
Emergent geometry from quantized spacetime

Hyun Seok Yang1,2,* and M. Sivakumar3,†

1School of Physics, Korea Institute for Advanced Study, Seoul 130-012, Korea
2Institute for the Early Universe, Ewha Womans University, Seoul 120-750, Korea

3School of Physics, University of Hyderabad, Hyderabad 500046, India
(Received 24 November 2009; revised manuscript received 3 June 2010; published 4 August 2010)

We examine the picture of emergent geometry arising from a mass-deformed matrix model. Because of

the mass deformation, a vacuum geometry turns out to be a constant curvature spacetime such as

d-dimensional sphere and (anti-)de Sitter spaces. We show that the mass-deformed matrix model giving

rise to the constant curvature spacetime can be derived from the d-dimensional Snyder algebra. The

emergent geometry beautifully confirms all the rationale inferred from the algebraic point of view that the

d-dimensional Snyder algebra is equivalent to the Lorentz algebra in ðdþ 1Þ-dimensional flat spacetime.

For example, a vacuum geometry of the mass-deformed matrix model is completely described by a

G-invariant metric of coset manifolds G=H defined by the Snyder algebra. We also discuss a nonlinear

deformation of the Snyder algebra.
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I. INTRODUCTION

The wave-particle duality in quantum mechanics is a
remarkable consequence of particle dynamics in quantum
phase space defined by ½xi; pk� ¼ i@�i

k. In a classical world

with @ ¼ 0, the wave and the particle are completely
independent with exclusive properties. But, when @ � 0,
the particle phase space becomes noncommutative (NC).
As a result, the particle dynamics in the NC phase space
reveals a novel duality such that the wave and the particle
are no longer exclusive entities but complementary aspects
of the same physical reality. That is, they are unified into a
single entity with a dual nature in the quantum world.

A NC spacetime arises from endowing spacetime with a
symplectic structure B ¼ 1

2Babdy
a ^ dyb and then quantiz-

ing the spacetime with its Poisson structure �ab � ðB�1Þab,
treating it as a quantum phase space described by

½ya; yb�? ¼ i�ab: (1.1)

Just as the wave-particle duality emerges in the NC phase
space (quantum mechanics) which has never been ob-
served in classical physics, the NC spacetime (1.1) may
also introduce a new kind of duality between physical or
mathematical entities. So an interesting question is what
kind of duality arises from the quantization of spacetime
triggered by the �-deformation (1.1). We will see that it is
the gauge/gravity duality as recently demonstrated in
[1–4].

The gauge/gravity duality in NC spacetime is realized in
the context of emergent gravity where spacetime geometry
emerges as a collective phenomenon of underlying micro-
scopic degrees of freedom defined by NC gauge fields.
Remarkably the emergent gravity reveals a noble picture

about the origin of spacetime, dubbed as emergent space-
time, which is radically different from any previous physi-
cal theory all of which describe what happens in a given
spacetime. The emergent gravity has been addressed, ac-
cording to their methodology, from two facets of quantum
field theories: NC field theories [2–8] and large N matrix
models [9–14]. But it turns out [3,4] that the two ap-
proaches are intrinsically related to each other. In particu-
lar, the AdS/CFT correspondence [12] has been known as a
typical example of the emergent gravity based on a large N
matrix model (or gauge theory) which has been extensively
studied for a decade. Furthermore, the emergent gravity
has also been suggested to resolve the cosmological con-
stant problem and dark energy [15,16]. Nevertheless, there
has been little understanding about why and when the
gravity in higher dimensions can emerge from some kind
of lower dimensional quantum field theory and what the
first (dynamical) principle is for the emergent spacetime.
The issues for the emergent gravity seem to be more

accessible from the approach based on NC geometry. See a
recent review, Ref. [17], for various issues on emergent
gravity. In usual commutative spacetime, a gauge theory
such as the electromagnetism is very different from the
gravity described by general relativity since the former is
based on an internal symmetry while the latter is formu-
lated with the spacetime symmetry. A remarkable property
in the NC spacetime (1.1) is that the internal symmetry in
gauge theory turns into the spacetime symmetry. This can
be seen from the fact that translations in NC directions are

an inner automorphism of NC ?-algebra A�, i.e., e
ik�y ?

f̂ðyÞ ? e�ik�y ¼ f̂ðyþ � � kÞ for any f̂ðyÞ 2 A� or, in its
infinitesimal form,

� i½Baby
b; f̂ðyÞ�? ¼ @af̂ðyÞ: (1.2)

To be specific, let us consider a Uð1Þ bundle supported
on a symplectic manifold ðM;BÞ. Because the symplectic
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structure B: TM ! T�M is nondegenerate at any point
y 2 M, we can invert this map to obtain the map � �
B�1: T�M ! TM. This cosymplectic structure � 2V

2 TM is called the Poisson structure of M which defines
a Poisson bracket f�; �g�: C1ðMÞ � C1ðMÞ ! C1ðMÞ. The
NC spacetime (1.1) is then obtained by quantizing the
symplectic manifold ðM;BÞwith the Poisson structure � ¼
B�1. An important point is that the gauge symmetry acting
on Uð1Þ gauge fields as A ! Aþ d� is a diffeomorphism
symmetry generated by a vector field X satisfying LXB ¼
0, which is known as the symplectomorphism in symplec-
tic geometry. In other words, Uð1Þ gauge transformations
are generated by the Hamiltonian vector field X� satisfying

�X�
Bþ d� ¼ 0 and the action of X� on a smooth function

fðyÞ 2 C1ðMÞ is given by

�fðyÞ � X�ðfÞðyÞ ¼ ff;�g�ðyÞ: (1.3)

Therefore, the gauge symmetry (1.3) on the symplectic
manifold ðM;BÞ should be regarded as a spacetime sym-
metry rather than an internal symmetry [2].

The above reasoning implies that Uð1Þ gauge fields in
NC spacetime can be realized as a spacetime geometry like
as the gravity in general relativity [2–4]. In general rela-
tivity the equivalence principle beautifully explains why
the gravitational force has to manifest itself as a spacetime
geometry. If the gauge/gravity duality is realized in NC
spacetime, a natural question is what is the corresponding
equivalence principle for the geometrization of the elec-
tromagnetic force. Because the geometrical framework of
NC spacetime is apparently based on the symplectic ge-
ometry in sharp contrast to the Riemannian geometry, the
question should be addressed in the context of the sym-
plectic geometry rather than the Riemannian geometry.
Remarkably it turns out that NC spacetime admits a novel
form of the equivalence principle such that there ‘‘always’’
exists a coordinate transformation to locally eliminate the
electromagnetic force [4]. This geometrization of the elec-
tromagnetism is inherent as an intrinsic property in the
symplectic geometry known as the Darboux theorem or the
Moser lemma [18]. As a consequence, the electromagne-
tism in NC spacetime can be realized as a geometrical
property of spacetime like gravity.

This noble form of the equivalence principle can be
understood as follows [4]. The presence of fluctuating
gauge fields on a symplectic manifold ðM;BÞ appears as
a deformation of the symplectic manifold ðM;BÞ such that
the resulting symplectic structure is given by !1 � Bþ F
where F ¼ dA. Because the original symplectic
structure !0 ¼ B is a nondegenerate and closed two-
form, the associated map B[: TM ! T�M is a vector
bundle isomorphism. Therefore, there exists a natural pair-
ing �ðTMÞ ! �ðT�MÞ: X � B[ðXÞ ¼ �XB between
C1-sections of tangent and cotangent bundles. Because
the Uð1Þ gauge field A on M only appears as the combi-
nation !1 ¼ Bþ dA, one may identify the connection A
with an element in �ðT�MÞ such that

�XBþ A ¼ 0: (1.4)

The identification (1.4) is defined up to symplectomor-
phisms or equivalently Uð1Þ gauge transformations, that
is, X� X þ X� , A� Aþ d� where �X�

B ¼ d�. Using

the Cartan’s magic formula LX ¼ d�X þ �Xd and so
½LX; d� ¼ 0, it is easy to see that !1 ¼ Bþ dA ¼ B�
LXB and d!1 ¼ 0 because of dB ¼ 0. This means that a
smooth family !t ¼ !0 þ tð!1 �!0Þ of symplectic
structures joining !0 to !1 is all deformation-equivalent
and there exists a map �: M�R ! M as a flow—a one-
parameter family of diffeomorphisms—generated by the
vector field Xt satisfying �Xt

!t þ A ¼ 0 such that

��
t ð!tÞ ¼ !0 for all 0 � t � 1.
This can be explicitly checked by considering a local

Darboux chart ðU; y1; � � � ; y2nÞ centered at p 2 M and
valid on the neighborhood U such that !0jU ¼ 1

2Babdy
a ^

dyb where Bab is a constant symplectic matrix of rank 2n.
Now consider a flow�t: U� ½0; 1� ! M generated by the
vector field Xt satisfying (1.4). Under the action of�� with
an infinitesimal �, one finds that a point p 2 U whose
coordinate is ya is mapped to ��ðyÞ � xaðyÞ ¼
ya þ �XaðyÞ. Using the inverse map ��1

� : xa � yaðxÞ ¼
xa � �XaðxÞ, the symplectic structure !0jU ¼
1
2BabðyÞdya ^ dyb can be expressed as

ð��1
� Þ�ð!0jyÞ ¼ 1

2Babðx� �XÞdðxa � �XaÞ ^ dðxb � �XbÞ
	 1

2½Bab � �X�ð@�Bab þ @bB�a þ @aBb�Þ þ �ð@aðBb�X
�Þ � @bðBa�X

�ÞÞ�dxa ^ dxb � Bþ �F; (1.5)

where AaðxÞ ¼ Ba�ðxÞX�ðxÞ or �XBþ A ¼ 0 and dB ¼ 0
was used for the vanishing of the second term. Equa-
tion (1.5) can be rewritten as ��

�ðBþ �FÞ ¼ B, which
means that the electromagnetic force F ¼ dA can always
be eliminated by a local coordinate transformation gener-
ated by the vector field X satisfying Eq. (1.4).

Surprisingly, it is easy to understand how the Darboux
theorem in symplectic geometry manifests itself as a novel
form of the equivalence principle such that the electromag-
netism in NC spacetime can be regarded as a theory of
gravity [2–4]. It is well known that, for a given Poisson
algebra ðC1ðMÞ; f�; �g�Þ, there exists a natural map
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C1ðMÞ ! TM: f � Xf between smooth functions in

C1ðMÞ and vector fields in TM such that

XfðgÞ ¼ fg; fg� (1.6)

for any g 2 C1ðMÞ. Indeed the assignment (1.6) between a
Hamiltonian function f and the corresponding Hamil-
tonian vector field Xf is the Lie algebra homomorphism

in the sense

Xff;gg� ¼ �½Xf; Xg� (1.7)

where the right-hand side represents the Lie bracket be-
tween the Hamiltonian vector fields.

The correspondence (1.6) between the Poisson algebra
ðC1ðMÞ; f�; �g�Þ and vector fields in �ðTMÞ can be gener-
alized to the NC ? algebra ðA�; ½�; ��?Þ by considering an

adjoint operation of NC gauge fields D̂aðyÞ 2 A� as
follows:

adD̂a
½f̂�ðyÞ � �i½D̂aðyÞ; f̂ðyÞ�?

