent pre-processing step and the sample-
dependent data analysis step as shown in Figure 1.
We take the case of paired-end reads as an illustration
example since it is more complicated due to the presence
of variable fragment size.

Sample-independent pre-processing step. To cover the
entire space of sequence reads, we generate all possible
distinct artificial paired-end reads (APEs) from the given

transcriptome sequence (Figure 1a). The fragment size
is systematically varied up to a certain limit to cover
the experimental condition. After mapping APEs on the
transcriptome sequence with perfect match, APEs are clas-
sified into three groups—gene-wise informative reads,
isoform-specific informative reads, and all others
including multi-reads that are mapped on multiple genes.
The number of distinct informative reads are stored into
matrices gUd,g and iUd,i for gene and isoform level estima-
tion, respectively. This step takes a significant computing
time to deal with all possible APEs for whole transcrip-
tome sequences with a variable fragment size. But this
needs to be done only once for a given transcriptome
model and read length.

Sample-dependent data analysis step. The experimental
paired-end reads are mapped on the transcriptome
sequence using the same criteria. We use the experimental
probability distribution of fragment size Ps(d), as the
weighting function to calculate EUMA as follows
(Figure 1b):

gEUMAi,s ¼
X

d
Ps dð Þ � gUd,g

� �
ð1Þ

iEUMAi,s ¼
X

d
Ps dð Þ � iUd,i

� �
ð2Þ

where gUd,g and iUd,i represent the number of distinct in-
formative APEs of fragment size d for gene g and isoform
i, respectively. Note that EUMA is estimated independ-
ently for each gene and isoform. The sample-dependency
is taken into account via the experimental distribution of
cDNA fragment size

Modification for single end reads is straight-forward.
Since we do not have the variable fragment size, gU and
iU become the number of total distinct informative reads
for genes and isoforms, respectively. Then EUMA is
independent of samples and can be pre-computed.

Calculation of mRNA abundance FVKM and LVKM
by NEUMA

Surprisingly, use of the right reads has not gained as much
attention as finding the right length to normalize them.
Our NEUMA (Normalization by EUMA) algorithm
matches these two in a coherent and effective way. The
key is that only informative RNA-Seq reads are used
to estimate the mRNA abundance. We apply the same
procedure and criteria as APEs to obtain the number of
informative reads (NIRs) among experimental data (gNIR
and iNIR for gene and isoform levels, respectively, in
Figure 1b). Note that NIRs may include reads of an iden-
tical sequence multiple times unlike APEs. These NIRs are
divided by the corresponding normalization factor
EUMA to produce mRNA abundance.

The mRNA expression level is often given by RPKM
(reads per kilobase per million sequenced reads) (3) and
FPKM (fragments per kilobase per million sequenced
reads) (6). We introduce a comparable measure named
FVKM (fragments per virtual kilobase per million
sequenced reads) defined as FVKM=NIR/{EUMA
(in kb) �N}, where N represents the total number of
mRNA-mapped reads in the sample (in million). Note
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Figure 1. Algorithm overview, for paired-end RNA-Seq. (a) Calculation of gU and iU tables. First, all possible APEs are computationally made
from the transcriptome sequence. The length d of an APE is fixed at each round. APEs are mapped back to the transcriptome sequence and classified
into groups representing gene-wise (orange) and isoform-wise (green and violet) informative reads. APEs mapped on multiple genes (grey) are not
used. For each mRNA isoform, APEs specific to the isoform are counted (iUd,i). For each gene, gene-wise informative APEs are counted (gUd,g).
This procedure (from extraction of APEs to calculation of iUd,i and gUd,g) is repeated for every d, ranging from 37 to 250 bp in case of the 36-bp
data. As a result, we obtain matrices gUd,g and iUd,i. (b) Calculation of EUMA and expression levels. Real RNA-Seq reads are mapped to the
transcriptome sequence. For each gene gEUMA is computed by averaging gUd,i over all d, with weight P(d). iEUMA is computed likewise. P(d) is
the probability distribution obtained from all mapped reads from the experiment. Then, for each gene, reads that are mapped to all of the gene’s
mRNA isoforms and not mapped to any other mRNA isoforms are counted (gNIR). Likewise, for each mRNA isoform, reads that are specifically
mapped to the mRNA isoform are counted (iNIR). Finally, gNIR and iNIR are divided by gEUMA and iEUMA, to produce the mRNA abundance
at the gene and isoform levels, respectively.
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that the unit of EUMA is base pairs since it serves as
the effective length. The gene and isoform levels are
reported as gFVKM and iFVKM, respectively, as shown
in Figure 1b.
For convenience in analysis and comparison with

