
INTRODUCTION

Cytogenetic analysis plays an important role in the elucida-
tion of the pathogenesis and prognosis of cancers. Several tech-
niques are now available for genome-wide screening of alter-
ations in copy number. Comparative genomic hybridization
(CGH) is a molecular cytogenetic tool that allows the screen-
ing of copy number change, and has now become one of the
most popular genome screening techniques (1). The degener-
ate oligonucleotide primed polymerase chain reaction (DOP-
PCR) CGH technique permits genetic imbalance screening of
the entire genome using only small amounts of tumor DNA.
It has also been successfully applied to microdissected archival
paraffin-embedded tissue by several investigators (2, 3). 

Intrahepatic cholangiocarcinoma (ICC) is the second most
common malignant tumor in the liver, arising from epithelial
cells in the intrahepatic bile duct (4). Although the frequency
of ICC is low, its incidence in Southeast Asian is higher than
that in Europe and North America. ICC is refractory to con-
ventional chemotherapy and radiation treatment and curative
surgical resection is not effective due to the high recurrence
rate (5). While risk factors including liver fluke infection,
hepatolithiasis, congenital cysts, and sclerosing cholangitis
have been reported (6), the genetic mechanisms involved in

the development of ICC are not well understood and only a
few cytogenetic studies of ICC have been published. Chromo-
somal gains of 5p, 7p, 8q, 13q, 15q, 17q, and 20q, and losses
of 3p, 4q, 6q, 9p, 16q, 17p, and 18q were reported in ICC
(7, 8). The structural abnormalities of chromosomes 1, 5, 7,
and 12 were detected in ICC cell lines (9). Our previous study
demonstrated the chromosomal aberrations in chromosomes
3, 6-8, 12, 14, 17, and 18 were analyzed by cross-species color
banding (10). Loss of heterozygosity (LOH) studies of ICC has
shown frequent allelic losses from various chromosomes in-
cluding 1p, 1q, 3p, 6q, 8p, 9q, 14q, 17p, and 18q (11). Where-
as specific genes responsible for the development of ICC,
genetic alterations of APC, c-erbB2, K-ras, p53, and p16INK4A

are proposed to be closely related to ICC progression (12-14).
In this study, the DNAs from 33 Korean ICC specimens

were analyzed by DOP-PCR CGH with the aim of identify-
ing the non-random chromosomal aberrations of Korean ICC.

MATERIALS AND METHODS

Tissue specimens

A total 33 formalin-fixed, paraffin-embedded specimens
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Genetic Alterations in Intrahepatic Cholangiocarcinoma as revealed 
by Degenerate Oligonucleotide Primed PCR-Comparative Genomic
Hybridization

Intrahepatic cholangiocarcinoma (ICC), a malignant neoplasm of the biliary epithe-
lium, is usually fatal because of difficulty in early diagnosis and lack of availability
of effective therapy. The genetic mechanisms involved in the development of ICC
are not well understood and only a few cytogenetic studies of ICC have been pub-
lished. Recently, technique of degenerate oligonucleotide primed (DOP)-PCR com-
parative genomic hybridization (CGH) permits genetic imbalances screening of the
entire genome using only small amounts of tumor DNA. In this study chromosomal
aberrations in 33 Korean ICC were investigated by DOP-PCR CGH. The common
sites of copy number increases were 20q (67%), 17 (61%), 11q11-q13 (42%), 8p12-
qter (39%), 18p (39%), 15q22-qter (36%), 16p (36%), 6p21 (30%), 3q25-qter (27%),
1q41-qter (24%), and 5p14-q11.2 (24%). DNA amplification was identified in 16 car-
cinomas (48%). The frequent sites of amplification were 20q, 17p, 17q23-qter, and
7p. The most frequent sites of copy number decreases were 1p32-pter (21%) and
4q (21%). The recurrent chromosomal aberrations identified in this study provide
candidate regions involved in the tumorigenesis and progression of ICC.
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DNA copy number changes

Gains Losses
No.