¼ ���� @DaðyÞ
@y�

@fðyÞ
@y�

þ � � �

� Va½f�ðyÞ þOð�3Þ: (1.8)

The leading term in Eq. (1.8) exactly recovers the vector
fields in Eq. (1.6) and the vector field VaðyÞ ¼ V�

a ðyÞ�
@

@y� 2 �ðTMyÞ takes values in the Lie algebra of volume-

preserving diffeomorphisms since @�V
�
a ¼ 0 by defini-

tion. But it can be shown [4] that the vector fields Va 2
�ðTMÞ are related to the orthonormal frames (vielbeins)Ea

by Va ¼ �Ea where �2 ¼ detV�
a . Therefore, we see that

the Darboux theorem in symplectic geometry implements a
deep principle to realize a Riemannian manifold as an
emergent geometry from NC gauge fields through the
correspondence (1.8) whose metric is given by [3,4]

ds2 ¼ gabE
a 
 Eb ¼ �2gabV

a
�V

b
�dy

� 
 dy�; (1.9)

where Ea ¼ �Va 2 �ðT�MÞ are dual oneforms.
If a coordinate transformation is generated by a

Hamiltonian vector field X� satisfying �X�
B ¼ d� or

X�
� ¼ ���@��, the symplectic structure remains intact as

can easily be checked from Eq. (1.5). It should be the case
since the symplectomorphism generated by the Hamil-
tonian vector field is equal to the Uð1Þ gauge transforma-
tion. So let us look at a response of the metric (1.9) under
the coordinate transformation in the symplectomorphism
or the Uð1Þ gauge transformation. Using the definition of
the vector fields in Eq. (1.8), one can rewrite the inverse
metric of Eq. (1.9) as follows:

�
@

@s

�
2 ¼ gabEa 
 Eb ¼ ��2gabV

�
a V�

b@� 
 @�

� G��@� 
 @� ¼ ��a��bG	


@x	

@ya
@x


@yb
@� 
 @�

¼ ��a��bðGab þLX�
GabÞ@� 
 @�; (1.10)

where Gab ¼ ���2Bacg
cdBdb and x	ðyÞ ¼ y	 þ X	

�ðyÞ.
For consistency the metric (1.10) should remain intact
under the Uð1Þ gauge transformation or the symplecto-
morphism since it does not change the symplectic struc-
ture. It is easy to see that this consistency condition is
equivalent to require LX�

Gab ¼ 0 since V�
a ¼ ��

a in this

case and so �2 ¼ detV�
a ¼ 1. Therefore, we get a consis-

tent result that the Uð1Þ gauge transformation or the sym-
plectomorphism corresponds to a Killing symmetry and
the emergent metric (1.9) does not change, i.e., G�� ¼
g��.

As emphasized by Elvang and Polchinski [19], the
emergence of gravity requires the emergence of spacetime
itself. That is, spacetime is not given a priori but defined by
‘‘spacetime atoms,’’ NC gauge fields in our case, in quan-
tum gravity theory. It should be required for consistency
that the entire spacetime including a flat spacetime has to
be emergent from NC gauge fields. In other words, the
emergent gravity should necessarily be background inde-
pendent where any spacetime structure is not a priori
assumed but defined from the theory. Let us elucidate using
the relation between a matrix model and a NC gauge theory
[11,20,21] how the emergent gravity based on the NC
geometry achieves the background independence [3,4].
Consider the zero-dimensional IKKT matrix model [10]

whose action is given by

SIKKT ¼ �1
4 Trð½Xa; Xb�½Xa; Xb�Þ: (1.11)

Because the action (1.11) is zero-dimensional, it does not
assume the prior existence of any spacetime structure.
There are only a bunch of N � N Hermitian matrices
Xaða ¼ 1; � � � ; 2nÞ which are subject to a couple of alge-
braic relations given by

½Xa; ½Xa; Xb�� ¼ 0; (1.12)

½Xa; ½Xb; Xc�� þ ½Xb; ½Xc; Xa�� þ ½Xc; ½Xa; Xb�� ¼ 0:

(1.13)

In order to consider fluctuations around a vacuum of
the matrix theory (1.11), first one has to specify the vacuum
of the theory where all fluctuations are supported. Of
course, the vacuum solution itself should also satisfy the
Eqs. (1.12) and (1.13). Suppose that the vacuum solution is
given by Xa

vac ¼ ya. In the limit N ! 1, the Moyal NC
space defined by Eq. (1.1) where �ab is a constant matrix of
rank 2n definitely satisfies the equations of motion (1.12)
as well as the Jacobi identity (1.13). Furthermore, in this
case, the matrix algebra ðMN; ½�; ��Þ defining the action
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(1.11) can be mapped to the NC ? algebra ðA�; ½�; ��?Þ
defined by the NC space (1.1) [11]. To be explicit, let us

expand the large N matrices Xa � �abD̂b around the
Moyal vacuum (1.1) as follows:

D̂ aðyÞ ¼ Baby
b þ ÂaðyÞ: (1.14)

Note that

� i½D̂aðyÞ; D̂bðyÞ�? ¼ @aÂbðyÞ � @bÂaðyÞ
� i½ÂaðyÞ; ÂbðyÞ�? � Bab

¼ F̂abðyÞ � Bab: (1.15)

Then the IKKT matrix model (1.11) becomes the NC Uð1Þ
gauge theory in 2n dimensions [11,21]

Ŝ NC ¼ 1

4g2YM

Z
d2nyGacGbdðF̂� BÞab ? ðF̂� BÞcd;

(1.16)

where Gab ¼ �ac�bc and Tr ! R d2ny
ð2�ÞnjPf�j and we have

recovered a 2n-dimensional gauge coupling constant g2YM
[20].

According to the correspondence (1.8), the NC gauge

fields D̂aðyÞ 2 A� in Eq. (1.14) are mapped to (general-

ized) vector fields V̂aðyÞ � adD̂a
ðyÞ as an inner derivation

in A� [2–4]. In particular, we have the property

½adD̂a
; adD̂b

�? ¼ adF̂ab
¼ ½V̂a; V̂b�?; (1.17)

where ½V̂a; V̂b�? ¼ ½Va; Vb� þOð�3Þ is a generalization of
the Lie bracket to the generalized vector fields in Eq. (1.8).
Using the maps in Eqs. (1.8) and (1.17), one can further
deduce that

½adD̂a
; ½adD̂b

; adD̂c
�?�? ¼ adD̂aF̂bc

¼ ½V̂a; ½V̂b; V̂c�?�?:
(1.18)

Using the relation (1.18), one can easily show that the
equations of motion for NC gauge fields derived from the
action (1.16) are mapped to the geometric equations for
(generalized) vector fields defined by Eq. (1.8) [4]:

D̂ ½aF̂bc� ¼ 0 , ½V̂½a; ½V̂b; V̂c��?�? ¼ 0; (1.19)

D̂ aF̂ab ¼ 0 , ½V̂a; ½V̂a; V̂b�?�? ¼ 0: (1.20)

To be specific, if one confines to the leading order in
Eq. (1.8) where one recovers usual vector fields, the
Jacobi identity (1.13) [or the Bianchi identity (1.19) for
NC gauge fields] is equivalent to the first Bianchi identity
for Riemann tensors, i.e., R½abc�d ¼ 0, and the equations of
motion (1.12) for N � N matrices or (1.20) for NC gauge
fields are mapped to the Einstein equations, Rab �
1
2 gabR ¼ 8�GTab, for the emergent metric (1.9) [4].

Though the emergence of Einstein gravity from NC
gauge fields is shown after some nontrivial technical com-

putations [4], it can easily be verified for the self-dual
sector without any further computation. First notice the
following equality directly derived from Eq. (1.17)

F̂ab ¼ �1
2"ab

cdF̂cd ffi ½V̂a; V̂b�? ¼ �1
2"ab

cd½V̂c; V̂d�?:
(1.21)

Because ½V̂a; V̂b�? ¼ ½Va; Vb� þOð�3Þ, the right-hand
side of Eq. (1.21) in a commutative, i.e. Oð�Þ, limit de-
scribes self-dual and Ricci-flat four-manifolds as was rig-
orously proved in [1,4,22]. In other words, the self-dual
Einstein gravity arises from the leading order of self-dual
NC gauge fields [7].
One can trace the emergent metric (1.9) back to see

where the flat spacetime comes from. It turns out [16]
that the flat spacetime is emergent from the uniform con-
densation of gauge fields giving rise to the NC spacetime
(1.1). This is a tangible difference from Einstein gravity
where the flat spacetime is a completely empty space.
Furthermore, since gravity emerges from NC gauge fields,
the parameters, g2YM and j�j, defining a NC gauge theory
should be related to the Newton constant G in emergent

gravity. A simple dimensional analysis shows that G@
2

c2
�

g2YMj�j. In four dimensions, this relation immediately leads
to the fact that the energy density of the vacuum (1.1) is

�vac � jBabj2 �M4
P where MP ¼ ð8�GÞ�1=2 � 1018 GeV

is the Planck mass. Therefore, the emergent gravity reveals
a remarkable picture that the huge Planck energy MP is
actually used to generate a flat spacetime. It is very sur-
prising but should be expected from the background inde-
pendence of the emergent gravity that a flat spacetime is
not free gratis but a result of Planck energy condensation in
a vacuum. Hence the vacuum energy does not gravitate
unlike Einstein gravity. It was argued in [4,16] that this
emergent spacetime picture will be essential to resolving
the cosmological constant problem, to understanding the
nature of dark energy, and to explaining why gravity is so
weak compared to other forces.
In this paper we will generalize the picture of emergent

geometry to the case with a nontrivial vacuum geometry,
especially, a constant curvature spacetime. This kind of
emergent geometry will arise from a mass-deformed ma-
trix model. The subsequent parts of this paper will be
organized as follows.
In Sec. II, we will consider the matrix model of SOð3�

p; pÞ Lie algebra with p ¼ 0, 1, 2 which is the matrix
version of Maxwell-Chern-Simons theory or massive
Chern-Simons theory [23]. We show that either compact
or noncompact (fuzzy) Riemann surfaces such as a two-
dimensional sphere and (anti-)de Sitter spaces are emer-
gent from the matrix model. A well-known example of
quantized compact Riemann surfaces is a fuzzy sphere
[24]. We discuss how a nonlinear deformation of the under-
lying Lie algebra can trigger a topology change of the
Riemann surfaces [25].
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In Sec. III, we will generalize the matrix model of two-
dimensional Riemann surfaces to higher dimensions. The
emergent geometry in higher dimensions is deduced from a
mass-deformed IKKT matrix model [26]. Because of the
mass deformation, a vacuum geometry is no longer flat but
a constant curvature spacetime such as a d-dimensional
sphere and (anti-)de Sitter spaces. We show that the mass-
deformed matrix model giving rise to the constant curva-
ture spacetime can be derived from the d-dimensional
Snyder algebra [27]. The emergent gravity beautifully
confirms all the rationale inferred from the algebraic point
of view that the d-dimensional Snyder algebra is equivalent
to the Lorentz algebra in ðdþ 1Þ-dimensional flat space-
time. We also discuss a nonlinear deformation of the
Snyder algebra.

In Sec. IV, we show that a vacuum geometry of the mass-
deformed matrix model is completely described by a
G-invariant metric of coset manifolds G=H [28] defined
by the Snyder algebra. We thus advocate the picture that
the geometrical aspects of emergent gravity for the mass-
deformed matrix model can be nicely captured by the
equivalence between the d-dimensional Snyder algebra
and the ðdþ 1Þ-dimensional Lorentz algebra. Finally, we
conclude with several remarks about the significance of
emergent geometry based on the results we have obtained.

In the Appendix, it is shown that the two-dimensional
Snyder algebra is precisely equal to the three-dimensional
SOð3� p; pÞ Lie algebra in Sec. II.