other mRNA abundance estimates, we adopt a new
term, LVKM (log FVKM), representing the log2(x+1)
transformation on the FVKM values. The gLVKM and
iLVKM values are computed from gFVKM and iFVKM,
respectively. In the following comparison studies in the
Results section, we applied the same log2(x+1) trans-
formation to the equivalent units such as RPKM and
FPKM.

Methods

RNA-Seq data generation. cDNA library was prepared
using random primed mRNA fragments using commercial
kits and following manufacturer’s protocols. Sequencing
of the library was carried out with the Illumina genome
analyzer II under the standard protocols. Two human
gastric cancer cell lines, MKN-28 and MKN-45 were
used to generate 36-bp paired-end RNA-Seq data set.
Detailed protocol is available upon request.

Quantitative RT–PCR. Total RNA was isolated from
MKN-28 and MKN-45 cell lines using RNASpin�

(iNtRON Biotechnology, Seongnam, Korea) and each
cDNA was synthesized using oligo-dT primer and
Improm-II reverse mRNA isoformaseTM (Promega,
Madison, WI). Real-time quantitative PCR was per-
formed with Bio-Rad iCycler iQTM5 instrument and
iQTM SYBR� Green supermix (Bio-Rad Laboratories,
Hercules, CA, USA) according to the manufacturer’s in-
structions. The relative expression level of each gene was
normalized by that of GAPDH.

Mapping of paired-end RNA-Seq data

NEUMA. Mapping of the paired end sequences was done
using Bowtie (9) (version 0.12.5) on the hg19 Refseq RNA
sequences downloaded from the UCSC Genome Browser
(http://genome.ucsc.edu) on 11 March 2010. For 36-bp
paired-end data, Bowtie was run with the –v 0 –a
�maxins 250 option, i.e. retrieving all aligned positions,
allowing only perfect matches and cDNA fragment size
from 37 up to 250 bp. For 50-bp data, the same option
was used except for maxins=400 (cDNA fragment size
ranging from 51 to 400 bp). The same range of cDNA
fragment sizes was used for generation of APEs. We
mapped reads to all 32 774 RNA isoforms corresponding
to 21 660 genes, then we used the abundance estimates of
only 18 909 coding genes (29 754 mRNA isoforms), con-
sidering the poly-A selection step in the RNA-Seq
procedure.

ERANGE. ERANGE 3.2 was run on top of Cistematic
3.0 and Bowtie 0.12.5, on the human genome sequence
(hg19). Annotation files (gene_info.db and knownGene
.txt) were matched to the versions of the software and
the genome. Default options were used in mapping (-v 2
-k 11 -m 10 -t –best) and other steps for analyzing
RNA-Seq data. Repeat mask option was used with the

rmsk.txt file (hg19) obtained from the UCSC Genome
Browser.

TOPHAT and cufflinks. TOPHAT version 1.0.14 and
Cufflinks version 0.8.3 were used on hg19 refGenes data.
TOPHAT was run with the option of -m 2 -g 10. For
paired-end runs, the inner mate distances (–r) were set to
60 for the MKN-28 and MKN-45 data (36-bp), and to 160
for the 50-bp simulated data. The -closure-search option
was used for paired-end runs. The mapping results from
TOPHAT were fed to Cufflinks. For TOPHAT estimation
of expression levels, we used TOPHAT version 1.0.11, the
most recent version that produces abundance estimates.
Bowtie 0.12.5 was used for all TOPHAT runs.

Gene selection for quantitative RT–PCR. The focus of the
selection scheme was (i) to randomly select genes that can
representatively cover all range of transcript levels, (ii) to
include both a set of genes whose estimates were different
among methods and a set whose abundance estimates
were consistent among the methods and (iii) to have the
same set of genes for MKN-28 and MKN-45.