Sex/
age
(yr)

Differentiation
Tumor 
size 
(cm)

1 F/36 well 9.5 1q31-qter, 8p11.2-qter(q24.1-qter), 11p11.1-q13, 4q21-q27, 5q11.2-q15, 6q14-q22
12pter-q13, 12q22-qter, 14q24-qter, 15q22-qter, 16(q23-qter), 
18p11.2-qter(q21-qter), 19, 20p13-qter(20q)

2 F/36 well 3.5 1q21-q23, 3p14-p13,  4p15.3-p12, 4q27-q28, X
5p15.1-qter, 6p21.1-q13, 7p14-q11.2, 8pter-q22(p11.2-q12), 
9q13-q21, 12q14-q21, 13q14-qter, 18p11.3, 20q13.1-qter

3 F/64 well 6.5 1p22-p13, 5p14-q23, 6p21.1-q16, 8p12-qter, 13q21-q31 1p34.1-pter, 12q23-qter, 22q13, X
4 F/51 well 4 3p13-q12, 3q25-q26.3, 5p14-p12, 5q15-q23, 6p12-q22, 1p34-pter

8p11.2-qter, 12q14-q21, 13q21-q31, 19p13.3-q12, 21q11.2-q21
5 M/52 well 1.1 19, 20q, 22q none
6 M/64 well 3.5 1p13-q32, 22q none
7 M/64 moderately 4.5 11p12-q13, 12q24.1-qter, 15q22-q24, 16p, 16q24, 17(p) 5q15-q22, 13q21-q22

20p11.2-qter(q), 21q22
8 F/57 moderately 3 6p21.3-p21.1, 7p13-q11.2(p11.2-q11.2), 8p21-qter, 11p11.2-q13, X

12q23-qter, 15q22-qter, 16, 17, 20q
9 M/64 moderately 4.5 2q23-q34, 3p12-q13.3, 3q26.1-q26.3, 4q, 5p15.1-q21, 1pter-p35, 16pter-p13.1, 

8p12-qter, 11q14-q22, 13q14-qter, 14q11.2-q21 19q13.2-qter, 22q12-qter
10 F/77 moderately 4 5p14-q11.2, 17p11.2-qter, 18p11.3, 19p, 20q13.1-qter none
11 M/50 moderately 3.9 1q41-qter, 12q23-qter, 14q, 15q22-q25, 16p, 16q22-qter, 17, 18p, 20q 1pter-p31, 4q21-qter
12 M/58 moderately 9 1q, 2pter-p16, 6p21.3-p23, 9q, 15q22-qter, 16p, 17, 4

18pter-q11.2, 20p11.2-qter(q)
13 F/71 moderately 7.5 none 1pter-p32, 2q11-q22, 7q33-qter,

9q, 12q23-qter, 15q22-qter, 16p, 
17p, 19q

14 F/45 moderately 4 3q25-qter, 5p13-q11.2, 7pter-q21, 11p11.2-q13, 17, 18p, 20q(q13) Xq
15 F/68 moderately 10 3p12-qter, 4q31.1-qter, 5q11.2-q14, 6p21.2-q13, none

8p12-qter, 14q, 15q24-qter, 16p12-q13
16 F/60 moderately 5 3q12-qter, 6p21.3-q12, 11p11.2-q14(q13), 3p24-pter, 6q, 11q23-qter

12q23-qter, 14q22-qter, 15q22-q24, 17, 20q
17 F/54 moderately 5 1q31-qter, 2q36-qter, 3q26.2-q28, 7pter-p21(p21-pter), 7q11.2-q21, 1p, 3p, 12q24.1-qter

12pter-q12(p13), 13q33-qter, 17, 18pter-q11.2, 20p11.2-qter, 21q
18 M/62 moderately 6 3q25-qter, 7pter-p21, 7q11.2-q22, 11q12-q13, 15q22-qter, none

16pter-p13.1, 17, 20q
19 M/58 moderately 9 3q26.2-qter, 7pter-p21(p22), 11q12-q13, 17, 20 none
20 M/61 moderately 4 13q22-q31, 19, Xpter-q25 none
21 M/62 poorly 5 2p14-q11.1, 8pter-q22(pter-q12), 17q23-qter, 18p, 20q none
22 M/64 poorly 4.5 5p13-q12, 6p21.3-qter, 8p12-q12, 8q21.1-q22, 11p13-q13, none

12q23-qter, 14q24-qter, 16p(pter-p13), 17(pter-p12), 18p
23 M/47 poorly 10 7p22, 7p12-q22, 8pter-q12, 12p11.2-q15, 17(q24-qter), 18p none
24 M/69 poorly 12 8q24.1-qter, 11p15, 11q11-q21, 17p, 20pter-q11.2 none
25 M/53 poorly 1.7 6pter-p22, 7q22-qter, 10q21-qter, 11p12-q13, 16p, 17, 20q none
26 M/45 poorly 4 1q, 2p11.2-q21, 6p23-p21.2, 7p13-q22, 8p21.2-q22, none