II. TWO-DIMENSIONAL MANIFOLDS FROM
MATRIX MODEL

Consider the following master matrix action:

SM ¼ Tr

�
g2YM
2

PAP
A � �PAX

A þ i


3!
"ABCX

A½XB; XC�
�
;

(2.1)

where � ¼ 
g2YM and A; B; � � � ¼ 1; 2; 3. The equations of
motion are read as

PA ¼ i

2g2YM
"ABC½XB; XC�; (2.2)

PA ¼ 
XA: (2.3)

Substituting Eq. (2.2) into the master action (2.1) leads
to the matrix version of Maxwell-Chern-Simons action
[14]

SMCS ¼ � 1

g2YM
Tr

�
1

4
½XA; XB�2 þ i�

3
"ABCX

A½XB; XC�
�
;

(2.4)

while Eq. (2.3) leads to the matrix version of massive
Chern-Simons theory

SmCS ¼ 
Tr

�
i

3!
"ABCX

A½XB; XC� � �

2
XAX

A

�
: (2.5)

Thus we establish the matrix version of the duality between
topologically massive electrodynamics and a self-dual
massive model [23]. Therefore, it is enough to solve either
Eq. (2.4) or Eq. (2.5) to get physical spectra.
From the action (2.5), one can see that the equations of

motion are given by the SOð3� p; pÞ Lie algebra with p ¼
0, 1, 2

½XA; XB� ¼ �i�"ABCX
C: (2.6)

We are interested in deriving a two-dimensional manifold
from the Lie algebra (2.6) where the Casimir invariant is
given by1

gABX
AXB � ð�Þ]R2: (2.7)

We will consider three cases depending on the choice
of metric gAB: (I) gAB ¼ diagð1; 1; 1Þ with ] ¼ 0,
(II) gAB ¼ diagð�1; 1; 1Þ with ] ¼ 0, and
(III) gAB ¼ diagð�1; 1;�1Þ with ] ¼ 1. They describe a
two-dimensional manifoldM of radius R given by Eq. (2.7)
in the classical limit: (I) sphere S2, (II) de Sitter space dS2,
and (III) anti-de Sitter space AdS2, which may be repre-
sented by the cosets SOð3Þ=SOð2Þ, SOð2; 1Þ=SOð1; 1Þ, and
SOð1; 2Þ=SOð1; 1Þ, respectively. See Sec. IV for the coset
space realization of two-dimensional hypersurface M.
We will first clarify how the Lie algebra (2.6) arises from

the quantization of two-dimensional (orientable) manifolds
[25,29]. Let M be an orientable two-manifold and ! 2
�2ðMÞ a volume form. Then ! is nondegenerate (since
! � 0 everywhere) and obviously closed, i.e., d! ¼ 0.
Therefore, any orientable two-manifold M is a symplectic
manifold. A unique feature in two dimensions is that a
symplectic two-form is just a volume form. Hence any two
volume forms! and!0 on a two-dimensional manifoldM,
defining the same orientation and having the same total
volume, will be related by an exact two-form; !0 ¼ !þ
dA. This is a well-known result on volume forms due to
Moser [18]. (For a noncompact manifold, we would need
to introduce a compact support of symplectic form.) In
particular, every closed symplectic two-manifold is deter-
mined up to local isotopic deformations by its genus and
total volume. This implies that a nontrivial deformation of
two-dimensional manifolds will be encoded only in vol-
ume and topology changes up to volume-preserving metric

1It is well known that the Lie algebra (2.6) can be represented
by differential operators as tangent vectors on some manifold,
which is actually the result we want to realize using the map
(1.8). Without imposing the Casimir invariant (2.7), one gets a
three-dimensional manifold, e.g., S3 from SUð2Þ algebra. In our
case, imposing Eq. (2.7), we will get a two-dimensional manifold
instead. As will be discussed in the Appendix, the SOð3� p; pÞ
Lie algebra in Eq. (2.6) will then be interpreted as the Lorentz
algebra of an ambient three-dimensional space, which is pre-
cisely the three-dimensional version of Eq. (3.21).
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(shape) deformations. We will see that this feature still
persists in a two-dimensional NC manifold.

To begin with, let us introduce a local Darboux chart
ðU; y1; y2Þ centered at p 2 M and valid on a neighborhood
U such that !jU ¼ 1

2Babdy
a ^ dyb ¼ �dy1 ^ dy2. The

Poisson bracket for f; g 2 C1ðMÞ is then defined in terms
of local coordinates ya (a ¼ 1, 2)

ff; gg� ¼ �ab
@f

@ya
@g

@yb
; (2.8)

where �12 ¼ 1. We will consider the two-dimensional
manifold M as a hypersurface embedded in R3�p;p and
described by LA ¼ LAðyÞ, A ¼ 1, 2, 3, satisfying the rela-
tion (2.7). For example, one can choose ya ¼ ðcos�; ’Þ for
S2, ya ¼ ðsinht; ’Þ for dS2, and ya ¼ ðt; sinhxÞ for AdS2 as
follows.

(I) S2 of unit radius:

L1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

q
cos’; L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

q
sin’;

L3 ¼ y;
(2.9)

where y ¼ cos�.
(II) dS2 of unit radius:

L1 ¼ �y; L2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

q
sin’;

L3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

q
cos’;

(2.10)

where y ¼ sinht.
(III) AdS2 of unit radius:

L1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

q
cost; L2 ¼ �y;

L3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

q
sint;

(2.11)

where y ¼ sinhx.
It is easy to see that the above coordinate system

LAðyÞ 2 C1ðMÞ satisfies a linear Poisson structure under
the Poisson bracket (2.8)

fLA; LBg� ¼ �"ABCL
C: (2.12)

The coordinate system LAðyÞ ¼ gABL
BðyÞ 2 C1ðMÞ sat-

isfying the constraint (2.7) can be mapped to vector fields

Vð0Þ
A ðyÞ ¼ Vð0Þa

A ðyÞ @
@ya 2 �ðTMÞ according to Eq. (1.6) as

Vð0Þ
A ¼ �ab

@LA

@yb
@

@ya
: (2.13)

The two-dimensional metric on M is then determined by
the vector fields (2.13) where the inverse metric is given by

G ab
ð0Þ ¼ ðdetGð0Þ

abÞ�1gABVð0Þa
A Vð0Þb

B (2.14)

and so the two-dimensional (emergent) metric reads as

G ð0Þ
ab ¼ gAB

@LA

@ya
@LB

@yb
: (2.15)

One can easily check that the resulting metric ds2 ¼
Gð0Þ

abdy
adyb is equivalent to the induced metric from the

standard flat metric ds2 ¼ gABdL
AdLB on R3�p;p:

ðIÞ: ds2 ¼ dy2

1� y2
þ ð1� y2Þd’2 ¼ d�2 þ sin2�d’2;

(2.16)

ðIIÞ: ds2 ¼ � dy2

1þ y2
þ ð1þ y2Þd’2

¼ �dt2 þ cosh2td’2; (2.17)

ðIIIÞ: ds2 ¼ �ð1þ y2Þdt2 þ dy2

1þ y2

¼ �cosh2xdt2 þ dx2: (2.18)

As it should be, we see here that the metric (2.15)
determined by the vector fields in Eq. (2.13) is just the
induced metric on a two-dimensional surfaceM embedded
in R3�p;p. Let us now consider a generic fluctuation of the
surfaceM around the vacuum geometry (I)–(III) described
by

XAðyÞ ¼ LAðyÞ þ AAðyÞ: (2.19)

The fluctuating coordinate system (2.19) satisfies the fol-
lowing Poisson bracket relation:

fXA; XBg� ¼ �"ABCX
C þ FAB; (2.20)

where

FAB ¼ fLA; ABg� � fLB; AAg� þ fAA; ABg� þ "ABCA
C:

(2.21)

Note that the field strength FAB in Eq. (2.20) cannot be
arbitrary since the Poisson algebra (2.20) should satisfy the
Jacobi identity, "ABCfXA; fXB; XCg�g� ¼ 0. This constraint
can be solved by taking the field strength FAB in Eq. (2.20)
as the form

FABðXÞ ¼ "ABC
@FðXÞ
@XC

(2.22)

with an arbitrary smooth function FðXÞ defined in M ¼
R3�p;p because we have

1

2
"ABCfXA; fXB; XCg�g� ¼

�
XA;

@FðXÞ
@XA

�
�

¼ @2FðXÞ
@XA@XB

fXA; XBg� ¼ 0:

Then the Poisson bracket relation (2.20) can be written as
follows:

fXA; XBg� ¼ "ABC
@GðXÞ
@XC

; (2.23)

where the polynomial GðXÞ is defined inM ¼ R3�p;p and
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given by

GðXÞ ¼ FðXÞ � 1
2gABX

AXB þ �: (2.24)

It is interesting to notice that, for f, g 2 C1ðMÞ,

ffðXÞ; gðXÞg� ¼ @fðXÞ
@XA

@gðXÞ
@XB fXA; XBg�

¼ "ABC
@GðXÞ
@XA

@fðXÞ
@XB

@gðXÞ
@XC

� fGðXÞ; fðXÞ; gðXÞgNP; (2.25)

where ffðXÞ; gðXÞ; hðXÞgNP is the Nambu-Poisson bracket
for arbitrary functions f, g, h 2 C1ðMÞ. The Nambu-
Poisson bracket satisfies some fundamental identity (see
Eq. (3.2) in [30])

ff1; f2; ff3; f4; f5gNPgNP ¼ fff1; f2; f3gNP; f4; f5gNP
þ ff3; ff1; f2; f4gNP; f5gNP
þ ff3; f4; ff1; f2; f5gNPgNP:

(2.26)

Then one can easily see that the Jacobi identity for the
Poisson bracket (2.23) is actually the statement of the
fundamental identity (2.26) since

ff; fg; hg�g� þ fg; fh; fg�g� þ fh; ff; gg�g�
¼ fG; f; fG; g; hgNPgNP þ fG; g; fG; h; fgNPgNP

þ fG; h; fG; f; ggNPgNP
¼ �fff;G;GgNP; g; hgNP ¼ 0: (2.27)

In order to allow a general fluctuation including topol-
ogy and volume changes of the two-dimensional surface
M, suppose that the function FðXÞ in Eq. (2.22) is an
arbitrary polynomial in three variables in M ¼ R3�p;p.
The two-dimensional surface M embedded in M will be
defined by zeros of the polynomial (2.24), i.e., M ¼
G�1ðf0gÞ and XAðyÞ in Eq. (2.19) will be a local parame-
terization of M in terms of Darboux coordinates ya. For
example, a Riemann surface �g of genus g is described by

Gð ~xÞ ¼ ðPðxÞ þ y2Þ2 þ z2 ��2; ~x ¼ ðx; y; zÞ 2 R3;

(2.28)

with the polynomial PðxÞ ¼ x2k þ a2k�1x
2k�1 þ � � � þ

a1xþ a0 where the polynomial P�� has two simple
roots and the polynomial Pþ� has 2g simple roots (�>
0) [25]. The unperturbed surfaces in (I)–(III) correspond to
the polynomial (2.24) with FðXÞ ¼ 0, i.e., M ¼ G�1

F¼0ðf0gÞ
where � ¼ ð�1Þ]R2. After determining the embedding
coordinate (2.19) by solving the polynomial equation
GðXÞ ¼ 0 as illustrated in the simple cases (I)–(III), the
metric of the two-dimensional surface M ¼ G�1ðf0gÞ, ac-
cording to the map (1.8), will be given by the vector fields

VA ¼ �ab
@XAðyÞ
@yb

@

@ya
: (2.29)