For each of the two cell lines, reciprocal pair-wise linear
regressions were performed to compute residual z-scores
between NEUMA, TOPHAT and ERANGE-based ex-
pression values. Then, all genes were ranked by residual
z-scores from the NEUMA-TOPHAT regressions and
by z-scores from the NEUMA-ERANGE regressions.
The union was taken for the top 600 genes from the two
rankings to report a ‘variable’ set in each cell line.
The variable set represents genes whose transcript level
estimation was widely inconsistent among the three
methods. Likewise, the union of bottom 1500 genes
was taken to make an ‘invariable’ set for each cell line.
The invariable set represents genes whose transcript
level estimation was most consistent among the three
methods.

Next, all genes were divided into eight groups, accord-
ing to the MKN-28 and MKN-45 transcript levels
estimated by NEUMA. In each group, a final variable
gene set was computed by intersecting MKN-28- and
MKN-45 variable sets, and a final invariable set was
obtained by intersecting MKN-28- and MKN-45- invari-
able sets. Two or three variable genes and one invariable
gene were randomly chosen for each group.

Simulation of RNA-Seq. To assess the accuracy of the
NEUMA estimates, we simulated RNA-Seq experiments
using the Flux Simulator (http://flux.sammeth.net/simula
tor.html) (build 20100702). Flux Simulator provides an
in silico production of the experimental pipelines

Table 1. NEUMA result for the six isoforms of the RPS24 gene

RPS24 mRNA isoform iFVKM iEUMA (bp)

NM_001142283 0 63.56
NM_001026 815.545 64.50
NM_001142285 0.235 2282.69
NM_001142284 0 59.57
NM_001142282 152.249 63.46
NM_033022 50.749 63.46
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for RNA-Seq, adopting a set of parameters. We set
NB_MOLECULE (total number of RNA molecules in
the sample) to be 50 millions, reverse-transcribed cDNA
molecule range from 30 to 1000 bp and read length of 36
and 50 bp. Other parameters were set to mimic true ex-
perimental conditions. We simulated sequencing several
times to produce technical replicates from the same
‘sample’, i.e. random assignment of mRNA abundances,
and obtained about 114 million reads in total for
four samples. Flux Simulator produced RNA-Seq reads
from the UCSC hg19 whole genome sequence and
mRNA isoform annotation (UCSC, refGene). Prediction
accuracy was computed on genes and mRNA isoforms
that exist in both genomic (refGene) and transcriptomic
(RefSeq) references.

RESULTS

Analysis of human RNA-Seq data with the RefSeq
mRNA models

To assess the performance of our NEUMA method, we
produced 36-bp paired-end RNA-Seq data for two human
gastric cancer cell lines, MKN-28 and MKN-45, whose
total numbers of reads were 7.56 and 1.54 millions,
respectively. These two data sets represent cases with rela-
tively high and low mapping percentage (61.3 and 12.3%,
respectively on total RefSeq RNAs).

For MKN-28, out of the 1.86 million reads mapped on
RefSeq mRNAs with perfect match, 1.68 and 1.17 million
reads were gene-wise and isoform-wise informative (i.e.
total gNIR and iNIR in Figure 1b), respectively. For
MKN-45, we had 0.19 million mapped reads with the
total gNIR and iNIR to be 0.17 and 0.12 millions, respect-
ively. Note that these numbers are not mutually exclusive
since genes with a single isoform are counted in both cases.

Not all genes or isoforms are measurable because the
number of distinct informative reads is not sufficient for
reliable estimation of mRNA abundance. We define
‘measurable’ genes or isoforms as those whose EUMA
value is above a certain cutoff. This implies that these
mRNA sequences have significant portion of informative
regions to estimate the expression level. It is important to
distinguish unmeasurable genes and isoforms from unex-
pressed ones. ‘Unmeasurable’ means that our method
cannot estimate the expression reliably, whereas ‘unex-
pressed’ means that no informative reads are observed
experimentally even though the gene has enough
mappable area. In the final output, measurable but unex-
pressed genes are reported as zero whereas unmeasurable
genes are removed. Total numbers of measurable genes
and mRNA isoforms were 18 680 and 26515 in the
MKN-28 data, respectively. The corresponding numbers
for the MKN-45 cell line data were 18 666 and 26 454,
almost independent of sample size.