11p11.2-q13, 15q22-q24, 17(p11.2-q11.2), 20q
27 M/65 poorly 3 18p 6, 9p, 8q23-qter, 14q22-qter
28 M/56 poorly 6.5 6pter-p21.3, 12q24, 17, 18pter-q11.2, 20q 4q21-q25
29 M/56 poorly 3 1q32-qter, 6pter-p21.2, 11p11.1-q13, 12q23-qter, 14q32, 4q, 9p22-p24

15q22-qter, 16p, 17, 18p, 20q, Xp11.4-q24
30 M/38 poorly 4 1q41-qter, 11p11.1-q13, 14q31-qter, 15q22-q25, 16, 1p31-p21, 2q23-q32, 3p14-q13.2, 

17(pter-q21), 20(q) 4q, 5q14-q23, 6q, 11q14-q21, 13q, 
Xq13-q23

31 M/42 poorly 8 3q25-qter, 4p14-q13, 17 none
32 M/69 poorly 4.5 19p 1pter-p22, 3p, 4p, 8p, 10q, 15q21-qter
33 M/43 poorly 2 1q41-qter, 6pter-p21.1, 7q22-qter, 8q21.2-qter, 10q23-qter, 4q22-qter, 6q14-q24, 12q14-q21,

11p11.2-q13, 15q24-qter, 16pter-q22, 17, 20q, 22q, X(p11.4-q13) 13q21-qter, 18q22-qter, Y

Table 1. Clinical data and results of comparative genomic hybridization in 33 cholangiocarcinomas
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of ICC were collected. Using a 4 m hematoxylin and eosin
stained adjacent section as a guide, tumor-containing areas
were microdissected from sectioned 10 m specimens with
a sterile 25-gauge needle under a microscope. Normal DNA
from human peripheral blood and tumor DNA from microdis-
sected cells were prepared by standard protocols. 

DOP-PCR and CGH 

DOP-PCR was performed in two separate steps according
to the published protocol with some modifications (15, 16).
Briefly, in the preamplification step, the four initial cycles
were performed at low stringency conditions (denaturation at
95℃ for 3 min followed by 4 cycles of 94℃ for 1 min; 25℃
for 1 min; 56℃ for 3 min; 74℃ for 2 min), followed by 35
cycles in high stringency conditions (at 94℃ for 1 min; 56℃
for 1 min; 72℃ for 2 min). Labellings of tumor DNA with
biotin-16dUTP and control DNA with digoxigenin-11dUTP
were performed by nick translation (Nick Translation System,

Gibco/BRL, Rockville, MD, U.S.A.). Equal amounts of labeled
normal control and tumor DNA including 40 g of Cot-1
DNA (Gibco/BRL) and 1 g salmon sperm DNA were pre-
cipitated with ethanol. Labeled DNA probes were mixed with
hybridization buffer, denatured at 75℃ for 5 min and then
applied onto the denatured metaphase slides. After incubation
for 3 days, the slides were washed and the hybridization signal
was detected using an avidin-fluorescein isothiocyanate (FITC,
1:400) and mouse anti-digoxigenin (1:100). Metaphase slides
were counterstained with DAPI at a concentration of 0.1 g/
mL in an antifade solution (Oncor, Gaithersburg, MD, U.S.A.)
for chromosomal identification. Mean ratio profiles were deter-
mined from analyses of 10-15 metaphase cells. Thresholds for
gains and losses were defined as the theoretical value of 1.25
and 0.75, respectively. The following regions were excluded
for the analyses; centromere, acrocentric short arms, telom-
ere, and heterochromatin-rich region (17).

1 2 3 4 5 6

7 8 9 10 11 12

19 20 21 22 Y

13 14 15 16 17

X

18

Fig. 1. Summary for gains and losses of chromosomal regions in 33 cholangiocarcinomas. Gains are shown on the right side of the chro-
mosome ideograms and losses on the left. Each line illustrates the affected region of the chromosome in a single tumor sample. Thick lines
represent high-level amplifications.
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RESULTS

Thirty-three intrahepatic cholangiocarcinomas were analyzed
using DOP-PCR CGH. The various chromosomal aberrations
were detected in all tumors studied. All chromosomes were
involved in imbalances and the mean number of imbalances
per tumor specimen was 9 (range, 2-18). Table 1 summarizes
clinical and chromosomal findings in the 33 entire cases. A
schematic summary of copy number changes as detected by
CGH analysis in 33 abnormal cases is shown in Fig. 1.