The resulting metric ds2 ¼ GabðyÞdyadyb where

G ab ¼ gAB
@XA

@ya
@XB

@yb
(2.30)

will again be equivalent to the induced metric on M
embedded in the three-dimensional spacetime ds2 ¼
gABdX

AdXB whose embedding is defined by the polyno-
mial (2.24).
If we consider a generic fluctuation described by an

arbitrary polynomial (2.24), we expect that the perturbation
(2.19) falls into one of the three classes; (A) metric pre-
serving coordinate transformations generated by flat con-
nections, (B) volume-preserving metric deformations; and
(C) volume-changing deformations. From the analysis in
Eq. (1.10) we well understand for the case (A) what is
going on there. The gauge field fluctuation in Eq. (2.19)
should belong to a pure gauge, i.e., FAB ¼ 0. To check this
result, consider a pure gauge ansatz AAðyÞ ¼ g�1ðyÞ�
fLA; gðyÞg�. One can calculate the corresponding field
strength (2.21)

FAB ¼ fAA; ABg� (2.31)

and the Casimir invariant (2.7)

gABðXAXB � LALBÞ ¼ gABA
AAB; (2.32)

where gABL
AAB ¼ 0 was used. The nonvanishing terms,

Oð�3Þ andOð�2Þ, in Eq. (2.31) and Eq. (2.32), respectively,
can be neglected in the commutative limit and eventually
will disappear in the NC space (2.37) as will be shown
later. The case (B) corresponds to the metric change gen-
erated by a general vector field X satisfying LXBþ dA ¼
0. In this case the vector field X is not a Hamiltonian vector
field and it in general contains a harmonic part in H1ðMÞ.
Therefore, it could be possible that the metric deformation
generated by the nontrivial vector field X will in general
accompany a topology change of the two-dimensional
surface M. The topology change will be triggered by a
higher order, e.g. quartic, polynomial FðXÞ in Eq. (2.24)
[25]. Finally, as a simple example of the case (C), a
volume change of the two-dimensional surface M is de-
scribed by the gauge field AAðyÞ ¼ 	LAðyÞ and FABðyÞ ¼
�	ð1þ 	Þ"ABCLC ¼ �	"ABCX

C. In this case the

Poisson bracket relation (2.20) is given by

fXA; XBg� ¼ �ð1þ 	Þ"ABCXC: (2.33)

That is, the volume change can be done by turning on
the polynomial FðXÞ ¼ � 	

2 gABX
AXB in Eq. (2.24).

Therefore, the volume change in Eq. (2.7), R !
ð1þ 	ÞR, can also be interpreted as the change of coupling
constant in Eq. (2.6), � ! ð1þ 	Þ�, or the change of
noncommutativity in Eq. (2.8), �ab ! ð1þ 	Þ�ab.
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Because the Lie algebra (2.6) arises as the equations of
motion of the action (2.1), it is necessary to generalize the
action (2.1) in order to describe a general two-dimensional
surface defined by the polynomial (2.24). The generalized
action will be defined by

SG ¼ Tr

�
g2YM
2

PAP
A þ �PA @GðXÞ

@XA

þ i


3!
"ABCX

A½XB; XC�
�
: (2.34)

The equations of motion are now given by

PA ¼ �

@GðXÞ
@XA

;

�
�
PB @2GðXÞ

@XA@XB

�
¼ i

2g2YM
"ABC½XB; XC�;

(2.35)

where ½PB @2GðXÞ
@XA@XB� is a formal expression of the matrix

ordering under the trace for the variation PB �
�XA ð @G@XBÞ.

The previous equations of motion, (2.2) and (2.3), are given
by the polynomial (2.24) with FðXÞ ¼ 0. Of course a
vacuum manifold defined by the new action (2.34) should
be newly determined by solving the equations of motion
(2.35).

A two-dimensional NC space can be obtained by quan-
tizing the symplectic manifold ðM;! ¼ �dy1 ^ dy2Þ, i.e.,
by replacing the Poisson bracket (2.8) by a star commutator

ff; gg� ! �i½f̂; ĝ�? (2.36)

and the ordinary product in C1ðMÞ by the star product in
NC ?-algebraA�. Then the local Darboux coordinates y

a

(a ¼ 1, 2) satisfy the commutation relation

½ya; yb�? ¼ i�ab: (2.37)

The fluctuation in Eq. (2.19) now becomes an element in
A� given by

X̂ AðyÞ ¼ L̂AðyÞ þ ÂAðyÞ; (2.38)

where L̂AðyÞ is a background solution satisfying the

constraint ð�1Þ]R2 ¼ gABL̂
A ? L̂B and ½L̂A; L̂B�? ¼

�i"ABCL̂
C obtained from Eq. (2.12) by the quantization

(2.36). (See [29] for the deformation quantization of hyper-
bolic planes.) Then one can calculate the star commutator

½X̂A; X̂B�? ¼ ½L̂AðyÞ þ ÂAðyÞ; L̂BðyÞ þ ÂBðyÞ�?
¼ �i"ABCX̂

C þ ½L̂A; ÂB�? � ½L̂B; ÂA�?
þ ½ÂA; ÂB�? þ i"ABCÂ

C

¼ �i"ABCX̂
CðyÞ þ iF̂ABðyÞ: (2.39)

Substituting the above expression into the action (2.5)
leads to the action for the fluctuations

Ŝ mCS ¼ � 


12�j�j
Z

d2yð"ABCX̂A ? F̂BC þ �X̂A ? X̂AÞ:
(2.40)

The equations of motion derived from the variation

with respect to ÂA say that the fluctuations should be a

flat connection, i.e., F̂AB ¼ 0, already inferred from
Eq. (2.39).
In order to treat the generalized action (2.34), the Jacobi

identity, "ABC½X̂A; ½X̂B; X̂C�?�? ¼ 0, can be solved in a
similar way as the commutative case by the form

F̂ ABðX̂Þ ¼ "ABC
@F̂ðX̂Þ
@X̂C

: (2.41)

The derivative @F̂ðX̂Þ
@X̂C will be defined with the symmetric

Weyl ordering [25]. Then one can evaluate the commutator

½X̂A; @F̂ðX̂Þ
@X̂A �? by a successive application of the Leibniz rule

½X̂A; f̂ ? ĝ�? ¼ f̂ ? ½X̂A; ĝ�? þ ½X̂A; f̂�? ? ĝ such that each

term finally has a form F̂1ðX̂Þ ? ½X̂A; X̂B�? ? F̂2ðX̂Þ. If we
formally denote the resulting expression as the form

1

2
"ABC½X̂A; ½X̂B; X̂C�?�? ¼ i

�
X̂A;

@F̂ðX̂Þ
@X̂A

�
?

¼ i

�
@2F̂ðX̂Þ
@X̂A@X̂B

? ½X̂A; X̂B�?
�
;

(2.42)

it turns out that the polynomial @2F̂ðX̂Þ
@X̂A@X̂B is symmetric with

respect to (A $ B) and so Eq. (2.42) identically vanishes.
Therefore, the star commutator (2.39) takes the form [25]

½X̂A; X̂B�? ¼ �i"ABC
@ĜðX̂Þ
@X̂C

; (2.43)

where the polynomial ĜðX̂Þ is the star product version of
Eq. (2.24) given by

ĜðX̂Þ ¼ F̂ðX̂Þ � 1
2gABX̂

A ? X̂B þ �: (2.44)

Suppose that we have solved the polynomial equation

ĜðX̂Þ ¼ 0 whose solution is given by X̂A ¼ gABX̂
B ¼

X̂AðyÞ. (See [25] for explicit solutions for tori and deformed
spheres.) Now one can define an inner derivation of the NC
? algebra ðA�; ½�; ��?Þ as in Eq. (1.8) by considering an

adjoint action of X̂AðyÞ ¼ gABX̂
BðyÞ as follows:

V̂ A½f̂�ðyÞ � adX̂A
½f̂�ðyÞ ¼ �i½X̂AðyÞ; f̂ðyÞ�?

¼ Va
AðyÞ

@fðyÞ
@ya

þOð�3Þ: (2.45)

The leading term in Eq. (2.45) is exactly equal to the vector

fields VAðyÞ ¼ Va
AðyÞ @

@ya in Eq. (2.29). We may identify V̂A

with generalized tangent vectors defined on a two-
dimensional fuzzy manifold described by the polynomial
(2.44).
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As was shown in Eq. (1.3), the symplectomorphism can
be identified with NC Uð1Þ gauge transformations. Flat

connections, i.e., F̂ABðyÞ ¼ 0 in which case F̂ðX̂Þ ¼ 0,

are given by ÂAðyÞ ¼ ĝ�1ðyÞ ? ½L̂AðyÞ; ĝðyÞ�? or X̂AðyÞ ¼
ĝ�1ðyÞ ? L̂AðyÞ ? ĝðyÞ with any invertible ĝðyÞ 2 A�. So
the equations of motion (2.39) are the same as before and
the solution (2.38) of flat connections preserves the area

(2.7), say, gABX̂
A ? X̂B ¼ ð�Þ]R2. Also note that the re-

maining terms in Eqs. (2.31) and (2.32) are completely
cured in the NC space (2.37) as we remarked before.
Because the embedding (2.44) has not been changed, it is
a natural consequence that a pure gauge fluctuation does

not change a two-dimensional metric of fuzzy manifold M̂
as we already noted in Eq. (1.10).

Now we want to discuss some interesting aspects of our
construction. As we observed above, a pure gauge fluctua-
tion does not change the two-dimensional metric ds2 ¼
Gabdy

adyb and belongs to the same representation, i.e.,
gABL

ALB ¼ gABX
AXB ¼ ð�Þ]R2 for LAðyÞ and XAðyÞ ¼

LAðyÞ þ AAðyÞ in C1ðMÞ. This means that there exists a
global Lorentz transformation in three dimensions such
that XA ¼ �A

BL
B where �A

B 2 SOð3� p; pÞ. In other
words the metric Gab is invariant under the Lorentz trans-
formation in ambient spaces as expected. It is interesting to
notice that a local gauge transformation in two dimensions
can be interpreted as a global Lorentz transformation in
three-dimensional target spacetime. More generally, one
may represent a generic fluctuation of gauge fields in XA as
a general coordinate transformation, that is, LAðyÞ �
XAðyÞ ¼ XAðLÞðyÞ. Then the vector fields VL

A and VX
A in

TM for the smooth functions LAðyÞ and XAðyÞ are defined
by Eq. (2.29) and they are related by VX

A ¼ @XA

@LB
ðyÞVL

B

thanks to the chain rule fXAðLÞ; fg� ¼ @XA

@LB
fLB; fg�.

According to Eq. (2.30), the two-dimensional metric can
then be written as

G ab ¼ GAB

@LA

@ya
@LB

@yb
; (2.46)

whereGABðyÞ ¼ @XC

@LA ðyÞ @XD

@LB ðyÞgCD. Thus a generic fluctua-
tion possibly changing the volume as well as topology
[turning on a nontrivial FðXÞ � 0] can be interpreted as a
general coordinate transformation supported on the two-
dimensional surface M. Of course this is consistent with
the fact that the metric ds2 ¼ Gabdy

adyb is the induced
metric on a submanifold M embedded in R3�p;p.

It is well known [23] that the massive Chern-Simons
gauge theory in three dimensions has a physical degree of
freedom. One may wonder which mode in the action (2.5)
corresponds to the physical one. Note that the gauge field
dynamics in three dimensions need not be subject to the
constraint (2.7). Because gauge field fluctuations preserv-
ing a two-dimensional area and satisfying the equations of
motion (2.6) are flat connections and also pure gauges, the
only remaining physical mode satisfying the same Lie

algebra (2.6) is an area changing fluctuation as we observed
in Eq. (2.33). Because the area change can also be inter-
preted as the change of coupling constant or noncommu-
tativity, it would be intriguing to recall that a similar
feature also arises in the AdS/CFT correspondence [12]
where the size of bulk spacetime is related to the coupling
constant of gauge theory.