Comparison of various methods

Performance of the NEUMA method was evaluated in
two ways by analyzing real paired-end RNA-Seq data
for two gastric cancer cell lines and by using computation-
ally generated data sets. We compared the prediction

accuracy of NEUMA with three other publicly available,
recently developed, and widely used programs—
ERANGE (3), TOPHAT (10) and Cufflinks (6). These
programs have been used commonly to obtain mRNA
expression levels (RPKM and FPKM), in combination
with their other major functionalities such as detection
of novel genes or isoforms. We have restricted the com-
parison to quantification accuracy only.

Quantitative RT–PCR. In an effort to gain a comparative
perspective on accuracy among different programs, the
gene’s total transcript level estimated from the RNA-Seq
data was compared with quantitative RT–PCR results.
We selected 27 genes for quantitative RT–PCR experi-
ments in such a way that a wide range of mRNA expres-
sion levels could be covered (see the Method section for
more details). The results of quantitative RT–PCR meas-
urements were reliable with the mean standard error of
0.078. Details of quantitative RT–PCR experiment are
given in Supplementary Table 1.
Figures 2 and 3 show the comparison between quanti-

tative RT–PCR and prediction results from RNA-Seq
data for two cell lines. The squared correlation coefficient
r2 values of the NEUMA method were over 0.90 for
both cell lines, whereas those of other methods ranged
from 0.62 to 0.79. The scatter plot shows that the agree-
ment is uniformly superior for NEUMA method regard-
less of the expression level. Comparison between the two
cell lines shows that NEUMA’s performance is sound
even at low sequencing coverage, being almost independ-
ent of the number of sequence reads.

Abundant genes. As an indirect measure of prediction
accuracy, we selected top 30 highly expressed genes from
MKN-28 data and examined how many of those were
well-known abundant genes such as GAPDH, ACTB
and ribosomal genes. NEUMA’s top 30 genes included
18 such cases, whereas other methods predicted signifi-
cantly fewer abundant genes (10, 7, 4 for Cufflinks,
TOPHAT and ERANGE, respectively). The results are
shown in Supplementary Table 2.

Simulation. Computer simulation is frequently used to
estimate prediction accuracy. Using the Flux Simulator
program, we generated 50-bp paired-end RNA-Seq data
(see the ‘Methods’ section for more details). The data
set consists of five technical replicates of different sizes.
The numbers of generated mate pairs in the sample
ranged from 1 to 8 millions. Each replicate data set was
analyzed by using the NEUMA, ERANGE, TOPHAT,
and Cufflinks pipelines.
The resulting mRNA abundances were compared with

the true values used in simulation. We used the
log-transformed version, i.e. log2(x+1), to calculate the
prediction accuracy (Squared Pearson correlation coeffi-
cient between the true and estimated abundances, r2),
where x indicates the abundance equivalent for each
method (FVKM for NEUMA, RPKM for ERANGE
and TOPHAT, and FPKM for Cufflinks). The results at
gene and isoform levels are shown in Figure 4a and b,
respectively. Our NEUMA method demonstrated a
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Figure 3. Scatter plots of gene’s total transcript level measured by RT–qPCR (log2-transformed) versus estimation from RNA-Seq [log2(x +1)-
transformed RPKM, FPKM and FVKM] for human gastric cancer cell line MKN-45. Four different RNA-Seq processing methods were compared:
(a) NEUMA (FVKM), (b) Cufflinks (FPKM), (c) TOPHAT (RPKM) and (d) ERANGE (RPKM).