Among the 33 cases, the common sites of copy number
increases, in order of frequency, were, 20q (67%), 17 (61%),
11q11-q13 (42%), 8p12-qter (39%), 18p (39%), 15q22-qter
(36%), 16p (36%), 3q25-qter (27%), 1q41-qter (24%), and
5p14-q11.2 (24%) (Fig. 1). Sixteen tumors exhibited one or
more sites of DNA amplification; the frequent sites of ampli-
fication were 20q13.2-qter (6 cases), 17p (3 cases), 17q23-
qter (2 cases), and 7p (2 cases). The most frequent sites of copy
number decreases were 1p32-pter (21%) and 4q (21%). Ex-
amples of these gains and losses are shown in Fig. 2. Gains
of 11q11-q13, 17, and 18p were more commonly detected in
moderately and poorly differentiated tumors. Gain of 3q25-
qter was more frequently observed in moderately differenti-
ated ICC.

DISCUSSION

The analysis of recurring chromosomal aberrations has be-
come an integral part of the diagnostic and prognostic workup
in many human cancers, and their molecular analyses have
facilitated the identification of genes related to the pathogen-
esis of cancers. However, the characterization of complex chro-
mosomal rearrangements was limited when conventional cyto-
genetic methods were used. In this study thirty-three ICC
were successfully analyzed using DOP-PCR CGH.

In consistent with our result, a few alteration such as copy
number increases of 5p, 8q, 15q, 17q, and 20q were previously
reported in ICC (7, 8). The most common gain region was
20q, with eight tumors showing high amplification of 20q13-
qter. Gains of 17q and 20q are common finding in several
solid tumors including hepatocellular carcinoma, pancreas,
and breast tumors (18-20). Chromosome arm 20q contains
many genes such as E2F1 (20q11), AIB1 (20q12), BTAK/
STK15 (20q13), and NABC14 (20q13.2), which are involved
in several cancers (21-25). Gene amplification and protein
expression of c-erbB-2 (HER-2/neu) on 17q21 were observed
in ICC and breast cancer (26, 27).

In particular, gains of 3q26-qter, 6p21, 11q11.2-q13, 16p
and 18p are frequently observed in this study (Fig. 2A, D, E).
Chromosome region 3q26-qter harbors PIK3CA and ECT2
proto-oncogenes that are related to cell proliferation and car-
cinogenesis (28). The frequent over-represented PIK3CA has
also been reported in ovarian, head and neck, and stomach can-
cers (29-31). Gain of 6p with a minimum overlapping region
at 6p21 was frequently observed in this study. Among the genes
mapped to 6p21, PIM1 was known as a proto-oncogene relat-
ed to the progression of thymic lymphomas in transgenic mice,
although the role of PIM1 in the other cancers is not elucidat-
ed (32). In addition, CCND3 on 6p21 shares considerable
homology with proto-oncogene cyclin D1 and is involved in
the cell cycle regulation at G1 to S phase transition (33). Gain
of 11q13 is a common event in human cancers and is associ-
ated to poor prognosis (34, 35). Chromosomal band 11q13
contained several cancer related genes such as FGF3, FGF4,
and EMS1, and only CCND1 and EMS1 (36, 37).

Chromosomal loss was found to be less frequent in this
study. Losses of 1p and 4q have been reported in ICC (7, 8),
in consistent with our current result (Fig. 2B, E). Previous
reports indicated that 1p loss is related to the early stage of
hepatocarcinogenesis (38) and at least three or more tumor
suppressor genes including the p73 gene are localized on 1p
36. The deletion of 1p36 was reported to be related to the
progression of ICC without metastatic activity (39). Allelic
loss from 4q appears to be a fundamental event in the devel-
opment of HCC (40). 

In conclusion, our CGH demonstrated the complexity of
genetic aberrations in ICC. Although chromosomal loss was
found to be less frequent in this study, we were able to iden-
tify several genetic changes, which were previously reported.

3 n=27 4 n=27 8 n=28

11 n=23 18 n=22 20 n=26

A B C

D E F

Fig. 2. Examples of the CGH profiles of chromosomal aberrations
in ICC. Red and green lines represent thresholds for chromosomal
losses (0.75) and gains (1.25), respectively. (A) Gain of 3q26-qter
was detected, (B) Deletion of 4p15-qter was observed, (C) Over-
representation of 8q22-qter with high amplification of 8q24 was
found, (D) Gain of 11p11-q13 was detected, (E) Gain of 18p was
observed, (F) Gain of 20q was found. *n=number of chromosomes
evaluated.
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These findings suggest that the technical improvement in
DOP-PCR-CGH technique may reliably enhance the sensi-
tivity and accuracy of the analysis. The recurrent gains and
losses of chromosomal regions identified in this study provide
candidate regions containing oncogenes or tumor suppressor
genes involved in ICC development and progression.
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