III. EMERGENT GEOMETRY FOR SNYDER
SPACETIME

Now we want to generalize the analysis for the two-
dimensional cases to higher dimensions, in particular, to
four-dimensional manifolds with constant curvature as an
emergent geometry from some matrix model. Let us start
with the following IKKT matrix model with a mass defor-
mation [26]:

SmIKKT ¼ Tr

�
� 1

4
½Xa; Xb�2 þ ðd� 1Þ


2
XaX

a

�
; (3.1)

where Xa are N � N Hermitian matrices and a; b ¼
1; � � � ; d 
 2. One can rewrite the action (3.1) as the form

S
 ¼ Tr

�
1

4
MabM

ab � 1

2
Mab½Xa; Xb� þ ðd� 1Þ


2
XaX

a

�
(3.2)

by introducing Lagrange multipliersMab which areN � N
anti-Hermitian matrices. In spite of the mass deformation
with 
 � 0, the matrix action (3.2) respects the UðNÞ
gauge symmetry given by

ðXa;MabÞ ! UðXa;MabÞUy (3.3)

with U 2 UðNÞ. The equations of motion are given by

½Xa; Xb� ¼ Mab; (3.4)

½Mab; Xb� þ ðd� 1Þ
Xa ¼ 0; (3.5)

where Eq. (3.5) becomes the equations of motion derived
from the action (3.1) when substituting ½Xa; Xb� for Mab.
One can easily check that the above equations of motion
can be obtained from the Snyder algebra [27]:

½Xa; Xb� ¼ Mab;

½Xa;Mbc� ¼ 
ðgacXb � gabXcÞ;
½Mab;Mcd� ¼ 
ðgacMbd � gadMbc � gbcMad þ gbdMacÞ;

(3.6)

where the last equation can be derived from the other two
applying the Jacobi identity. Therefore, if the matrices
ðXa;MbcÞ satisfy the Snyder algebra (3.6), they automati-
cally satisfy the equations of motion, (3.4) and (3.5). Here
the deformation parameter 
 carries the physical dimen-
sion of ðlengthÞ2 since we will consider Xa as ‘‘matrix
coordinates.’’
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Because we consider the action (3.2) as a massive de-
formation of the IKKT matrix model (1.11), we regard the
matrices Mab in the action (3.2) as Lagrange multipliers
and so these can be integrated out. The resulting action of
course recovers the original action (3.1). Thus the number
of dynamical coordinates remains the same as the unde-
formed case. Actually it will be shown later that the matrix
Xa as a dynamical coordinate is mapped to a NC gauge
field and Mab to its field strength. Therefore, the emergent
geometry for the mass-deformed case can be derived by
essentially the same way as the undeformed case, except
that the deformed case in general admits a Poisson struc-
ture only instead of a symplectic structure. But this is not a
difficulty since a Poisson structure is enough to formulate
emergent geometry from large N matrices or NC gauge
fields, as will be shown below. Note that Poisson manifolds
are a more general class of manifolds which contains
symplectic manifolds as a special class.

Now the problem is how to generalize the emergent
geometry picture for the undeformed case (1.11) to the
mass-deformed case (3.2) where the vacuum geometry will
be nontrivial, i.e., curved, sinceMab ¼ constants cannot be
a vacuum solution unlike the 
 ¼ 0 case. We showed that
the generators Xa in the Snyder algebra (3.6) satisfy the
equations of motion (3.4) and (3.5). In order to map the
matrix algebra ðMN; ½�; ��Þ defining the action (3.2) to a NC
? algebra ðA�; ½�; ��?Þ, we will show that the Snyder
algebra (3.6) can be obtained by the deformation quantiza-
tion of a Poisson manifold [31] whose Poisson tensor is
given by � ¼ 1

2L
abðxÞ @

@xa ^ @
@xb

. In other words, we want

to show that the Schouten bracket [32] for the Poisson
tensor � vanishes, i.e.,

½�;��S �
�
Lda @L

bc

@xd
þ Ldb @L

ca

@xd
þ Ldc @L

ab

@xd

�
@

@xa

^ @

@xb
^ @

@xc
¼ 0 (3.7)

if the Poisson bracket fxa; xbg� ¼ LabðxÞ ¼ h�; dxa ^
dxbi satisfies the Snyder algebra (3.6). It is easy to
see that the Jacobi identity ffxa; xbg�; xcg� þ
ffxb; xcg�; xag� þ ffxc; xag�; xbg� ¼ 0 is satisfied due to
the second algebra in Eq. (3.6). From the Jacobi identity,
we immediately get the result (3.7) and so the two-vector
field � is a Poisson tensor.

The Poisson tensor� of a Poisson manifoldM induces a
bundle map �]: T�M ! TM by

A � �]ðAÞ ¼ LabðxÞAaðxÞ @

@xb
(3.8)

for A ¼ AaðxÞdxa 2 T�
xM, which is called the anchor map

of� [32]. The rank of the Poisson structure at a point x 2
M is defined as the rank of the anchor map at this point. If
the rank equals the dimension of the manifold at each
point, the Poisson structure reduces to a symplectic struc-
ture which is also called nondegenerate. The nondegener-

ate Poisson structure uniquely determines the symplectic
structure defined by the two-form ! ¼ 1

2!abðxÞdxa ^
dxb ¼ ��1 and the condition (3.7) is equivalent to the
statement that the two-form ! is closed, d! ¼ 0. In this
case the anchor map �]: T�M ! TM is a bundle isomor-
phism as we discussed in Sec. I. To define a Hamiltonian
vector field �]ðdfÞ of a smooth function f 2 C1ðMÞ,
what one really needs is a Poisson structure which reduces
to a symplectic structure for the nondegenerate case. Given
a smooth Poisson manifold ðM;�Þ, the map f � Xf ¼
�]ðdfÞ is a homomorphism [32] from the Lie algebra
C1ðMÞ of smooth functions under the Poisson bracket to
the Lie algebra of smooth vector fields under the Lie
bracket. In other words, the Lie algebra homomorphism
(1.7) is still true even for any Poisson manifold.
Like the Darboux theorem in symplectic manifolds, the

Poisson geometry also enjoys a similar property known as
the splitting theorem proved by Weinstein [33]. The split-
ting theorem states that a d-dimensional Poisson manifold
is locally equivalent to the product of R2n equipped with
the canonical symplectic structure with Rd�2n equipped
with a Poisson structure of rank zero at the origin. That is,
the Poisson manifold ðM;�Þ is locally isomorphic (in a
neighborhood of x) to the direct product S� N of a sym-
plectic manifold ðS;Pn

i¼1 dq
i ^ dpiÞ with a Poisson mani-

fold ðNx; f�; �gNÞ whose Poisson tensor vanishes at x.
Note that not every Snyder space can be obtained by the

quantization of a symplectic manifold ðM;!Þ in contrast to
the two-dimensional orientable hyperspaces in Sec. II. IfM
is a compact symplectic manifold, the second de Rham
cohomology group H2ðMÞ is nontrivial and so the only
n-sphere that admits a symplectic form is the two-sphere.
For example, let S4 ¼ fðu; v; tÞ 2 C� C� R: juj2 þ
jvj2 ¼ tð2� tÞg. Then the bivector field � ¼ uv@u ^
@v � uv�@u ^ @v� � u�v@u� ^ @v þ u�v�@u� ^ @v� is a
Poisson tensor, that is, ½�;��S ¼ 0, and � ^� ¼
4juj2jvj2@u ^ @v ^ @u� ^ @v� . Therefore, the Poisson ten-
sor� vanishes on a subspace of either u ¼ 0 or v ¼ 0 and
the Poisson structure becomes degenerate there. This is the
reason why we have to rely on a Poisson structure rather
than a symplectic structure to formulate emergent geome-
try from the Snyder algebra (3.6).
Because any Poisson manifold can be quantized via

deformation quantization [31], the anchor map (3.8) can
be lifted to a NC manifold as in Eq. (1.8). As we noticed
before, it is enough to have a Poisson structure to achieve
the map C1ðMÞ ! �ðTMÞ: f � Xf ¼ �]ðdfÞ such as

Eq. (1.6). So let us take the limit N ! 1 of the Snyder
algebra (3.6) and suppose that the Poisson manifold ðM;�Þ
is quantized via deformation quantization, i.e.,

fxa; xbg� ¼ LabðxÞ ! ½x̂a; x̂b�? ¼ iL̂abðx̂Þ; (3.9)

where L̂abðx̂Þ 2 A� are assumed to be dimensionful op-
erators of ðlengthÞ2 satisfying the Snyder algebra (3.6).
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Let us consider a vacuum solution of the mass-deformed
matrix model (3.2) as the Snyder space defined by
Eq. (3.9). Now we will regard the background solution
x̂a 2 A� in (3.9) as NC fields but from now on we will
omit the hat for notational simplicity. Consider fluctuations

of the large N matrices Xa � 
gabD̂bðxÞ around the vac-
uum solution (3.9) as follows:

D̂ aðxÞ ¼ D̂ð0Þ
a ðxÞ þ ÂaðxÞ; (3.10)

where D̂ð0Þ
a ðxÞ ¼ 1


 gabx
b. The background solution

ð
D̂ð0Þ
a ðxÞ; L̂abðxÞ � 
2Q̂abÞ satisfies the Snyder algebra

(3.6). Using the above variables, one can calculate the
star commutator

½D̂a; D̂b�? ¼ ½D̂ð0Þ
a ðxÞ þ ÂaðxÞ; D̂ð0Þ

b ðxÞ þ ÂbðxÞ�?
¼ iQ̂ab þ ½D̂ð0Þ

a ; Âb�? � ½D̂ð0Þ
b ; Âa�? þ ½Âa; Âb�?

� iF̂ab: (3.11)

One can check that the field strength defined in Eq. (3.11)
covariantly transforms under the gauge transformation

�Âa ¼ �ið½D̂ð0Þ
a ; �̂�? þ ½Âa; �̂�?Þ, viz.,

�F̂ab ¼ �i½F̂ab; �̂�?: (3.12)

Note that we need the background part Q̂ab in F̂ab to
maintain the gauge covariance (3.12). Using the result
(3.11), we get the action for the fluctuations after integrat-
ing out the M-fields in Eq. (3.2)

Ŝ
 ¼ 
4

4
TrH gacgbdF̂ab ? F̂cd

þ ðd� 1Þ
3

2
TrH gabD̂a ? D̂b; (3.13)

where the trace TrH is defined over the Hilbert space H
associated with a representation space of the NC ? algebra
(3.9). It might be remarked that, in spite of the mass term,
the action (3.13) respects the NC Uð1Þ gauge symmetry

acting on ðD̂a; F̂abÞ ! Û ? ðD̂a; F̂abÞ ? Ûy where Û 2
A�.