Figure 2. Scatter plots of gene’s total transcript level measured by RT–qPCR (log2-transformed) versus estimation from RNA-Seq [log2(x+1)-
transformed RPKM, FPKM and FVKM] for human gastric cancer cell line MKN-28. Four different RNA-Seq processing methods were compared:
(a) NEUMA (FVKM), (b) Cufflinks (FPKM), (c) TOPHAT (RPKM) and (d) ERANGE (RPKM).
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significantly better performance than the other methods
in all range of sample size. The gene-level estimation
achieved prediction accuracy 0.82 with NEUMA,
compared to 0.79 for the second (Cufflinks) for sample
size 7 millions. NEUMA performs pretty well in the
isoform-level estimation as well with r2=0.77, whereas
other methods showed substantial decrease (0.66 for
Cufflinks and 0.31 for TOPHAT for the same sample
size). Note that the agreement generally increases with
sample size although saturation was observed.

We also tested the single-end case with a set of 36-bp
RNA-Seq data. Again, NEUMA outperformed other
methods significantly (Figure 4c and d), achieving the
levels of accuracy similar to that in the paired-end case.

Quantitative RT–PCR and computer simulation tests
provide complementary assessments, since the former
provides a real sample validation for a limited number
of genes, whereas the latter offers comparison with true
theoretical mRNA abundance for as many genes and
mRNA isoforms as in the known transcriptome model.
Our NEUMA method showed a dramatic improvement
over the other methods in both aspects.

Consistency coefficient between gene-wise and
isoform-wise estimates

For genes with multiple isoforms, mRNA abundance can
be calculated for the gene and all of its isoforms if their

corresponding EUMA values are above the cutoff value.
We call these genes completely measurable. For these
genes, we can compare the mRNA abundance estimated
at the gene level with the sum of its entire isoforms’
expression estimates (i.e. gFVKM versus

P
iFVKM).

These two numbers are expected to be the same if the
catalog of mRNA isoform is complete.
We propose the ‘consistency coefficient’ that could

measure the agreement between mRNA abundance
estimated at the gene level and the sum of its isoform
abundances. The index is defined as the Pearson correl-
ation coefficient within the completely measurable genes
as follows:

ConsistencyCoefficient

¼ Corr gLVKM, log2
X

iFVKM+1
� �n o ð3Þ

NEUMA uses disjoint areas and reads to compute
gene’s total transcript level and isoform-specific expression
levels. In an ideal situation, i.e. with sufficiently large
number of uniformly distributed sequenced reads and
comprehensive knowledge of isoform catalog, the consist-
ency coefficient would be close to 1. Large deviation could
indicate that any of these conditions were not satisfied or
that the experiment might be flawed. Thus, we expect that
the consistency coefficient could serve as a measure of data
quality.

Figure 4. Comparison of four methods in prediction accuracy as a function of total number of reads. Prediction accuracy was defined as the Pearson
correlation coefficient between true and estimated mRNA abundances. The x-axis denotes the total number of reads generated in each simulation for
technical replicates. (a) Gene-level estimation for 50-bp paired-end RNA-Seq data. (b) Isoform-level estimation for 50-bp paired-end RNA-Seq data.
(c and d) Gene and isoform-level estimation for 36-bp single-end RNA-Seq data. ERANGE does not report mRNA isoform abundances and was
excluded from isoform analyses.
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To test the hypothesis, we used computer simulation to
examine whether the consistency coefficient and prediction
accuracy are proportional. Based on in silico 36-bp
and 50-bp paired-end RNA-Seq data sets with technical
replicates of different sizes, the consistency coefficient
showed strong correlation (r2=0.895) with the prediction
accuracy, regardless of the read length (Figure 5). It is
also noteworthy that NEUMA’s accuracy improved
considerably with longer reads. This confirms that the
consistency coefficient well reflects the data quality and
prediction accuracy.
In the MKN-28 and MKN-45 samples, we obtained

4316 and 4271 completely measurable genes, respectively.
The consistency indices were 0.90 and 0.64 for MKN-28
and MKN-45, respectively. As described earlier, the
MKN-45 data had a lower percentage of mapped reads
than MKN-28. These two facts suggest a relatively poor
quality of the MKN-45 data. However, it should be
pointed out that NEUMA’s performance was not signifi-
cantly affected according to the quantitative RT–PCR
results.