Because D̂a ¼ 1

 gabX

b, one can rewrite the Snyder al-

gebra (3.6) in terms of gauge theory variables:

½D̂a; D̂b�? ¼ iF̂ab ¼ 
�2Mab;

½D̂a; F̂bc�? ¼ �i
�1ðgacD̂b � gabD̂cÞ;
½F̂ab; F̂cd�? ¼ �i
�1ðgacF̂bd � gadF̂bc � gbcF̂ad

þ gbdF̂acÞ:

(3.14)

Because �i½D̂a; F̂bc�? ¼ �i½xa=
; F̂bc�? � i½Âa; F̂bc�? �
D̂aF̂bc, one can easily check that the Bianchi identity,

D̂½aF̂bc� ¼ 0, and the equations of motion, D̂aF̂
ab ¼ ðd�

1Þ
�1D̂b, are directly derived from the second algebra in
Eq. (3.14). Note that the last equation in Eq. (3.14) can be
obtained from the other two applying the Jacobi identity.
From a gauge theory point of view, it is a bizarre relation

since the field strength F̂ab of an arbitrary gauge field Âa

behaves like an angular momentum operator in d dimen-
sions. This kind of behavior is absent in an undeformed
case, 
 ¼ 0. The theory will strongly constrain the behav-
ior of gauge fields and so there might be some hidden
integrability.
A Hamiltonian vector field Xf ¼ �]ðdfÞ for a smooth

function f 2 C1ðMÞ is defined by the anchor map (3.8) as
follows [32]:

XfðgÞ ¼ �h�; df ^ dgi ¼ �LabðxÞ @f
@xa

@g

@xb
¼ fg; fg�:

(3.15)

Because the Poisson manifold ðM;�Þ has been quantized
in Eq. (3.9), the correspondence between the Lie algebras
ðC1ðMÞ; f�; �g�Þ and ð�ðTMÞ; ½�; ��Þ can be lifted to the NC
? algebra ðA�; ½�; ��?Þ as in Eq. (1.8). That is, we can map

NC fields in A� to vector fields in ��ðdTMÞ, A�-valued

sections of a generalized tangent bundle dTM. For example,

D̂aðxÞ in Eq. (3.10) are mapped to the following vector

fields in dTM:

adD̂a
½f̂�ðxÞ � �i½D̂aðxÞ; f̂ðxÞ�?

¼ �L��ðxÞ@DaðxÞ
@x�

@fðxÞ
@x�

þ � � �

� V
�
a ðxÞ@fðxÞ

@x�
þ � � � ¼ Va½f�ðxÞ þOðL3Þ;

(3.16)

where the leading order leads to the usual vector fields
Va 2 TM in Eq. (3.15).
We might express from the outset the star product using

different NC coordinates ŷa defined by ½ŷa; ŷb�~? ¼
i ~̂L

abðŷÞ. In terms of the new ~? product, the adjoint action
defining an inner derivation in A� is then given by

adD̂a
½f̂�ðŷÞ � �i½D̂aðŷÞ; f̂ðŷÞ�~?

¼ � ~L��ðyÞ@DaðyÞ
@y�

@fðyÞ
@y�

þ � � �

� ~V�
a ðyÞ@fðyÞ

@y�
þ � � � ¼ ~Va½f�ðyÞ þOð ~L3Þ:

(3.17)

Noting that the star products, ? and ~?, are related by a
coordinate transformation xa � ya ¼ yaðxÞ [31], in other
words,
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~L��ðyÞ ¼ LabðxÞ @y
�ðxÞ
@xa

@y�ðxÞ
@xb

;

one can easily check [2] using the chain rule that the vector
fields defined by Eq. (3.17) are diffeomorphic to those in
Eq. (3.16) as expected, i.e.,

~V �
a ðyÞ ¼ V�

a ðxÞ@y
�ðxÞ
@x�

: (3.18)

We are particularly interested in the background geome-
try defined by Eq. (3.9). In this case, the vector fields for the

background gauge fields D̂ð0Þ
a ðxÞ are given by

ad
D̂ð0Þ

a
½f̂�ðxÞ ¼ �i½D̂ð0Þ

a ðxÞ; f̂ðxÞ�? ¼ Vð0Þ�
a ðxÞ@fðxÞ

@x�
þ � � �

� Vð0Þ
a ½f�ðxÞ þOðL3Þ: (3.19)

Using the Snyder algebra for ðD̂ð0Þ
a ; Q̂abÞ and the relation

ad½D̂ð0Þ
a ;D̂ð0Þ

b
�? ¼ i½Vð0Þ

a ; Vð0Þ
b � þOðL3Þ ¼ iadQ̂ab

� iSð0Þab þOðL3Þ; (3.20)

one can see that ðVð0Þ
a ; Sð0ÞabÞ 2 �ðTMbackÞ also satisfy the

Snyder algebra (3.6) where the Lie algebra in �ðTMbackÞ is
defined by the Lie bracket, e.g., ½Vð0Þ

a ; Vð0Þ
b � ¼ Sð0Þab .

We want to find the representation of the Snyder algebra
(3.6) in terms of differential operators [27], i.e., vector
fields in �ðTMbackÞ. In order to find an explicit expression

of vector fields Vð0Þ
a 2 �ðTMbackÞ, first notice that the

Snyder algebra (3.6) can be understood as the Lorentz
algebra in ðdþ 1Þ dimensions with the identification
Mdþ1;a ¼ ffiffiffiffi



p

Xa

½MAB;MCD� ¼ 
ðgACMBD � gADMBC � gBCMAD

þ gBDMACÞ; (3.21)

where A; B; � � � ¼ 1; � � � ; dþ 1. Therefore, the equiva-
lence between the Snyder algebra (3.6) in d dimensions
and the Lorentz algebra SOðdþ 1� p; pÞ in ðdþ 1Þ di-
mensions implies that the Snyder space as an emergent
geometry defined by the action (3.2) can be obtained as a
d-dimensional hypersurfaceM embedded in Rdþ1�p;p. For
example, in the d ¼ 2 case, the Lorentz algebra (3.21) is
equivalent to the Lie algebra (2.6) with the identification
MAB ¼ �i�"ABC XC, (A; B; C ¼ 1; 2; 3) where 
 ¼
��2 detgAB and so ½XA; XB� ¼ MAB. And the Lie algebra
(2.6) describes a two-dimensional hypersurface foliated by
the quadratic form (2.7) in R3�p;p. See the Appendix for
the details.

Similarly we will consider, in particular, four-
dimensional hypersurfaces M for three cases with p ¼ 0,
1, 2. Let us consider a homogeneous quadratic form as an
invariant of the Lorentz algebra (3.21)

gABx
AxB ¼ ð�1Þ]R2 (3.22)

and the ambient space metric gAB will be taken as a five-
dimensional flat Euclidean or Lorentzian metric given by
(I) gAB ¼ diagð1; 1; 1; 1; 1Þ with ] ¼ 0, (II) gAB ¼
diagð�1; 1; 1; 1; 1Þ with ] ¼ 0, and (III) gAB ¼ diagð�1;
1; 1; 1;�1Þ with ] ¼ 1. Then they describe (I) S4, (II) dS4,
and (III) AdS4 of radius R given by Eq. (3.22) in a con-
tinuum limit. It should be remarked that the case (I), a four-
sphere S4, admits only a Poisson structure instead of a
nondegenerate symplectic structure2 and so its quantiza-
tion has to be described in terms of deformation quantiza-
tion of Poisson manifold as we explained before. Although
we do not know whether the other cases, (II) and (III),
admit a nondegenerate Poisson, i.e., symplectic, structure,
the arguments followed by Eq. (3.21) will be completely
sensible even with the Poisson structure only.
Suppose that xA ¼ xAðxÞ, A ¼ 1; 2; � � � ; 5 satisfy

Eq. (3.22) and are local parameterizations of M in terms
of local coordinates xa. We will identify xA ¼ xa, A ¼
1; � � � ; 4, with the Poisson coordinates in Eq. (3.9), which

is the background solution Xa
back ¼ xa ¼ 
gabDð0Þ

b ðxÞ in

Eq. (3.10). The vector fields ðVð0Þ
a ; Sð0ÞabÞ 2 �ðTMbackÞ in

Eqs. (3.19) and (3.20) satisfying the Snyder algebra can
then be understood as differential Lorentz generators of
SOð5� p; pÞ,

Sð0ÞAB ¼ 


�
xB

@

@xA
� xA

@

@xB

�
; (3.23)

where Vð0Þ
a � Sð0Þ5;a=

ffiffiffiffi



p
and the five-dimensional metric gAB

(to define xA ¼ gABx
B) is a standard flat metric. According

to the identification, the vector fields Vð0Þ
a in Eq. (3.19) can

be represented by the coordinates xA as follows [27]:

Vð0Þ
a ¼ Vð0ÞA

a ðxÞ @

@xA
¼ Sð0Þ5;a=

ffiffiffiffi



p ¼ ffiffiffiffi



p �
xa

@

@x5
� x5

@

@xa

�
(3.24)

and so we get the result Vð0Þb
a ¼ � ffiffiffiffi



p

�b
ax5 and Vð0Þ5

a ¼ffiffiffiffi



p
xa. Then it is obvious that Sð0Þab ¼ ½Vð0Þ

a ; Vð0Þ
b � ¼


ðxb @
@xa � xa

@
@xb

Þ are the generators of the four-

dimensional Lorentz group, i.e., Sð0Þab 2 SOð4Þ or SO(3,1)
and ðVð0Þ

a ; Sð0ÞabÞ satisfy the Snyder algebra (3.6).

As will be shown in the Appendix, the Lie algebra (2.6)
is the Snyder algebra in two dimensions whose generators
are given by ðX1; X2;M12 ¼ � i

� X
3Þ. In this case the Lie

algebra (2.6) describes a two-dimensional hypersurface

2Instead one can consider a bundle over S4 with fibre S2,
which is the Kähler coset space SOð5Þ=Uð2Þ ’ S4 � S2 [34].
Then S4 may be described by the complex coordinate system of
SOð5Þ=Uð2Þ, where a symplectic structure manifests and the
second de Rham cohomology group H2ðS4 � S2Þ is definitely
nontrivial.
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embedded in three-dimensional space whose metric is
given by Eq. (2.15). Therefore, in order to define a four-
dimensional metric determined by the Snyder alge-
bra (3.6), we will consistently extend the two-dimensional
case and so the metric is defined by the vector fields (3.24)
as follows:

ds2 ¼ G
ð0Þ
abdx

a 
 dxb ¼ ðdetGð0Þ
abÞgABVð0ÞA

a Vð0ÞB
b dxa 
 dxb

¼ ðdetGð0Þ
abÞðgabx25 þ g55xaxbÞdxa 
 dxb; (3.25)

where detGð0Þ
ab ¼ 1

x2
5

and we put R ¼ 
 ¼ 1 for simplicity.

Of course Eq. (3.25) describes a four-dimensional
maximally symmetric space with a constant curvature,
e.g., S4, dS4, or AdS4 depending on the signature

of the five-dimensional metric gAB. Because x5 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g55gabx
axb

p
, the metric (3.25) can be rewritten as

the following form:

ds2 ¼
�
gab þ g55

xaxb
x25

�
dxa 
 dxb

¼ gAB
@xA

@xa
@xB

@xb
dxa 
 dxb ¼ gABdx

A 
 dxB: (3.26)

Note that the final result (3.26) is completely parallel to the
two-dimensional one, e.g., (2.15).

Therefore we get an interesting result. The mass-
deformed IKKT matrix model (3.2) in d dimensions is
completely described by the Snyder algebra (3.6) which
is equivalent to the Lorentz algebra SOðdþ 1� p; pÞ,
Eq. (3.21), in ðdþ 1Þ dimensions. We found that a vacuum
geometry of the Snyder algebra is a constant curvature
space. For example, the metric (3.25) in four dimensions
describes S4, dS4, andAdS4 depending on the choice of the
five-dimensional metric gAB. Thus the equivalence be-
tween the Snyder algebra (3.6) in d dimensions and the
Lorentz algebra (3.21) in ðdþ 1Þ dimensions is beautifully
realized as a well-known geometrical result that a constant
curvature space in d dimensions such as Sd, dSd, and AdSd
can be embedded in a flat Euclidean or Lorentzian space-
time in ðdþ 1Þ dimensions. In particular, this result clearly
illustrates how a nontrivial curved spacetime emerges from
the zero-dimensional (i.e., background-independent) ma-
trix model (3.2) through the correspondence (1.8) between

NC ? algebra ðA�; ½�; ��?Þ and ��ðdTMÞ, generalized vector
fields. We will discuss in Sec. IV how the constant curva-
ture spacetimes in Eq. (3.26) can be described by the coset
space realization of the Snyder algebra (3.6).

We can further deduce consistent pictures about emer-
gent geometry by closely following the two-dimensional
case we observed in the previous section. Consider a
generic fluctuation in Eq. (3.10). If the fluctuation is a

flat connection, i.e., ÂaðxÞ ¼ ĝ�1ðxÞ ? ½D̂ð0Þ
a ; ĝðxÞ�?, then

D̂aðxÞ ¼ ĝ�1ðxÞ ? D̂ð0Þ
a ? ĝðxÞ and F̂abðxÞ ¼ ĝ�1ðxÞ ?

Q̂ab ? ĝðxÞ. One can immediately see from Eq. (3.14)

that the Snyder algebra for the operators ðD̂a; F̂abÞ is
simply a gauge transformation of the Snyder algebra for

the operators ðD̂ð0Þ
a ; Q̂abÞ. Therefore, the resulting geometry

determined by the vector fields (3.16) will not be changed
and the constraint (3.22) will be preserved. So the coor-
dinate change in terms of flat connections should be a
Killing symmetry of the background geometry (3.25) as
was explained in Eq. (1.10) and correspond to a global
Lorentz transformation in higher dimensions, which was
precisely the case for two-dimensional geometries. For
example, from Eq. (3.22) or Eq. (3.26), one can deduce
that xA ! x0A ¼ �A

Bx
B where �A

B 2 SOð5� p; pÞ.
We observed that a higher dimensional manifold in

general emerges from a NC ?-algebra A� defined by a
Poisson structure rather than a symplectic structure.
Another notable difference from the two-dimensional
case is that the underlying action (3.2) contains fluctuations
by nonflat connections and so nontrivial metric deforma-
tions. This means that the action (3.2) describes a fluctuat-
ing geometry, not a rigid geometry. The Snyder algebra
(3.14) clearly shows that the action (3.13) allows such
fluctuations by nonflat connections as an on-shell solution.
Indeed the algebra (3.14) can be understood as the Lorentz

algebra (3.21) after the identification MAB ¼ i
2F̂AB ¼
i
2ðF̂ab; F̂dþ1;a � � iffiffiffi



p D̂aÞ.

Suppose that the fluctuations (3.10) in commutative limit
are described by smooth functions zaðxÞ ¼ xa þ 
AaðxÞ
where xa describe the vacuum geometry in Eq. (3.25).
Then one can map the solution Da ¼ gabz

b=
 2 C1ðMÞ
to vector fields in �ðTMÞ according to Eq. (3.16). Let us
denote the resulting vector fields as ðVa; Sab ¼ ½Va; Vb�Þ
which satisfy the Snyder algebra as easily inferred from
Eq. (3.14). The resulting Snyder algebra can be lifted to the
Lorentz algebra in five dimensions given by

SAB ¼ 


�
zB

@

@zA
� zA

@

@zB

�
; (3.27)

where Va � S5;a=
ffiffiffiffi



p
and zA ¼ zAðxÞ are five-dimensional

coordinates satisfying gABz
AzB ¼ ð�1Þ]R2. Following the

same procedure as Eqs. (3.25) and (3.26), the metric of
fluctuating surface M can be derived as3

3We feel some remarks are necessary to correctly understand
Eq. (3.28) and to avoid any confusion. The equivalence principle
in general relativity guarantees that there always exists a locally
inertial frame at an arbitrary point P in spacetime where the
metric becomes locally flat, i.e., ds2jP ¼ �	
d�

	d�
. But the
local inertial frame �	 ¼ �	ðxÞ is valid only on a local coor-
dinate patch and cannot be globally extended over all spacetime
unless the spacetime is flat. Similarly, Eq. (3.14) implies that it is
always possible to choose a local coordinate za such that the
metric at P locally looks like the background geometry (3.25).
But we have to notice that the local coordinates zaðxÞ ¼ xa þ

AaðxÞ depend on dynamical gauge fields satisfying the equa-
tions of motion or the Snyder algebra (3.14) and so should not be
regarded as a globally constant curvature spacetime as if the
local inertial frame does not mean a flat spacetime.

EMERGENT GEOMETRY FROM QUANTIZED SPACETIME PHYSICAL REVIEW D 82, 045004 (2010)

045004-13



ds2 ¼ Gabdz
a 
 dzb ¼

�
gab þ g55

zazb
z25

�
dza 
 dzb

¼
�
gab þ g55

zazb
z25

�
@za

@xc
@zb

@xd
dxc 
 dxd

¼
�
gab þ g55

xaxb
x25

�
dxa 
 dxb

þ ðdeformations of OðAÞÞ; (3.28)

and

ds2 ¼
�
gab þ g55

zazb
z25

�
dza 
 dzb

¼ gAB
@zA

@xa
@zB

@xb
dxa 
 dxb ¼ gABdz

A 
 dzB: (3.29)

If the solution (3.10) is understood as a general coordinate
transformation xA � zA ¼ zAðxÞ in ðdþ 1Þ dimensions,
one may notice that Eq. (3.29) is certainly a higher dimen-
sional analogue of the two-dimensional result (2.46).

Now let us recapitulate why the emergent geometry we
have examined so far is completely consistent with all the
rationale inferred from the algebraic point of view. We are
interested in the emergent geometry derived from the
mass-deformed IKKT matrix model (3.2). We observed
that the equations of motion can be derived from the
Snyder algebra (3.6). An essential point is that the
Snyder algebra (3.6) in d dimensions can be lifted to the
ðdþ 1Þ-dimensional Lorentz algebra (3.21). So the
d-dimensional Snyder algebra can be represented by the
ðdþ 1Þ-dimensional Lorentz generators with the con-
straint gABz

AzB ¼ ð�1Þ]R2. As we know, the Lorentz
algebra (3.21) represents a global symmetry of ðdþ
1Þ-dimensional flat spacetime. Therefore, the emergent
gravity determined by the Snyder algebra (3.6) can always
be embedded into ðdþ 1Þ-dimensional flat spacetime
although the d-dimensional geometry is highly nontrivial.
From the d-dimensional point of view, the geometry of
hypersurface M is emergent from dynamical gauge fields
as the map (3.16) definitely implies. One may clearly see
this picture from Eq. (3.29). First recall that zaðxÞ ¼ xa þ

AaðxÞ where AaðxÞ describe fluctuations around the back-
ground spacetime whose metric is given by Eq. (3.25). But
the last result of Eq. (3.29) shows that the dynamical
fluctuations of the manifold M can again be embedded
into the ðdþ 1Þ-dimensional flat spacetime, but its embed-
ding is now described by the ‘‘dynamical’’ coordinates
zAðxÞ ¼ xA þ 
AAðxÞ.

Like the two-dimensional case, one may consider a
nonlinear deformation of the Snyder algebra by replacing
the mass term in the action (3.2) by a general polynomial as
follows:

SG ¼ Tr

�
1

4
MabM

ab � 1

2
Mab½Xa; Xb� þ 


2
GðXÞ

�
: (3.30)

Then the equations of motion (3.5) are replaced by

½Mab; Xb� þ 


�
@GðXÞ
@Xa

�
¼ 0; (3.31)

where the second term is a formal expression of the matrix
ordering under the trace Tr as Eq. (2.35). Equation (3.31)
could be derived by considering the nonlinear version of
the Snyder algebra (3.6)

½Xa;Mbc� ¼ 
fabcd
�
@GðXÞ
@Xd

�
; (3.32)

where fabcd ¼ gacgbd � gabgcd has been chosen to re-
cover the linear Snyder algebra with GðXÞ ¼ ðd�
1Þ
XaX

a. As long as the polynomial GðXÞ is explicitly
given, the commutator ½Mab;Mcd� can be calculated by
applying the Jacobi identity

½Mab;Mcd� ¼ ½Mab; ½Xc; Xd��
¼ ½½Mab; Xc�; Xd� � ½½Mab; Xd�; Xc� (3.33)

and using the algebra (3.32). The right-hand side of
Eq. (3.33) can eventually be arranged into the form

GacðXÞMbd þ � � � using the commutation relation
(3.32). Therefore, the nonlinear deformation of the
Snyder algebra described by the action (3.30) seems to
work. So it will be interesting to investigate whether the
nonlinear Snyder algebra can still have a higher dimen-
sional interpretation like the linear case and what kind of
vacuum geometry arises from a given polynomial GðXÞ.

IV. DISCUSSION AND CONCLUSION

Here we discuss the fact that the constant curvature
space described by the Snyder algebra (3.6) can be repre-
sented as a coset space G=H. In other words, the
d-dimensional hypersurface M is a homogeneous space.
To be specific, we have the following coset realization of
M:

Sd ¼ SOðdþ 1Þ=SOðdÞ;
AdSd ¼ SOðd; 1Þ=SOðd� 1; 1Þ;
AdSd ¼ SOðd� 1; 2Þ=SOðd� 1; 1Þ:

(4.1)

Taking G to be a Lie group as in Eq. (4.1), the coset
manifold endows a Riemannian structure as we already
know. Split the Lie algebra ofG asG ¼ H �K whereH is
the Lie algebra of H and K contains the coset generators.
The structure constants of G are defined by [28]

½Hi;Hj� ¼ fkijHk; Hi 2 H;

½Hi; Ka� ¼ fjiaHj þ fbiaKb; Ka 2 K;

½Ka;Kb� ¼ fiabHi þ fcabKc:

(4.2)

If fjia ¼ 0, the coset space G=H is said to be reductive and,
if fcab ¼ 0, it is called symmetric.
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In order to realize the coset space (4.1) from the Snyder
algebra (3.6), it is obvious how to identify the generators in
H and K: Ka ¼ iXa 2 K and Hi ¼ Mab 2 H. From this
identification, we see that the coset space (4.1) is symmet-
ric as well as reductive, which is a well-known fact.
Therefore, it will be interesting to see how the emergent
geometry from the Snyder algebra (3.6) can be constructed
from the Riemannian geometry of the coset space G=H.
The whole geometry ofG=H can be constructed in terms of
coset representatives

LðyÞ ¼ ey
aKa ða ¼ 1; � � � ; dimG� dimHÞ; (4.3)

where the local coordinates ya parameterize the coset gH
for any g 2 G. Under left multiplication by a generic
element g of G, the coset representative (4.3) will be
transformed to an another representative Lðy0Þ of the form

gLðyÞ ¼ Lðy0Þh; h 2 H; (4.4)

where y0 and h depend on y and g and on the way of
choosing representatives.