Sensitivity of EUMA cutoff

Throughout this study, we have used the cutoff value
of 50 bp for both gEUMA and iEUMA. The numbers
of measurable genes and isoforms at 50-bp cutoff were
18 680 (98.8%) and 26 515 (89.1%), respectively in
MKN-28. These numbers are close to the maximum
(at cutoff 0bp), which are 18763 (99.2%) and 27 952
(93.9%), respectively, as shown in Figure 6. The
coverage of isoforms decreases rapidly in the range of
50- to 200-bp cutoff in both MKN-28 and MKN-45.
To demonstrate the sensitivity of NEUMA at the

default cutoff, we offer the case of RPS24 gene in
MKN-28 as an example. The RPS24 gene has six
isoforms with subtle differences as shown in Figure 7.
Five of its six isoforms, including the top three most
highly expressed ones, had marginal iEUMA values at
the default cutoff (Table 1). Nevertheless, the sum of
iFVKM values (1018.78) was extremely close to the

independently measured gFVKM value (1010.172) based
on gEUMA=426.68. Since EUMA is an expected
number of positions per mate distance, the total number
of possible mapping pairs for all distances is much larger
than 50 in the paired-end case.

Figure 5. Plot of prediction accuracy versus consistency coefficient for technical replicates of four simulated 36- and 50-bp paired-end RNA-Seq
samples. Each data point represents different number of sequence reads generated (labeled in million).

30

40

50

60

70

80

90

100

0 200 400 600 800 1,000

P
e

rc
e

n
t o

f m
e

a
su

ra
b

le
 g

e
n

e
s 

o
r m

R
N

A
s

EUMA cut-off

MKN-28

MKN-45

genes

mRNAs

Figure 6. The percent of measurable genes and isoforms as a function
of EUMA cutoff in two MKN cell lines.

Figure 7. Isoform structure of RPS24 gene. All six mRNA isoforms
have unique regions.
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The comprehensive scanning of the mRNA models
for generation of APEs allows high gene and isoform
coverage. The total numbers of gene-wise and isoform-
wise informative reads were over 10 and 8.7 billions, re-
spectively using the RefSeq transcriptome sequence. For
both MKN-28 and MKN-45 data sets, genes and mRNA
isoforms contained on average 87 and 51% of the mapped
reads as informative reads, respectively.

DISCUSSION

More details of NEUMA algorithm

Adjustment of mRNA abundance at the gene level. Some
unmeasurable genes (gEUMA below cutoff) may still be
quantified by adopting the sum of all of its measurable
isoforms as the gene-level abundance. Other genes may
be underestimated due to unknown isoforms, in which
case the gene-level estimate can be corrected for the sum
of all known isoform estimates. Accordingly, NEUMA
takes the representative gene-level mRNA abundance as
the larger one between the original gene-level estimate
(gFVKM) and the sum of all of its measurable iFVKM
values. The NEUMA program reports final gLVKM
values based on the adjusted estimates. In the MKN-28
and MKN-45 samples, 1560 and 848 genes are affected by
this adjustment, respectively.

All the gLVKM values used in the study are after the
final adjustment of gene-level estimates. The consistency
coefficient and the RPS24 gene analysis were based on the
original estimates.

Distribution of read mate distance, P(d). As shown in
Supplementary Figure 1, the cDNA fragment length dis-
tribution is usually sharp and rarely goes beyond a certain
point. Thus, one can identify a safe range of mate distance
d for computation of EUMA. We used cDNA fragment
length 250 and 400 bp as distance upper-bounds for
36 and 50 bp cases, respectively.

Computation time. Computation of the gU and iU tables
is the time limiting step, but this needs to be done only
once for a given transcriptome model and read length.
Given these pre-computed tables, calculating the mRNA
abundances (gLVKM and iLVKM) is a fast process. This
step took about 10min on a Linux platform with
2.66GHz CPU and 16Gb memory for a sample data of
�2million reads. The preprocessing step for 21 660 hg19
RefSeq genes takes about an hour on a cluster of 559
2.66GHz cores, involving extensive memory swaps.

Availability. The program source code (written in Perl
scripts) is available at http://neuma.kobic.re.kr. Pre-
computed tables iU and gU for read lengths of 36 and
50 bp for human are also available at the website, along
with the raw sequence data for the two human cell lines
and simulated RNA-Seq reads.