Consider the Lie algebra valued one-form

VðyÞ ¼ L�1ðyÞdLðyÞ ¼ VaðyÞKa þ�iðyÞHi: (4.5)

The one-form VaðyÞ ¼ Va
�ðyÞdy� is a covariant frame

(vielbein) on G=H and �i
�ðyÞdy� is called the H connec-

tion. Under left multiplication by a constant g 2 G, the
one-form (4.5) transforms according to Eq. (4.4) as

Vðy0Þ ¼ hL�1ðyÞg�1dðgLðyÞh�1Þ ¼ hVðyÞh�1 þ hdh�1:

(4.6)

One can check using Eq. (4.6) that the left action of G on
VaðyÞ is equivalent to a SOðdÞ or SOðd� 1; 1Þ rotation on
VaðyÞðd ¼ dimG=HÞ [28]. The metric of the coset space
G=H can be written in terms of the vielbeins in Eq. (4.5) as

G ð0Þ
��ðyÞ ¼ gabV

a
�ðyÞVb

�ðyÞ; (4.7)

where gab is the flat coset metric and the metric (4.7)
is invariant under the left action of G due to the property
(4.6).

Because the metric (3.25) describes the coset manifolds
(4.1), it will be equivalent to the G-invariant metric (4.7).
Note that the metric (3.25) is also G-invariant as Eq. (3.26)
definitely shows. So let us check the Riemannian structure
of the coset spaces (4.1). The differential properties of the
one-form (4.5) are expressed by the Maurer-Cartan equa-
tion

dV þ V ^ V ¼ 0: (4.8)

Using Eq. (4.2), one can decompose the Maurer-Cartan
Eq. (4.8) as

dVa þ 1
2f

a
bcV

b ^ Vc þ faib�
i ^ Vb ¼ 0; (4.9)

d�i þ 1
2f

i
abV

a ^ Vb þ fija�
j ^ Va þ 1

2f
i
jk�

j ^�k ¼ 0:

(4.10)

In our case the above equations are much simpler because
fabc ¼ fija ¼ 0. Combining Eq. (4.9) together with the

torsion free conditionDVa ¼ dVa þ!a
b ^ Vb ¼ 0 yields

the spin connection on G=H

!a
b ¼ faib�

i: (4.11)

The Riemann curvature tensor is defined in terms of !a
b

by

Ra
b ¼ d!a

b þ!a
c ^!c

b: (4.12)

Substituting (4.11) into (4.12) and using Eq. (4.10) leads to
the curvature tensors

Ra
b ¼ �1

2f
a
ibf

i
cdV

c ^ Vd þ ðfaicfcjb � 1
2f

k
ijf

a
kbÞ�i ^�j

� 1
2R

a
bcdV

c ^ Vd; (4.13)

where the second term in Eq. (4.13) vanishes because of
the Jacobi identity ½½Ka;Hi�; Hj� þ ½½Hi;Hj�; Ka� þ
½½Hj; Ka�; Hi� ¼ 0.

Comparing the coset algebra (4.2) with the Snyder alge-
bra (3.6) leads to the identification of the structure constant
faid ¼ gaefeid for i ¼ ½bc�

fa½bc�d ¼ fabcd ¼ gacgbd � gabgcd: (4.14)

Then the Riemann curvature tensor (4.13) of coset mani-
fold G=H is given by4

Rabcd ¼ �faibf
i
cd ¼ �faefbf

ef
cd

¼ g55ðgacgbd � gadgbcÞ: (4.15)

As was shown in Eq. (3.25), a vacuum geometry of the
Snyder algebra (3.6) is also given by an Einstein manifold
of constant curvature and is precisely the same as
Eq. (4.15). Therefore, we confirm that the vacuum geome-
try of the Snyder algebra (3.6) is described by the
G-invariant metric (4.7) of the coset space G=H. But we
have to notice that the Snyder algebra (3.14) is in general
defined by dynamical gauge fields fluctuating around the
vacuum manifold G=H as Eq. (3.28) clearly shows. One
might already notice that the generators in Eq. (4.2) are
constant matrices while those in Eq. (3.6) are in general

4According to the identification (3.21), the first Snyder algebra
for four-dimensional anti-de Sitter space is given by ½Xa; Xb� ¼

½M5;a;M5;b� ¼ 
g55Mab. Thus the anti-de Sitter space will be
equally cared by the replacement fiab ! g55f

i
ab in the algebra

(4.2). That is the reason why the g55 factor comes in Eq. (4.15).
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mapped to NC fields in A� as in Eq. (3.14). Therefore, it
should be interesting to directly derive Einstein’s equations
[4] to incorporate all possible deformations induced by
gauge fields from the Snyder algebra, whose metric may
be G-invariant as always, as we checked in Eq. (3.29). We
hope to address this issue in the near future.

Let us conclude with some remarks about the signifi-
cance of emergent geometry based on the results we have
obtained. The emergence usually means the arising of
novel and coherent structures, patterns, and properties
through the collective interactions of more fundamental
entities, for example, the superconductivity in condensed
matter system or the organization of life in biology. In our
case, we are talking about the emergence of a much more
bizarre object: gravity. A stringent point of emergent grav-
ity is to require that spacetime should also be emergent
simultaneously according to the picture of general
relativity.

What does the emergence of spacetime mean? It means
that the emergent gravity should necessarily be back-
ground independent where the prior existence of any
spacetime structure is not a priori assumed but should be
defined by fundamental ingredients in quantum gravity
theory. We have already exhibited such examples with
the matrix actions (1.11), (2.1), and (3.2).

Let us pick up the simplest example (2.5) to illuminate
how some geometry emerges from a background-
independent theory. Note that the action (2.5) is a ‘‘zero-
dimensional’’ matrix model. In order to define the action
(2.5), we did not introduce any kind of spacetime structure.
We only have three Hermitian matrices (as objects) which
are subject to the algebraic relations (2.6) and (2.7) (as
morphisms).5 From these algebraic relations between ob-
jects, we can derive a geometry by mapping the matrix
algebra to a Poisson algebra or a NC ? algebra, as was
shown in Sec. II. Depending on the choice of an algebraic
relation characterized by the signature of gAB, we get a
different geometry. The underlying argument should be
familiar, in particular, with the representation theory of
Lie groups and Lie algebras.

A profound aspect of emergent geometry is that a
background-independent formulation can be realized
with matrix models, as we illustrated with the actions
(1.11), (2.1), and (3.2). In this approach, an operator alge-
bra, e.g., ? algebra defined by NC gauge fields, defines a
relational fabric between NC gauge fields, whose prototype
at a macroscopic world emerges as a smooth spacetime
geometry. In this scheme, the geometry is a derived con-
cept defined by the algebra. One has to specify an under-
lying algebra to talk about a corresponding geometry.
Furthermore, a smooth geometry is doomed in a deep

NC space, whereas an algebra between objects plays a
more fundamental role. Therefore, the motto of emergent
gravity is that an algebra defines a geometry.
As we observed in Eq. (1.7), the map between a Poisson

algebra ðC1ðMÞ; f�;�g�Þ and the Lie algebra
ð�ðTMÞ; ½�;��Þ of vector fields is a Lie algebra homo-
morphism. This means that a geometric structure deter-
mined by the Lie algebra ð�ðTMÞ; ½�;��Þ is faithfully
inherited from the Poisson algebra ðC1ðMÞ; f�;�g�Þ.
Thus the map between an underlying algebra and its emer-
gent geometry should be structure-preserving, i.e., a homo-
morphism. This homomorphism is also true even for a
general Poisson structure. Actually it should be required
for consistency of emergent gravity. If not, one could not
say that a geometry can be derived from an algebra.
In our case, this implies that an algebraic structure in a

matrix theory will be encoded in a geometric structure of
emergent gravity. Note, as we showed in Sec. III, the
maximally symmetric spaces in Eq. (4.1) can be derived
from the Snyder algebra (3.6) by applying the map (3.16).
And recall that those d-dimensional symmetric spaces can
always be embedded in a ðdþ 1Þ-dimensional flat space-
time. If so, a natural question is how this geometric prop-
erty is encoded in the Snyder algebra (3.6). As Eq. (3.21)
shows, the geometric property is precisely realized as the
fact that the d-dimensional Snyder algebra can be arranged
into the Lorentz algebra in ðdþ 1Þ-dimensional flat space-
time. Although the equivalence between the d-dimensional
Snyder algebra and the ðdþ 1Þ-dimensional Lorentz alge-
bra is a well-known fact, it is a nice nontrivial check that
the algebraic structure of the Snyder algebra has been
consistently encoded in the geometric property of emer-
gent spacetime since the emergent gravity has to respect
the homomorphism from an algebra to a geometry for
consistency.
As a completely different direction, we may consider the

matrices ðXa;MabÞ as independent dynamical coordinates,
which satisfy the ðdþ 1Þ-dimensional Lorentz algebra
(3.21). As an example, a three-dimensional sphere S3

appears in this way from the SU(2) algebra (2.6) as we
discussed in the footnote 2. In this case there are dðdþ
1Þ=2 coordinates in total and so we will get some dðdþ
1Þ=2-dimensional manifold from the algebra (3.6) or
(3.21). Although we do not know what the underlying
Poisson structure is in this case, we guess that the resulting
emergent geometry derived from the Lorentz algebra
(3.21) would be a group manifold of SOðdþ 1� p; pÞ as
can be inferred from the three-dimensional case. To clarify
this issue will be an interesting future work.
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APPENDIX: TWO-DIMENSIONAL SNYDER
ALGEBRA

Here we will show that the two-dimensional version of
the Snyder algebra (3.6) is precisely equal to the three-
dimensional SOð3� p; pÞ Lie algebra (2.6).

In two dimensions, the Snyder algebra (3.6) reads as

½X1; X2� ¼ M12; ½X1;M12� ¼ �
g11X2;

½X2;M12� ¼ 
g22X1:
(A1)

If one defines M12 � �i�X3 ( ¼ �i�"123 X3), one can

immediately see that the Snyder algebra (A1) can be
written as the form of the Lie algebra (2.6) with 
 ¼
��2 detgAB. Conversely, if one defines XA �
i
2� "

A
BCM

BC ðA; B; C ¼ 1; 2; 3Þ, the Snyder algebra (A1)

takes the form of the three-dimensional Lorentz algebra
(3.21). Note that the two-dimensional Snyder algebra (A1)
is the equation of motion derived from the action (3.2),
which can be rewritten as the action (2.5) for the three-
dimensional Lie algebra with the above identification. It
might be remarked that the three dimensions is special in
the sense that an antisymmetric rank-2 tensor is dual to a
vector, i.e., MAB ¼ �i�"ABCX

C and so the Lorentz alge-

bra (3.21) can be expressed as the form (2.6) only in three
dimensions.
As we discussed in Sec. II, the quadratic form C2 �P3
A;B¼1 gABX

AXB is a Casimir invariant of SOð3� p; pÞ
Lie algebra, i.e.,

½XA; C2� ¼ 0; 8 A ¼ 1; 2; 3: (A2)

Because XA ¼ i
2� "

A
BCM

BC, Eq. (A2) can be rewritten as

½MAB; C2� ¼ 0; 8 MAB 2 SOð3� p; pÞ: (A3)

This means that C2 is a Lorentz invariant, which can also
be derived using the commutation relation

½XA;MBC� ¼ 
ðgACXB � gABXCÞ: (A4)

The invariance (A2) implies that C2 is a multiple of the
identity element of the algebra such as Eq. (2.7). From the
viewpoint (A3), C2 is an invariant under SOð3� p; pÞ
Lorentz transformations. Therefore, the Casimir invariant
(2.7) can simultaneously be interpreted as a Lorentz in-
variant which reduces to the three-dimensional version of
Eq. (3.22), i.e.

P3
A;B¼1 gABx

AxB ¼ ð�1Þ]R2, in a classical

limit.
In summary, it was shown that the three-dimensional

SOð3� p; pÞ Lie algebra (2.6) is isomorphic to the two-
dimensional version of the Snyder algebra (3.6) where the
embedding condition (3.22) can be identified with the
Casimir invariant (2.7).
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