Transcriptome mapping versus genome mapping

The use of the transcriptome sequence makes calculation
fast and straightforward, though the concepts of NEUMA

can be applied on the genome sequence as well. Artificial
read generation and mapping is done on the same refer-
ence for computation of EUMA. Reads spanning exons
and splice junctions can be handled equally with no com-
plications. Mate pair distances are obtained without con-
cerning introns. Despite its disadvantage of lacking the
ability to identify and incorporate unknown transcripts,
we suggest that using the transcriptome sequence is prac-
tically useful for quantification purpose.

Use of multi-reads

We did not use reads mapped on multiple genes (multi-
reads) for quantification. A commonly used strategy of
dealing with multi-reads is to distribute them in propor-
tion to the abundance of unique reads, either directly or
iteratively. Likewise, we could distribute multi-reads in
proportion to the gFVKM values. However, we propose
that this is unnecessary and even rather harmful. In
theory, the multi-reads distributed in proportion to
gFVKM should be scattered around the gFVKM value.
In other words, the accuracy of a normalized multi-read
count is limited by the accuracy of the unique-read based
estimate. Any difference between the gFVKM and a
normalized multi-read count comes from noise and there-
fore incorporation of this difference does not improve the
estimation but only worsens it.

Flux simulator

The Flux Simulator program uses a genome sequence and
a gene annotation file (UCSC refGene) identical to the
reference used by the other programs. Thus, the prediction
accuracy computed by Cufflinks and TOPHAT are based
on the assumption that they were run given the perfect
knowledge of all isoforms. However, NEUMA uses the
transcript sequence library, which is slightly different
from the transcriptome source that Flux Simulator used,
in isoform annotation and mRNA nucleotide sequence.
Note that this setting is disadvantageous to NEUMA.
Nevertheless, NEUMA shows a superior performance to
the other methods.
For comparison between prediction accuracy and con-

sistency coefficient, we ran NEUMA on filtered data that
contains only reads sourced from the mRNA accessions
present in the RefSeq library, i.e. assuming that we have
a perfect knowledge of all isoforms.

Related methods

In consistent with the rising demand for a reliable quan-
tification system based on RNA-Seq data, many research
groups have been working on this problem. For example,
Jiang and Wong (11) modeled reads falling on multiple
isoforms as a Poisson variable and used estimated expres-
sion parameters using a Bayesian approach. Howard
and Heber (12) and Bohnert et al. (13) explore the
position bias of reads on a transcript. Recently,
Srivastava and Chen (14) estimated position-wise param-
eters in a two-parameter generalized Poisson model. Our
system is free of any probabilistic model and assumes
uniform sampling of reads in an RNA-Seq experiment.
Combination of these approaches with the concepts of
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NEUMA may lead to a more reliable abundance
estimation.

More challenges

As pointed out in Trapnell et al. (6), measuring mRNA
isoform abundance can benefit from knowledge of correct
isoform structures. This is true as well for traditional
methods such as Northern blotting and RT–qPCR. Like
any other methods, the NEUMA method is not free of
errors coming from ignorance of some isoforms.
Therefore, it is crucial to identify all existing isoforms in
the long run, for accurate quantification of a transcrip-
tome. There have been active efforts towards this direction
recently (6,15). Advancement in quantification scheme
and detection of novel isoforms are two important and
complementary aspects of high-throughput global expres-
sion profiling.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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quantification with RNA-Seq data. BMC Bioinformatics, 10, P5.

14. Srivastava,S. and Chen,L. (2010) A two-parameter generalized
Poisson model to improve the analysis of RNA-seq data.
Nucleic Acids Res., 38, e170.

15. Richard,H., Schulz,M.H., Sultan,M., Nurnberger,A., Schrinner,S.,
Balzereit,D., Dagand,E., Rasche,A., Lehrach,H., Vingron,M.
et al. (2010) Prediction of alternative isoforms from exon
expression levels in RNA-Seq experiments. Nucleic Acids Res., 38,
e112.

e9 Nucleic Acids Research, 2011, Vol. 39, No. 2 PAGE 10 OF 10

 at E
w

ha W
om

ans U
niv. L

ibrary on July 3, 2016
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://nar.oxfordjournals.org/

